㈠ 陝西一加油站汽油含水量占約9成,加這樣的油對汽車會有哪些危害
陝西一加油站汽油含水量占約9成。
近日,陝西漢中的李先生反映他在延長石油長慶加油站加了225元的油,行駛不到3公里,車嚴重抖動,熄火了。據他說原來還有半箱多的油,將剩下半箱加滿後就出發了。經過漢中市市場監管局的抽樣檢驗,他們的汽油屬於嚴重不合格。其中的水含量質量指標要求0,但是檢測指標達到了88,這就說明了這批油品水分佔到油品比例的88%,只有剩下12%是汽油。按照汽油的國家綜合標准,這批汽油是嚴重不合的。目前涉事加油站因涉嫌銷售偽劣產品罪已被當地警方立案偵查,加油站的相關人員被控制。
加這樣的油對汽車會有哪些危害?
我們都知道汽車那就必須要加汽油才能夠行駛。如果在汽油中加水的話,輕則是熄火。因為汽油不能燃燒的話,車就沒有動力。如果在高速行駛當中出現這樣的情況,那是非常危險的。熄火就是火花塞沒有辦法點燃汽油和水的混合物,氣缸內無法形成有效的燃燒,自燃發動機也就沒有能量來源,最終動力就是汽車無力,最終熄火。
㈡ 陝西一加油站被曝汽油含水量占約9成,加油時如何辯解油和水
可以通過觀察油的顏色來進行分辨。
如果汽油中混合的水量很少,因為汽油沒有水的重量,水會沉澱到油箱底部。只要水沒有到達機油泵的入口,就不會馬上引起發動機運轉問題。但是時間長了,油箱里積的水遲早會高於機油泵的入口。這時候車輛就會出現故障,因為燃油管路進水了。這種方法在第一時間不會造成車輛燃油系統和發動機的嚴重損壞,但時間長了,油路會被雜質堵塞,車輛無法正常啟動。加油的時候最好選擇大品牌的加油站。另外,記得保持加油後索要發票的習慣,謹慎選擇那些價格極低甚至贈送各種東西的小加油站。
㈢ 提高採收率技術是什麼
我國多數油田處於注水採油的晚期,采出液體含水量高達95%,注水採收率不到40%,有一半以上的石油仍然留在地下無法采出。為減緩這些油田的衰老速度,維持我國原油穩產,減少對國外原油的依賴程度,進一步提高油藏採收率,必須進行三次採油。三次採油也稱「強化採油」,是通過向油層注入化學物質、蒸汽、混相氣,或對油層採用生物技術、物理技術來改變油層性質或油層中的原油性質,提高油層壓力和石油採收率的方法。
我國克拉瑪依油田早在1958年就開展三次採油研究工作,並進行了火燒油層採油。20世紀60年代初,大慶油田一投入開發,就開始了三次採油研究工作,先後研究過CO2水驅、聚合物溶液驅、CO2混相驅、注膠束溶液驅和微生物驅。70年代後期,我國對三次採油的研究逐漸重視起來,玉門油田開展了活性水驅油和泡沫驅油。80年代,大港油田開展了鹼水驅油研究工作。90年代,大慶、勝利、大港等油田對聚合物驅油都開展了研究,相繼提出了三元復合驅及泡沫復合驅等提高石油採收率新技術。其中聚合物驅油技術已工業化推廣,三元復合驅油技術也在擴大化工業試驗階段。這些新技術的研究和應用,極大地提高了我國油田的原油採收率。
本節主要介紹化學驅油技術、氣體混相驅油技術、熱力採油技術、微生物採油技術、物理採油技術等提高油氣採收率技術。
一、化學驅油技術
化學驅油技術又叫「改良水驅」,是指在注入水中加入一種或多種化學葯劑,改變注入水的性質,提高波及系數和洗油效率,提高採收率的技術。根據所加入的化學葯劑的不同,化學驅油技術可分為以下幾種方法。
(一)聚合物驅油
