❶ 用稀硫酸和廢鐵制氫氣的成本多少把制氣設備裝汽車上給汽車用氫氣比汽油便宜嗎
化學反應方程式為:
H2SO4+Fe=H2↑+FeSO4
理論上說,98份(質量單位而非摩爾單位)的硫酸和56份的鐵能制2份的氫和156份的硫酸亞鐵,比如,你用98公斤(這里就的是100%硫酸,市場上沒有賣,且只能用稀硫酸)的硫酸和56公斤的鐵能得到2公斤的氫氣和156的硫酸亞鐵(俗稱綠礬),他們的市場價我不太清楚,你可以去問問,但我覺得不可能比汽油便宜~~~
再者就算比汽油便宜,但氫氣的燃燒不好控制,容易發生爆炸,自己制的氫氣,不可做到純凈,還有硫酸在運輸過程中比較危險~~
所以不管怎麼樣建議都不要這樣做,安全第一嗎~~
❷ 韓國研發低成本耐腐蝕催化劑 可降低電解水制氫的成本
蓋世汽車訊推動以氫燃料汽車為代表的氫經濟發展的關鍵是以低成本生產可以發電的氫氣。制氫的方法有很多,如捕獲副產品氫氣、重組化石燃料獲取氫氣以及電解水制氫。其中,電解水制氫的方法是一種環保的方法,但是其中催化劑的使用是決定其效率和價格競爭力最重要的因素。因為,電解水裝置需要使用鉑(Pt)催化劑,以加速產氫反應以及提升耐用性。不過,雖然該催化劑的性能很好,但其成本很高,在價格方面不如其他制氫方法有競爭力。
(圖片來源:韓國科學技術研究院)
根據電解質在水中的溶解狀況,電解水裝置也會不同。例如,採用質子交換膜(PEM)的裝置,即使採用過渡金屬製成的催化劑,而不是昂貴的鉑基催化劑,也能夠實現高速率的產氫反應。因此,有很多研究都專注於將該技術實現商業化。不過,雖然此類研究專注於實現高反應活性,但是提高此類易在電化學環境中腐蝕的過渡金屬耐久性的研究卻被忽視了。
據外媒報道,韓國科學技術研究院(KIST)的一個研究小組研發了一種催化劑,由具備長期耐久性的過渡金屬製成,可以提高制氫效率,而且還通過克服非鉑催化劑的耐久性問題,無需使用到鉑。
該研究小組利用噴霧熱解工藝,將少量鈦(Ti)注入到低成本過渡金屬磷化鉬(MoP)中。由於鉬價格低廉,且易於處理,因而常被用作能量轉換和儲能設備的催化劑,但是其弱點是容易被氧化,進而腐蝕。
研究人員發現,在催化劑合成過程中,每種材料的電子結構完全得以重構,最終實現了與鉑催化劑相同的析氧反應(HER)活性。電子結構的改變解決了高腐蝕性的問題,因此該催化劑比現有的過渡金屬基催化劑的耐久性提高了26倍,可加速實現非鉑催化劑的商業化。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
❸ 怎樣制氫氣成本最低
賣氫氣球的人時直接從廠子買的, 一、水煤氣法制氫 用無煙煤或焦炭為原料與水蒸氣在高溫時反應而得水煤氣(C+H2O→CO+H2—熱)。凈化後再使它與水蒸氣一起通過觸媒令其中的CO轉化成CO2(CO+H2O→CO2+H2)可得含氫量在80%以上的氣體,再壓入水中以溶去CO2,再通過含氨蟻酸亞銅(或含氨乙酸亞銅)溶液中除去殘存的CO而得較純氫氣,這種方法制氫成本較低產量很大,設備較多,在合成氨廠多用此法。有的還把CO與H2合成甲醇,還有少數地方用80%氫的不太純的氣體供人造液體燃料用。像北京化工實驗廠和許多地方的小氮肥廠多用此法。 