㈠ 硅铝合金的基本工艺
1)熔炼铸造法
熔炼铸造法设备简单、成本低及可实现大批量工业化生产,是合金材料最广泛的制备方法。利用常规铸造的高硅铝合金,Si的分布极不均匀,加工时易产生裂纹,材料存在严重的成分偏析,晶粒粗大,力学性能差等局限性,难以进行机械加工等后续处理。随着合金中硅含量的提高,问题更为突出,所以常规铸造很难制备高硅铝合金材料。
2)浸渗法
浸渗法分为压力浸渗法和无压浸渗法。压力浸渗法是通过机械加压或压缩气体加压,使得基体金属熔体浸入增强体间隙,可以解决增强材料和金属液不润湿而浸渗不完全等问题,但由于加压系统相对复杂,故限制其应用发展
3)粉末冶金
粉末冶金法的主要工艺是使一定比例的铝粉和硅粉以及粘合剂均匀分散,通过干压、注射等方法使粉末混合成型,最后在保护气氛下烧结形成较为致密的材料。该法解决了硅颗粒与铝基体润湿性不好,硅颗粒难以加入熔体的问题,并且材料可以一次成形,少切削加工,克服了金属基复合材料难以加工的缺点。但是这种方法工艺复杂,难以进行精确控制,压型不致密,成本高。
4)真空热压法
真空热压法是指加压成型和加压烧结同时进行的一种烧结工艺, 其优点是: ①粉末容易塑性流动和致密化; ②烧结温度和烧结时间短; ③致密度高。一般工艺为: 在真空条件下, 将粉末装在模腔内, 在加压的同时使粉末加热, 经过较短时间的加压形成致密均匀的材料。但是由于自身工序复杂,可操作性差,限制了该技术在高硅铝合金制备中的应用。
5)急速冷却/喷射沉积
急速冷却/喷射沉积技术是为了克服工序复杂,氧化严重等问题,与粉末冶金等技术相抗衡而发展起来的一种快速凝固技术。由于这种工艺具有其它工艺无法比拟的优势,近年来发展迅速。急速冷却/喷射沉积具有以下优点 :1)无宏观偏析;2)细小而均匀的等轴晶显微组织;3)细小的初生沉淀相;4)氧含量低;5)热加工性能得到改善。 ⑴ 亚共晶硅铝合金其中含有 9%~12%的硅。
⑵ 共晶硅铝合金含 11%~13%的硅。
⑶ 过共晶硅铝合金硅含量在 12%以上,主要是在 15%~20%范围。
(4)硅含量在22%以上的,被称作高硅铝合金,其中以25%-70%为主,国际上硅含量最高可达80%。
㈡ 目前金属基复合材料的制备工艺主要有哪些
(一)粉末冶金复合法
粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法、烧结制坯加塑法加工成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。粉末冶金复合法的工艺主要优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生反应;可自由选择强化颗粒的种类、尺寸,还可多种颗粒强化;强化颗粒添加量的范围大;较容易实现颗粒均匀化。缺点是:工艺复杂,成本高;制品形状、尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如铸造复合材料等。
(二)铸造凝固成型法
铸造凝固成型法是在基体金属处于熔融状态下进行复合。主要方法有搅拌铸造法、液相渗和法和共喷射沉积法等。铸造凝固成型铸造复合材料具有工艺简单化、制品质量好等特点,工业应用较广泛。
1、原生铸造复合法
原生铸造复合法(也称液相接触反应合成技术Liquid Contact Reaction:LCR)是将生产强化颗粒的原料加到熔融基体金属中,利用高温下的化学反应强化相,然后通过浇铸成形。这种工艺的特点是颗粒与基体材料之间的结合状态良好,颗粒细小(0.25~1.5μm),均匀弥散,含量可高达40%,故能获得高性能复合材料。常用的元素粉末有钛、碳、硼等,化合物粉末有Al2O3、TiO2、B2O3等。该方法可用于制备A1基、Mg基、Cu基、Ti基、Fe基、Ni基复合材料,强化相可以是硼化物、碳化物、氮化物等。
2、搅拌铸造法