聚合物是高分子化合物,它由成千上萬個叫作單體的重復單元所組成,其相對分子質量可達200萬及以上。聚合物具有增大水的黏度的性能。
聚合物驅油是把聚合物添加到注入水中,提高注入水的黏度,降低驅替介質流度,降低水油流度比,提高水驅油波及系數的一種改善水驅方法。該技術已成為保持油田持續高產及高含水後期提高油田開發水平的重要技術手段。如大慶油田主力油層水驅採收率在40%左右,採用聚合物驅油技術可比水驅提高採收率10%以上。
驅油用聚合物主要有兩種:一種是人工合成的聚合物,主要是由丙烯醯胺單體聚合而成的聚丙烯醯胺(PAM),所以聚合物驅有時也簡寫成PAM驅;另一種是天然聚合物,使用最多的是黃原膠,也稱聚糖或生物黃原膠。國內外礦場試驗絕大多數用的是部分水解聚丙烯醯胺,它的水溶性、熱穩定性和化學穩定性都比較好。
聚合物驅油機理是:聚合物溶解在水中,增加了水的黏度;在井底附近的地層中,水流速度高,聚合物分子呈線形流動;在遠離井底的地層中流速慢,聚合物分子捲曲呈線團狀或球狀而滯留在油層孔隙喉道中,降低了水相滲透率,從而降低了油水流度比,提高了波及效率;聚合物分子的官能團(如醯胺基)可部分吸附在岩石孔隙表面,使聚合物分子部分伸展在水中,阻滯了水的流動(見圖6-14)。因此,聚合物的加入,降低了水油流度比,不僅提高了平面波及效率,克服了注入水的「指進」(驅替前緣成指狀穿入被驅替相的現象),而且也提高了垂向波及效率,增加了吸水厚度。
(二)表面活性劑驅油
表面活性劑是指能夠在溶液中自發地吸附於兩相界面上,少量加入就能顯著降低該界面自由表面能(表面張力)的物質,例如烷基苯磺酸鈉、烷基硫酸鈉等。表面活性劑驅油的主要機理是降低油水界面張力,改變岩石孔隙表面的潤濕性,提高洗油效率。
圖6-14聚合物驅油提高採收率示意圖
由於地層水含有的鹽種類較多,且各油田地層水所含的鹽類也各不相同,因此,要選擇與地層水相適應的活性劑,否則收不到預期的效果。即使是有效的表面活性劑,在表面活性劑驅油過程中也存在著兩個較突出的問題:一是表面活性劑分子會被岩石表面或油膜表面吸附,導致表面活性劑在驅油過程中的沿途損失,經過一段距離後,注入水中的表面活性劑含量將大量減少,作用就非常微弱以致消失;另一個問題是表面活性劑水溶液的流度與水差不多,不能提高波及系數。
表面活性劑驅油,從工藝上講與注水並沒有什麼差異,只是把注入水改為表面活性劑體系,即注入一定濃度的表面活性劑溶液,目的是提高洗油效率。目前表面活性劑驅油大體有兩種方法:一種是以濃度小於2%的表面活性劑水溶液作為驅動介質的驅油方法,稱為表面活性劑稀溶液驅,包括活性水驅、膠束溶液驅;另一種是用表面活性劑濃度大於2%的微乳液進行驅油,稱為微乳液驅。
(三)鹼水驅油及三元復合體系驅油
鹼水驅油是將比較廉價的鹼性化合物(如氫氧化鈉)摻加到注入水中,使鹼與原油的某些成分(如有機酸)發生化學反應,形成表面活性劑,降低水與原油之間的界面張力,使油水乳化,改變岩石的潤濕性,並可溶解界面油膜、提高原油採收率的方法。可見,鹼水驅油實質上是地下合成表面活性劑驅油。
在鹼水驅油中,可以作為鹼劑的化學劑主要有氫氧化鈉、原硅酸鈉(Na4SiO4)、氫氧化銨、氫氧化鉀、磷酸三鈉、碳酸鈉、硅酸鈉(Na2SiO3),以及聚乙烯亞胺。在上述化學試劑中,氫氧化鈉和原硅酸鈉的驅油效果最好,而且經濟效果也比較好,此即人們通常所說的「苛性鹼水驅」。