三、由石油熱裂的合成氣和天然氣制氫 石油熱裂副產的氫氣產量很大,常用於汽油加氫,石油化工和化肥廠所需的氫氣,這種制氫方法在世界上很多國家都採用,在我國的石油化工基地如在慶化肥廠,渤海油田的石油化工基地等都用這方法制氫氣 也在有些地方採用(如美國的Bay、way和Batan Rougo加氫工廠等)。 四、焦爐煤氣冷凍制氫 把經初步提凈的焦爐氣冷凍加壓,使其他氣體液化而剩下氫氣。此法在少數地方採用(如前蘇聯的Ke Mepobo工廠)。 五、電解食鹽水的副產氫 在氯鹼工業中副產多量較純氫氣,除供合成鹽酸外還有剩餘,也可經提純生產普氫或純氫。像化工二廠用的氫氣就是電解鹽水的副產。 六、釀造工業副產 用玉米發酵丙酮、丁醇時,發酵罐的廢氣中有1/3以上的氫氣,經多次提純後可生產普氫(97%以上),把普氫通過用液氮冷卻到—100℃以下的硅膠列管中則進一步除去雜質(如少量N2)可製取純氫(99.99%以上),像北京釀酒廠就生產這種副產氫,用來燒制石英製品和供外單位用。 七、鐵與水蒸氣反應制氫 但品質較差,此系較陳舊的方法現已基本淘汰。
❹ 氫能和燃料電池產業爆發前夜,如何突破瓶頸
氫能和燃料電池技術正加速改變著世界能源格局。
「全球能源轉型、汽車轉型共同聚焦於低碳化、綠色化,氫能是實現這兩大領域轉型的重要支撐。」中國電動汽車百人會副理事長兼秘書長張永偉15日在2020氫能產業發展創新峰會上表示,「當前全球主要汽車公司基本上都制定了發展燃料電池汽車的時間表和路線圖。越來越多的國家把氫能作為更重要的未來替代性能源,制定氫能源、氫產業、氫經濟、氫社會發展的時間表和路線圖。我們離氫的全面應用越來越近。」
劉小詩在百人會《中國氫能產業發展報告2020》中也對產業政策提出了建言:一是針對氫能標准體系不完善的現象,建立健全氫安全基礎研究體系,二是針對各地發展氫能經濟的規劃同質化現象,鼓勵基礎好的地區加速建立示範運營區,鼓勵模式創新,探索多能互補模式,因地制宜,避免低水平重復建設。三是針對產業鏈薄弱環節給予政策激勵。如加大基礎設施建設,出台和落實電解水制氫的電價優惠措施等。四是把握電動汽車與氫燃料電池車錯位互補原則,進行有效資源配置,防止顧此失彼。
從氫的產、儲、運、加、用等全產業鏈出發,依託地方政府、企業、科研院所、平台等多主體,逐步打造「基礎設施配套完善,運營模式成熟、創新成果豐富、資金保障充足、示範效果明顯、生態效應顯著」的氫能產業商業生態圈。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
❺ 為什麼獲得氫氣的成本高不是電解水就可以了嗎
因為電解的耗電量會很大,所以成本會很高啊~
因為氫氣燃燒會放出大量的能量,產生水
反過來如果要將水中的氫氣電離出來,要吸收比燃燒放出的能量更多的能量才行的。
所以電解氫會需要大量的能量,而這些能量就是電能,所以會消耗大量的電能,成本會很高
儲存困難這是因為H2屬於易燃氣體,其爆炸極限的范圍比較寬,所以混入少量的空氣都可能引起爆炸。
其儲存可以保存在鋼瓶中,要有一定的壓力,但是,H2的半徑很小,較容易穿透金屬材料,即對鋼瓶的材料要求較高,對壓力也有一定的要求。
所以,目前正在研究合金儲氫材料,即某些特殊的合金能與H2形成特殊的非整比化合物,起到儲存H2的作用,簡單理解就是H2儲存在合金中某些金屬原子的空隙里。
❻ 氫能源「降成本」為何困難重重