鹼水驅油機理有以下幾個方面:降低界面張力;油層岩石的潤濕性發生反轉;乳化和捕集攜帶作用;增溶油水界面處形成的剛性薄膜。
鹼水驅油方法的工藝比較簡單,不需增加新的注入設備,相對於其他化學驅油來說,成本比較低。對於注水油田,只要根據確定的鹼濃度,向注入水中加入一定量的鹼,就很容易轉變為鹼水驅方法採油。但這種方法對於大部分油田效果並不明顯,其主要原因是鹼雖然可以降低界面張力,但界面張力的降低程度明顯受原油性質、地層條件的影響。
三元復合體系驅油是指在注入水中加入低濃度的表面活性劑(S)、鹼(A)和聚合物(P)的復合體系驅油的一種提高原油採收率方法。它是20世紀80年代初國外出現的化學採油新工藝,是在二元復合驅(活性劑—聚合物;鹼—聚合物)的基礎上發展起來的。由於膠束—聚合物驅在表面活性劑掃過的地區幾乎100%有效地驅替出來,所以近些年來,該方法無論是在實驗室還是礦場實驗都受到了普遍重視。但由於表面活性劑和助劑成本太高,該方法一直沒有發展成為商業規模。ASP三元復合體系所需要表面活性劑和助劑總量僅為膠束—聚合物驅的三分之一,其化學劑效率(總化學成本/採油量)比膠束—聚合物驅高。大慶油田室內研究及先導性礦場試驗表明,三元復合體系驅油可比水驅提高20%以上的原油採收率。
二、氣體混相驅油技術
混相,簡單的含義是可混合的。而混相性是指兩種或兩種以上的物質相能夠混合而形成一種均質的能力。如果兩種流體能夠混相,那麼將它們摻和而無任何界面,如水和酒精、石油和甲苯相混合均無界面。
混相驅油法就是通過注入一種能與原油呈混相的流體,來排驅殘余油的辦法。氣體混相驅油是以氣體為注入劑的混相驅油法。其機理是注入的混相氣體在油藏條件下與地層油多次接觸,油中的輕組分不斷進入到氣相中,形成混相,消除界面,使多孔介質中的毛管力降至零,從而降低因毛細管效應而殘留在油藏中的石油。從理論上講,它的微觀驅油效率達100%;從礦場應用上講,它對於低滲透黏土礦物含量高的水敏性油層更適用。
氣體混相驅油的方法很多,按照注入的驅替劑的氣體類型,可把氣體混相驅油分為兩大類,即烴類氣體混相驅油和非烴類氣體混相驅油。
早在20世紀40年代,美國就曾提出向地層注高壓氣(以注甲烷氣為主)的氣體混相驅油法。但由於它對原油的組成、油藏條件、地面設備要求較高而未得到推廣。鑒於天然氣中輕烴組分是原油的良好溶劑,50年代又提出了以液化石油氣等其他烴類氣體為混相劑的氣體混相驅油,並在室內研究的基礎上進行了大量的礦場實驗。大約到1970年,人們對烴類氣體混相驅油的興趣達到了高潮。但是,隨著烴類氣體價格的急劇上漲,油藏工程師及研究者們不得不尋求更經濟的辦法。因此,70年代以後,CO2混相驅迅速發展起來,並成為目前重要的氣體混相驅油方法之一。
三、熱力採油技術
稠油亦稱重質原油,是指在油層條件下原油黏度大於50mPa·s,或者在油層溫度條件下脫氣原油黏度大於100mPa·s,且在溫度為20℃時相對密度大於0.934的原油。根據黏度和相對密度的不同,稠油又可分為普通稠油、特稠油和超稠油。我國稠油劃分標准見表6-2。
表6-2我國稠油的劃分標准
①指油層條件下黏度,其餘指油層條件下脫氣原油黏度。
指標分類第一指標第二指標黏度,mPa·s相對密度(20℃)普通稠油50①(或100)~10000>0.92特稠油10000~50000>0.95超稠油>50000>0.98
我國稠油資源豐富,分布很廣,目前已在很多大中型油氣盆地和地區發現眾多的稠油油藏。大部分稠油油藏分布在中—新生代地層中,埋藏深度變化很大,一般在10~2000m之間。新疆克拉瑪依油田九區淺層稠油油藏埋藏深度在150~400m之間,紅山嘴淺層稠油油藏深度在300~700m之間。在全國范圍來看,絕大部分稠油油藏埋藏深度為1000~1500m。稠油油藏具有原油黏度高、密度大、流動性差、在開采過程中流動阻力大的特點,難於用常規方法進行開采,通常採用降低稠油黏度、減小油流阻力的方法進行開采。由於稠油的黏滯性對溫度非常敏感,隨著溫度的升高,稠油黏度顯著下降,所以熱力採油已成為強化開采稠油的重要手段。我國遼河油田、勝利油田、新疆克拉瑪依油田已廣泛應用。
熱力採油是通過加熱油層,使地層原油溫度升高、黏度降低,變成易流動的原油,來提高原油採收率。根據熱量產生的地點和方式不同,可將熱力採油分為兩類:一類是把熱量從地面通過井筒注入油層,如蒸汽吞吐採油、蒸汽驅採油;另一類是熱量在油層內產生,如火燒油層。
(一)蒸汽吞吐採油
蒸汽吞吐採油是指在一定時間內向油層注入一定數量的高溫高壓濕飽和蒸汽(鍋爐出口蒸汽壓力在10~20MPa之間,蒸汽溫度為250~300℃),關井一段時間使熱量傳遞到儲層和原油中去,然後再開井生產。由此可見,蒸汽吞吐採油可分為注汽、燜井及採油三個階段。從向油層注汽、燜井、開井生產到下一次注汽開始時的一個完整過程叫一個吞吐周期。蒸汽吞吐採油投資較少,工藝技術較簡單,增產快,經濟效益好。
1.注汽階段
注蒸汽作業前,要准備好機械採油設備,油井中下入注汽管柱、隔熱油管及耐熱封隔器,見圖6-15。將隔熱油管及封隔器下到注汽目的層以上幾米處,盡量縮短未隔熱井段,通過注汽管柱向油層注汽。此階段將高溫蒸汽快速注入到油層中,注入量一般在千噸當量水以上(每米油層一般注入70~120t蒸汽),注入時間一般幾天到十幾天。
圖6-18反向燃燒法示意圖
四、微生物採油技術
微生物採油技術,全稱微生物提高石油採收率(Microbial Enhanced Oil Recovery,MEOR)技術,是21世紀出現的一項高新生物技術。它是指將地面分離培養的微生物菌液和營養液注入油層,或單純注入營養液劑或油層內微生物,使其在油層內生長繁殖,產生有利於提高採收率的代謝產物,以提高油田採收率的採油方法。
(一)微生物驅油機理
(1)微生物在油藏高滲透區的生長繁殖及產生聚合物,使其能夠選擇性地堵塞大孔道,提高波及系數,增大掃油效率。
(2)產生氣體,如CO2、H2和CH4等,這些氣體能夠使油層部分增壓並降低原油黏度。
(3)產生酸。微生物產生的酸主要是低相對分子質量有機酸,能溶解碳酸鹽,提高滲透率。
(4)產生生物表面活性劑。生物表面活性劑能夠降低油水界面張力。
(5)產生有機溶劑。微生物產生的有機溶劑能夠降低界面張力。
(二)微生物採油特點