制氫方式決定降成本可能性不高
制氫的常見方式包括:
這是五種常見的制氫方式,第一種的常規燃料指的是天然氣,均為不可再生的化石燃料;很顯然這種方式不能普及,投入巨大的人力物力和財力去研發電動 汽車 ,初衷正是為了減少對常規能源的依賴,同時去減少二氧化碳排放,可是通過這種方式會產生大量的二氧化碳,會加劇溫室效應;且國內天然氣的儲能比較有限,滿足CNG車輛使用都有壓力,更別提去制氫了。
甲醇重整制氫也標記哦常見,上世紀應用的很廣泛,理論上用甲醇制氫確實能做到無排放,但是甲醇可不像江河水一樣隨處可取;制備甲醇主要是以一氧化碳、二氧化碳加壓催化氫化法合成,使用的原料主要是天然氣、石腦油、重油、煤炭和焦炭等,燃料是否清潔不能只看燃料本身,還要看獲取或製造燃料是否存在污染,那麼用甲醇制氫就不是理想選項了,車輛燃燒甲醇也沒有什麼意義。
工業副產品制氫主要是從焦爐煤氣變壓吸附工藝制氫,作為副產物仍舊要去看主體,主體本身不夠清潔也就不用討論氫氣的規模化生產與應用了。水鋁制氫技術近幾年熱度較高,但這種制氫的方式同樣存在污染的問題,以目前的技術似乎就沒有「清潔制氫」的理想方式,至此似乎決定了氫燃料普及無望,唯一的希望就是「電解水制氫」,然而看起來還是不靠譜。
2021年出現過「拉閘限電」,初衷不論是為了去垃圾產能還是對虛擬幣行業進行打擊,實際上也確實有用電緊張的問題;那麼電解水制氫也就行不通了,電解水可以獲得氫氣,這是個很成熟的制氫方式,但是損耗也特別大。
氫燃料 汽車 不是「用氫氣替代天然氣」,以燃燒氫氣產生熱能的「燃氣車」,本質實際是電動 汽車 。
氫氣加註到氫燃料 汽車 的儲氫罐里,增程模式中為消耗氫氣發電,電流輸入到電池組和電機以實現充電和驅動車輛行駛;這是典型的「增程式電動 汽車 」,一公斤的氫在車輛上通過燃料電池發電,能轉化出大約20kwh左右的電能。普通代步車高速巡航駕駛的電耗都在20kwh/100km以上,中大型車可以達到30kwh左右,也就是說「百公里氫耗可以達到1.0-2.0kg」。
但是用電解水制備一公斤的氫所消耗的電大約為60kwh左右,那麼跳過「電制氫、氫轉電」的流程,是不是等於這種氫燃料增程電車的實際耗電量達到了60-120kwh/100km左右了呢?實際上就是這樣,這是在浪費有限的電能。
有些說法認為光伏發電、電解水制氫、氫燃料增程的方式可行,這看起來也有些天方夜譚;光伏發電的效率不高,按照 計算的話,1 的發電功率能有200瓦左右就算不錯。假設一台車要加註5kg的氫,制氫需要耗電300kwh左右,想要在一小時內獲得300kwh的電能,需要的是大約1500 的光伏發電板,發電板的成本是相當高的哦。
所以用這種方式制氫的成本也會非常之高,其次儲氫罐的成本也非常高,目前每公斤高壓儲氫的成本在6000元上下,實製造成本極高、儲備和運輸成本極高,這樣車即便量產也用不起,所以氫燃料 汽車 目前看來沒有什麼前景可言。
天和MCN發布,保留版權保護權利
我們單位就有負責製造氫氣的車間,很危險!特愛容易爆炸,有一次爆炸,兩百多公斤的閥門飛出好幾公里!給附近老百姓的房子都震裂了。我們的技術就是燒煤然後產生一氧化碳在通過反應得到氫氣,成本很高。氫氣不易儲存和運輸,還愛爆炸!如果裝到 汽車 上,稍微泄露一點,遇到一點打火就容易爆炸!