(1)微生物以水為生長介質,以質量較次的糖蜜作為營養,實施方便,可從注水管線或油套環形空間將菌液直接注入地層,不需對管線進行改造和添加專用注入設備;(2)微生物在油藏中可隨地下流體自主移動,作用范圍比聚合物驅大,注入井後不必加壓,不損傷油層,無污染,提高採收率顯著;(3)以吞吐方式可對單井進行微生物處理,解決邊遠井、枯竭井的生產問題,提高孤立井產量和邊遠油田採收率;(4)選用不同的菌種,可解決油井生產中的多種問題,如降黏、防蠟、解堵、調剖;(5)提高採收率的代謝產物在油層內產生,利用率高,且易於生物降解,具有良好的生態特性。
總之,微生物採油具有成本低、工序簡單、應用范圍廣、效果好、無污染的特點,越來越受到重視。
五、物理採油技術
物理採油技術是利用物理場來激勵和處理油層或近井地帶,解除油層污染,達到增產、增注和提高油氣採收率的新技術。目前,聲波採油技術、微波採油技術、電磁加熱技術的理論研究已達到成熟階段。
物理採油技術具有以下特點:適應性強、工藝簡單、成本低、效果明顯;可形成復合技術,對油層無污染;可用於高含水、中後期油田提高採收率;可用於含黏土油藏、低滲透油藏、緻密油藏、稠油油藏。
物理採油技術包括人工地震採油技術、水力振盪採油技術、井下超聲波採油技術、井下低頻電脈沖採油技術、低頻電脈沖技術。下面主要介紹人工地震採油技術和水力振盪採油技術。
(一)人工地震採油技術
人工地震採油技術是利用地面人工震源產生強大震場,以很低頻率的機械波形式傳到油層,對油層進行震動處理,提高水驅的波及系數,擴大掃油麵積,增大驅油效率,降低殘余油飽和度。
1.採油機理
(1)加快油層中流體的流速;
(2)降低原油黏度,改善流動性能;
(3)改善岩石潤濕性;
(4)清除油層堵塞及提高地層滲透率;
(5)降低驅動壓力。
2.特點
(1)不影響油井正常生產,不需任何井上或井下作業,避免了因油井作業造成的產量損失;
(2)一點震動就可大面積地處理油層,波及半徑達400m,在波及面積上油井有效率達82%;
(3)適應性強,對各種井都有效;
(4)對油層無任何污染,具有振動解堵、疏通孔道的作用;
(5)節省人力物力,投資少,見效快,效益高,簡單易行。
(二)水力振盪採油技術
水力振盪採油技術是利用在油管下部連接的井下振盪器產生水力脈沖波,通過脈沖波在油層中的傳遞,來解除注水井、生產井近井地帶的機械雜質、鑽井液和瀝青質膠質堵塞,破壞鹽類沉積,並使地層形成裂縫網,增大注水井吸水能力,改善油流的流動特性。振動波對地層中原油產生影響,降低原油黏度。
㈣ 石油化工廢水處理方法
石油化工廢水處理方法的詳細內容如下:隨著油田開采期的延長,尤其是油田開發的中後期,原油含水量越來越高,而無水開采期則越來越短。目前我國大部分油田原油綜合含水率已達80%,有的甚至達到90%。每年採油廢水的產生量約為4.1億t,成為主要的含油污水源。含油污水中的石油類主要由浮游高油、分散油、乳化油、膠體溶解物質和懸浮固體等組成。石油從地下開采出來,經過脫水穩定處理後進入集輸管線,然後輸送到煉油廠或油庫。在廠內再次進行脫水、脫鹽處理,當原油中含水量小於或等於0.5%,含鹽量小於5000mg/L後,方可進入常減壓裝置。
在加熱爐內將原油加熱到350℃以上,然後進行常壓蒸餾、減壓蒸餾,分割出汽油、煤油、柴油、潤滑油餾分,常壓重油和減壓渣油作為二次加工的原料。為了提高產品質量及原油的綜合利用率,在煉油廠還要進行二次加工,主要裝置有催化裂化、鉑重整、加氫、糠醛精製、聚丙烯、焦化、氧化瀝青等多套裝置。由於這些裝置均採用物理分離和化學反應相結合的方法,生產過程往往是在高溫下進行,這就需要消耗燃料及冷卻介質(水)。在工藝汽提、注水、產品精製水洗水和機泵軸封冷卻水等工藝中,水和油品要直接接觸,因而產生含油污水,含酚污水等。
由於石油化工廢水的處理難度大,不僅濃度高,而且難以溶解。因此,在石油化工廢水的處理中,一般要用到化學成分。典型的就是化學法、物理法和生化處理技術。
1、化學法
化學法是指在石油化工廢水的處理中,使用化學成分使廢水中的污染成分分解、溶解或凝集的方法,從而達到處理廢水的目的,避免環境污染。
1.1 絮凝
絮凝是石化污水處理的重要過程之一,即通過向水中投加絮凝劑破壞水中膠體顆粒的穩態,膠粒之間的相互碰撞和聚集,形成易於從水中分離的絮狀物質。絮凝可以用來處理煉油廢水中的濁度、色度、有機污染物、浮游生物和藻類等污染物成分。在具體操作中,絮凝通常與氣浮或者沉澱等工藝聯用,作為生化處理的預處理。目前,採用微生物絮凝劑,利用生物技術製成的廢水處理劑,與其他絮凝劑相比具有許多優點,如易生物降解、適用范圍廣、熱穩定性強、高效和無二次污染等,因此應用前景廣闊。
1.2 氧化法
氧化法主要有光催化氧化法、濕式氧化法和臭氧氧化法。針對不同成分的石油化工廢水,可以選擇不同的方法,這樣可以達到最有效、最經濟、最安全的處理廢水的目的。
1)光催化氧化法
光催化氧化法可以有效地將光輻射與O2、H2O2等氧化劑結合起來,從而達到處理污水的目的,因此稱為光催化氧化。有人以太陽光為光源,以TiO2、TiO2/Pt、ZnO等為催化劑,用此法處理含有21種有機污染物的水,得到的最終產物都是CO2,不產生二次污染。還有人用Fe2+和H2O2作氧化劑,鐵離子與紫外光之間存在協同效應,使H2O2分解產生氫氧根的速度大大加快,因此氧化效率得到提高,該法在許多國家尚處於研究階段。
2)濕式氧化法
濕式氧化法可以分為兩類,分別是催化濕式氧化(CWO)和濕式空氣氧化(WAO)。CWO是將有機物在高溫、高壓及催化劑存在條件下,氧化分解為CO2、H2O和N2等無毒無害物質的過程,它反應時間更短、轉化效率更高,但pH、催化劑活性對反應影響較大。WAO是利用空氣中的分子氧在高溫高壓條件下進行液相氧化的工藝過程,該技術是有效控制環境污染物的良好途徑,特別適宜於有毒有害污染物或高濃度難降解有機污染物的處理。如用濕式空氣氧化工藝處理石化廢液,COD、無機硫化物、硫代硫酸鹽和總酚的去除率平均為81.8%、近100%、91.7%、近100%。結果表明該法在處理效果上已經達到國外同類設備的處理效能。
3)臭氧氧化法
臭氧氧化法有其獨到的優點:這種方法氧化時不產生污泥和二次污染。但是,其運行及投資費用高,且處理的廢水流量不宜過大。經臭氧氧化後,廢水中的小部分有機物被徹底氧化為水和二氧化碳,而大部分轉化為氧化中間產物。一般將臭氧氧化和生物活性炭吸附聯用技術用於深度處理,在氧化有機物的同時臭氧迅速分解為氧,使活性炭床處於富氧狀態,得到再生,提高其使用周期;同時活性炭表面好氧微生物的活性增強,降解吸附有機物的能力提高。能有效去除有機物,改變有機物生色基團的結構,強化活性炭的脫色能力。如用臭氧-活性炭工藝深度處理煉油廢水,COD、氨氮、揮發酚、石油類的去除率平均為82.6%、93.4%、99.5%、94.3%,出水主要指標達到地面水Ⅳ類水質標准。
2、物理法