2022年,即將到來的北京冬奧會颳起了一陣氫能源的旋風。冬奧會的火炬傳遞,全部採用氫能源。在核心賽區,延慶和張家口投入了700餘輛氫燃料大巴車,用於日常的交通運輸。
這股「氫旋風」還刮到了A股市場上,氫能源概念紅到發紫,刺激個股頻頻漲停——主營氣體運輸裝備的京城股份,在去年12月份實現了14個漲停板,股價單月飆漲300%;主營高壓容器的石重裝實現了六連板;開發氫能電源產品的動力源,也在上月下旬連續三個漲停板。
這是氫能源在當下火熱的縮影。與其他新能源相比,氫能源不僅儲量大、無污染,還兼具零碳排的特性。每單位質量所蘊含的能量更是石油的3倍、煤炭的4-5倍。除此之外,氫能源應用場景廣泛,氫燃料電池可以供給重載卡車、有軌電車、船舶、無人機、分布式發電等行業;綠色制氫還可消納太陽能和風能發電間歇式、狀態高低起伏不定的問題。
根據中國氫能聯盟的預測,到2025和2035年,我國氫產業產值將分別達到1萬億和5萬億規模。
氫能前景固然廣闊,但落地的困境卻不容忽視。
在國外,日美的氫能源能佔到各自能源總量的10%以上。日本擁有世界上數量最多加氫站,美國則擁有最低廉的氫能源價格,兩國燃料電池應用均已經投入商業銷售。
反觀國內,當前氫能源的佔比只有4%。據未來智庫測算,2020年我國氫能總成本約為60-80元/kg,距離30元/kg的可商用價格相距甚遠。
氫能源價格居高不下,還要追溯到制氫、儲氫和運氫三大環節,它們使我國氫能發展面臨著開局不利、技術瓶頸與規模化約束等重重難題,令「降成本」困難重重。
那麼,氫能降成本難題究竟如何拆解?又如何破解?
01 點歪「 科技 樹」的制氫
中國的能源結構可以歸納為「富煤、貧油、少氣」。這種特殊的結構令中國成了名副其實的「煤炭大國」——大量的化工產業平均每天要消耗掉95萬噸的煤炭資源,同時產生巨量的化工副產物。
這些副產物中,焦爐氣和氯鹼等是極其便利的制氫原料。我國氫能源產業發展的初期,就依託化工生產中的副產物作為主供氫源的原材料,以節省制氫投資,降低成本。
藉助原生資源的優勢,短短幾年間,我國就成為世界第一大產氫國。2020年中國氫氣產量突破2500萬噸,已連續多年位列世界第一。
但成也蕭何,敗也蕭何。
依託化工副產物生產的氫能源,有個致命的問題——不能算作真正的「綠色能源」。
事實上按照制氫工藝的不同,氫能源大體分為 「灰氫」、「藍氫」和「綠氫」三類。其中,藉由對工業副產物進行提純獲取氫氣,俗稱「灰氫」。通過裂解煤炭或者天然氣所得的氫氣,便是「藍氫」。「綠氫」則是通過可再生能源、電解水等方法,實現全程百分之百零碳排、零污染。
「灰氫」和「藍氫」本質上仍然是用化石燃料提供能量,會產生大量的碳排放。相關研究表明,製造「藍氫」所產生的碳足跡,比直接使用天然氣或煤炭取暖高出20%,比使用柴油取暖高出約60%。而「灰氫」的污染還要高出18%-25%。縱使有碳捕捉與封存技術(CCS)降低碳排放,依舊是杯水車薪。
也就是說,要符合氫能源產業零碳排的核心理念,產業界只能期望於綠氫。
但中國的綠氫產能著實少得可憐。由於我國氫能源產業相較歐美日發展較晚,為了在短期內快速發展,我國優先選擇了依託於優勢資源煤炭發展氫產業,其代價便是,「綠氫」制備所需的基礎建設的投資和相關技術遲遲未有發展。2020年,我國灰氫的佔比超過60%,綠氫尚且不足1%。
一筆經濟賬可以看出綠氫與灰氫的成本差距:
在我國,電解水制氫的平均成本是38元/kg,其中電力成本要佔到總成本的50%以上,而使用工業副產物制氫,平均成本僅僅只8-14元/kg。這意味著,工業電價要從當前的0.6kW·h對半折到0.3kW·h以下,綠氫才能在市場上具有競爭性。
但對標歐美日等國家,歐盟的綠氫的成本價低於14元/kg;美國的綠氫在12元/kg左右,而日本的綠氫成本固定在13.2元/kg。
如何讓綠氫從奢侈品行列變成經濟適用型,成為困擾中國氫能產業的一大難題。
而進一步拆分成本,造成綠氫高成本的兩大因素分別是電力消耗量和架設電解槽費用。歐美給出的解答是政府引導+技術革新。
在歐盟,從2020起由政府牽頭投資相繼安裝了6千兆瓦的可再生氫能電解槽,降低企業製造綠氫時電解槽的費用。
在技術上,歐盟摒棄採取工業用電電解水的模式,而使用PEM技術電解制氫。PEM技術的電解池結構緊湊、體積小,這使得其電解槽運行電流密度通常是鹼性水電解槽的4倍以上,效率極高,平均每生產1立方米氫氣可節省1千瓦時的電力。
想要讓這個棵歪掉的「 科技 樹」回到正軌,就需要投入很高的時間成本和資金成本。
去年11月,中石化建成首座PEM氫氣提純設施,其陰極和陽極催化劑、雙極板以及集電器等關鍵核心材料部件均實現國產化,制氫效率達85%以上。而這筆投資的門檻是數十億,研發周期在兩年以上。
寶豐能源也在斥巨資投入綠氫項目。其在互動平台上表示,2021年4月,耗時兩年後,公司首批電解水制氫項目全部投產,預計年產2.4億標方「綠氫」和1.2億標方「綠氧」。據其公開披露數據,近兩年來,寶豐能源在綠氫項目上已投入超過20億元。
除了兩家代表性頭部企業以外,絕大多數中下游的企業,仍在生產灰氫。如何將點歪的灰氫 科技 樹扭轉回綠氫產業,必將需要長時間的產業引導。
02 被「氫脆」卡脖子的儲氫
作為一種化學性質活潑的氣體,氫氣生產之後,需要用一種既安全又經濟的方式儲存起來。儲氫不僅是令我國頭疼的難題,而且在全世界,都沒有很好的解決辦法。
國內的主流方法是採取高壓氣態儲氫。目前,我國儲氫瓶的成本造價在27000元左右,同時配套設施的價格在15萬元,對標美國,儲氫瓶的價格也在22000元左右,略低於中國,但同樣高昂。
高成本源於氫頑皮的特性,學術上稱作「氫脆現象」。
所謂「氫脆」是指,氫氣會在金屬晶粒附近聚集起來,破壞金屬的結構,讓金屬脹氣變脆。氫氣會在金屬內累積成18.7兆帕的高壓,這是地表氣壓187倍。更糟糕的是,氫脆一經產生,就消除不了。
氫脆在 歷史 上引發過嚴重的事故。
1943年1月16日的晚上,俄勒岡州造船廠發出巨響,尚未交付的自由輪一下子斷成了兩半,這在當時引起了巨大的恐慌,眾人都以為是納粹的黑 科技 。
無獨有偶,2013年,世界上最寬的橋,舊金山-奧克蘭海灣大橋為即將到來的通車進行測試。然而僅僅2周,負責把橋面固定在水泥柱上的保險螺栓就出現了裂痕,96個保險螺栓里有30個壞掉了,使得這座大橋幾乎成了廢品。
為了緩解「氫脆」的困擾,全球想出了一種特殊的解決方法——低溫液態儲氫。將氫氣壓縮成液體,能大幅避開氣態氫造成的安全隱患。
學界普遍認為,液氫儲運技術是儲氫技術發展的重要方向。
但目前,我國液氫儲運技術相對落後,缺少大容量、低蒸發率的液氫存儲設備的開發。僅有的一些研究,多聚焦在高壓氣態儲氫方面。
例如,2020年,中科院寧波材料所使用高強高模碳纖維作為儲氫瓶的內膽,大幅提升了儲氫瓶性能。企業方面,京城股份投建了全亞洲最大的高壓儲氫瓶設計測試中心及生產線。
儲氫成本的大山,路漫漫其修遠兮。
03 「爹不疼媽不愛」的運氫
作為氫氣「出廠」前的最後一步,運氫在整個氫能產業鏈中地位舉足輕重。
然而長期以來,我國的氫氣運輸產業處於「爹不疼媽不愛」的境地,沒有系統性的規劃——幾乎所有中央和地方層面的戰略規劃中,都提到了制氫和終端應用環節。
理論上,氫氣運輸產業分為短途和中長途兩種。短途的運輸可依賴長管拖車,中長距離的運輸對成本敏感許多。其中一種經濟的方式,是先將氫氣轉為高密度的液氫狀態再進行運輸。
液氫能適應陸運和海運的模式。在陸運上,液氫儲罐最大容積可達到200立方米,是長管拖車模式的2倍。海運的液氫儲罐最大容積可達到1000立方米,在歐洲和加拿大氫氣運輸中,就均採用液氫海運的模式。
如此重要的液氫在中國卻產能極低。目前,液氫工廠僅有陝西興平、海南文昌、中國航天 科技 集團有限公司第六研究院第101研究所和西昌衛星發射中心等,主要服務於航天發射, 總產能僅有4t/d, 最大的海南文昌液氫工廠產能也僅2t/d。目前, 中國民用液氫市場基本空白。
而對標歐美,美國是全球最大、最成熟的液氫生產和應用地域,擁有15座以上的液氫工廠, 全部是5t/d以上的中大規模,總產能達到375t/d。此外,亞洲有16座液氫工廠, 日本佔了2/3。
另外一種是藉由管道運輸,但現實是,我國氫氣管網嚴重不足,全國累計僅有100km輸氫管道,且主要分布在環渤海灣、長江三角洲等地。在2016年的統計數據,全球共有4542km的氫氣管道,其中美國有2608km的輸氫管道, 歐洲有1598km的輸氫管道。
目前,我國僅僅在《中國氫能產業基礎設施發展藍皮書》提到,期望在2030年建成1000m長的氫氣運輸管道。而對比國外,管道運輸已經開始全面與上下游形成聯動。
例如,德國在北萊茵至威斯特法倫州鋪設的240km的氫氣管道,在給用戶供氫的同時這些氫氣管道也為工業所用。德國Frankfurt的氫氣管道直連加氫站與氯鹼電解工廠,可以免去壓縮機直接供氫。
總結來說,由於上層規劃的缺失,我國氫能運輸仍處於「地方割據」的局面,還未形成規模經濟。
04 破題關鍵詞:液氫
氫能源產業的相關的難題是多方面的,但抽絲剝繭,氫能源產業迫切需要解決的問題集中在存儲和運輸之上。
原理很簡單,「綠氫」的生產技術可以逐步迭代,但氫氣如果不能長期低成本地存儲,生產再多的「綠氫」都是徒增消耗。
此外,氫氣如果不能便捷運輸,氫能的廣泛應用就是無從談起。對照電力行業,正是高壓輸電技術的成熟,電力才能在全國范圍內大規模應用。
而儲氫與運氫問題的源頭,在於液氫。
無論是存儲端的低溫業態儲氫技術,還是中長距離的液氫運輸,都少不了大規模液氫的身影。因此,如何提升液氫產量、開發相關儲運設備,是氫能應用降成本的關鍵。
歐美日氫能產業的發展也能佐證這一點。歐盟早《未來氫能和燃料電池展望總結報告》就提到液氫重要性,同時在液氫方面的投資也從不吝嗇。2021年在法國,一個液氫廠的投資就超過1.5億美元。
美國壟斷了全球85%的液氫生產和應用,根據美國氫能分析中心的統計,在液氫的幫助下,美國的氫能源被大量用於石油化工行業和電子、冶金等行業,兩大行業平均每年要消耗掉82000噸的液氫。
日本則在液氫加氫站方面走在了前列。液氫加氫站具有佔地小,儲量大的優勢,甚至能完成制氫就發生在加氫站里。