物理法是指利用固體物質的多孔性,使廢水中的污染物附著在其表面而得以去除的方法。常用的吸附劑為活性炭,可有效去除COD、廢水色度和臭味等,但其處理成本較高,而且容易造成二次污染。在石化廢水處理中,吸附常與絮凝或臭氧氧化聯用。
2.1 吸附
吸附指的是利用固體物質的多孔性,使廢水中的污染物附著在其表面而得以去除的方法。常用的吸附劑為活性炭,可有效去除COD、廢水色度和臭味等,但其處理成本較高,而且容易造成二次污染。在石化廢水處理中,吸附常與絮凝或臭氧氧化聯用。
2.2 膜分離
膜分離有微濾、超濾、反滲透和納濾等不同的方法,無論哪種方法,都能有效去除廢水的臭味、色度,去除有機物、多種離子和微生物,出水水質穩定可靠。
2.3 氣浮法
氣浮指的是利用高度分散的微小氣泡,作為載體粘附廢水中的懸浮物,使之隨氣泡浮升到水面而加以分離,分離對象為疏水性細微固體懸浮物以及石化油。在石化廢水處理中,氣浮常置於隔油、絮凝之後。如將渦凹氣浮(CAF)系統放置於隔油池後處理含油石化廢水,進水含油約200mg/L,出水含油低於10mg/L,去除率達到95%。試驗證明氣浮處理廢水的效果是可靠的。
3、生化法
生化法是指利用微生物的作用,將廢水中的有機物分解為無害物質的方法。石油化工廢水具有污染物種類較多,因此水質情況復雜,如採用單一的好氧或厭氧處理,很難達到排放要求,而將厭氧(或缺氧)和好氧處理有效結合的組合工藝處理效果好,有較廣泛應用。
3.1 好氧處理
在石油化工廢水處理中,好氧處理方法比較多,比如序批式間歇活性污泥法、高效好氧生物反應器、生物接觸氧化、膜生物反應器處理法等,但單獨使用好氧生物處理較少,主要是與厭氧處理相結合。
3.2
㈤ 石油產品中含水有什麼危害
原油中含水會增大運輸量,更重要的是更原油加工帶來困難,增加了常減壓蒸餾裝置的能耗。
測出油品中的水分,可根據其含量的多少,確定脫水的方法,以防止造成以下危害:如石油產品中的水分蒸發時要吸收熱量,會使發熱量降低;輕質石油中的水分會使燃燒過程惡化,並能將溶解的鹽帶入氣缸內,生成積炭,增加氣缸的磨損;在低溫情況下,燃料中的水會結冰,堵塞燃料導管和濾清器,阻礙發電機燃料系統的燃料供給;石油產品中有水會加速油品的氧化生膠;潤滑油中有水時不但會引起發動機零件的腐蝕,而且水和高於100℃的金屬零件接觸時會變成水蒸氣,破壞潤滑油膜。輕質油品密度小,黏度小,油水容易分離。而重質油品則相反,不易分離。進入常減壓蒸餾裝置的原油要求含水量不大於0.2%~0.5%;成品油的規格標准要求汽油、煤油不含水,輕柴油水分含量不大於痕跡;重柴油水分含量不大於0.5%~1.5%;各種潤滑油、燃料油都有相應的控制指標。
山東盛康SCKF107型微量水分測定儀採用經典理論——卡爾•菲休微庫侖電量法。依據電解定律反應的水分子數同電荷數成正比,儀器檢測參加反應電荷數(庫侖)自動換算成對應的水分子數,因此此方法測試精度極高,測試成本極低,具有其他測試方法不可替代的優勢;能可靠的對液體、氣體、固體樣品進行微量水分的測定。該儀器以棒圖形式顯示測量電極信號,直觀指示電解液的含水量,實時描繪電解速度對時間的變化曲線。具有高靈敏度、高精度、高再現性,低功耗節能設計等特點,可內置蓄電池用於便攜測量,廣泛適用於石油、化工、電力、制葯、商檢、科研、環保等領域。