目前,日本有建成142座,佔全球加氫站總數的25%,依託於加氫站,日本燃料 汽車 投放使用全球領先,燃料 汽車 的商業化也是全球最好的。
所以,中國的液氫亟需從當前軍用、航天領域,走向大規模民用環節。
思考歐美日液氫的發展歷程,我們有許多借鑒之處,概括而言,包括三點:
一、政策引導,為相關工作提前鋪好路。2021年5月,國家相關部門陸續出台了《氫能 汽車 用燃料液氫》、《液氫生產系統技術規范》和《液氫貯存和運輸技術要求》三個文件,制定了三項國家標准,這將對液氫發展起到關鍵性引領作用。
二、龍頭企業牽頭,建成大規模氫液化系統。液氫生產工廠的建設成本高,必須由龍頭企業率先投產,提高生產規模,才能有效降低單位成本。
三、系統整合相關資源,發揮產學研機製作用。例如,建立政府、研究機構和企業的氫能源產學研合作平台,將科研產品第一時間應用到實際生產當中。
05 結語
世界已進入雙碳時代。國際氫能委員會預計,2050 年氫能源將佔全球能源消耗總量的18%,催生年產值2.5萬億美元的產業。
世界各國對氫能源越發重視,歐美日各國氫能源產業的規劃已經做到了2050年後,並且還在迭代更新;而在我國,自2021年氫能被列為「十四五」規劃重點發展產業後,國家和各地政府迅速出台了400多項政策,規劃了2025年之前的產業發展目標。
一場事關產業政策、技術競技的產業爭霸賽已經打響。
❼ 蔚來汽車如何降低成本
蔚來汽車不得不面對的幾個問題:第一,簽約換電站的汽車不多。即便是現在,全球新能源乘用車市場佔有率依然不高放,而且有不少車主自己家或附近有充電樁,不需要投入高昂的換電費用。更重要的是各大車企之間電池技術不共享,由此導致電動汽車電池設計難以形成統一標准,這就意味著換電模式下電池很難在不同車型上使用,由此難以實現規模化運營而達到降低成本的目標。第二、換電站建設成本高。如果換電車輛數量不夠,難以維持後期換電站的維護和繼續推廣。一個換電站最早期的成本在800萬元,現在連站帶電池接近500萬元,這么重的資產投入,如果沒有相應車輛匹配而變成閑置的話,就是很嚴重的問題。蔚來汽車雖然沒有公布換電站成本,但應該不會比北汽新能源的便宜多少。這也註定了換電站不可能像加油站布局那麼多。如果按500萬一個換電站來計算,以蔚來汽車在ES8上市發布會上所講到2020年在全國建設1100座換電站來計算,需要持續投入50億元。以蔚來汽車目前的價格44.8—55.8萬的平均價格50.3萬來計算,需要賣約1萬輛車才能達到的這個營業收入。當然這個還沒有除去成本,如果除去各種成本,企業何時盈利真是個未知數。何況目前蔚來汽車已經虧損了100多億美元。第三,換電成本並不低。車主每年免費高速換電12 次,再加上原本免費異地加電許可權每年12次,每年高速公路免費換電的次數可以達到 24 次。看著很多,但對經常上高速的車主來講根本不夠用,超出部分每次180元或許只有這些土豪車主才能承受得起。第四,電池安全問題。不怕一萬,就怕萬一。由於電池是整車動力來源,頻繁換電會讓組裝電池部件磨損及松動,一旦接觸不良極容易導致動力中斷及短路,進而引發車輛自燃甚至爆炸。這個責任如何劃分?第五,貶值問題。新能源汽車一般都比燃油車保值率低,目前特斯拉三年的保值率在50%左右,國產純電新能源汽車,三年後的保值率更低,甚至江淮IEV的保值率只有18.44%。如果選用租賃模式或換了舊電池,會不會加大蔚來汽車的貶值率?或因為蔚來汽車在江淮代工,貶值率會變得更低?第六,換電的管理和維護問題。