搅拌铸造法也称掺和铸造法等,是在熔化金属中加入陶瓷颗粒,经均匀搅拌后浇入铸模中获得制品或二次加工坯料,此法易于实现能大批量生成,成本较低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强化颗粒的组合受限制。原因有两方面:①强化颗粒与熔体基本金属之间容易产生化学反应;②强化颗粒不易均匀分散在铝合金一类的合金熔体中,这是由于陶瓷颗粒与铝合金的润滑性较差,另一个问题是陶瓷颗粒容易与溶质原子一起在枝晶间产生偏析。
3、半固态复合铸造法
半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶以枝晶方式长大,固相率达0.2%左右时枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中,这种颗粒状非枝晶的微组织在固相率达0.5%~0.6%仍具有一定的流变性。液固相共存的半固态合金因具有流变性,可以进行流变铸造;半固态浆液同时具有触变性,可将流变铸锭重新加热到固、液相变点软化,由于压铸时浇口处及型壁的剪切作用,可恢复流变性而充满铸型。强化颗粒或短纤维强化材料加入到受强烈搅拌的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既防止颗粒的凝聚和偏析,又使颗粒在浆液中均匀分布,改善了润湿性并促进界面的结合。
4、含浸凝固法(MI技术)
含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融基体金属之中,让基体金属浸透预成型体后,使其凝固以制备复合材料的方法。有加压含浸和非加压含浸两种方法。含浸法适合于强化相与熔融基体金属之间润湿性很差的复合材料的制备。强化相含量可高达30%~80%;强化相与熔融金属之间的反应得到抑止,不易产生偏折。但用颗粒作强化相时,预成形体的制备较困难,通常采用晶须、短纤维制备预成形体。熔体金属不易浸透至预成形体的内部,大尺寸复合材料的制备较困难。
5、离心铸造法
广泛应用于空心件铸造成形的离心铸造法,可以通过两次铸造成型法成形双金属层状复合材料,此方法简单,具有成本低、铸件致密度高等优点,但是界面质量不易控制,难以形成连续长尺寸的复合材料。
6、加压凝固铸造法
该法是将金属液浇注铸型后,加压使金属液在压力下凝固。金属从液态到凝固均处于高压下,故能充分浸渗,补缩并防止产生气孔,得到致密铸件。铸、锻相结合的方法又称挤压铸造、液态模锻、锻铸法等。加压凝固铸造法可制备较复杂的MMCs零件,亦可局部增强。由于复合材料易在熔融状态下压力复合,故结合十分牢固,可获得力学性能很高的零件。这种高温下制成的复合坯,二次成型比较方便,可进行各种热处理,达到对材料的多种要求。
7、热浸镀与反向凝固法
热浸镀与反向凝固法都是用来制备连续长尺寸包覆材料的方法。热浸镀主要用于线材的连续镀层,主要控制通过镀层区的长度和芯线通过该区的速度等。反向凝固法是利用薄带作为母带,以一定的拉速穿过反向凝固器,由于母带的速度远远低于熔融金属的速度,在母带的表面附近形成足够大的过冷度,熔融金属以母带表面开始凝固生长,配置在反向凝固器上方的一对轧辊,同时起到拉坯平整和焊合的作用。
8、真空铸造法
真空铸造法是先将连续纤维缠绕在绕线机上,用聚甲丙烯酸等能分解的有机高分子化合物方法制成半固化带,把预成型体放入铸型中,加热到500℃使有机高分子分解。铸型的一端浸入基体金属液,另一端抽真空,将金属液吸入型腔浸透纤维。
(三)喷射成形法
喷射成形又称喷射沉积(Spray Forming),是用惰性气体将金属雾化成微小的液滴,并使之向一定方向喷射,在喷射途中与另一路由惰性气体送出的增强微细颗粒会合,共同喷射沉积在有水冷衬底的平台上,凝固成复合材料。凝固的过程比较复杂,与金属的雾化情况、沉积凝固条件或增强体的送入角有关,过早凝固不能复合,过迟的凝固则使增强体发生上浮下沉而分布不匀。这种方法的优点是工艺快速,金属大范围偏析和晶粒粗化可以得到抑制,避免复合材料发生界面反应,增强体分布均匀。缺点是出现原材料被气流带走和沉积在效应器壁上等现象而损失较大,还有复合材料气孔率以及容易出现的疏松。利用喷射成形原理制备工艺有添加法(inert spray form-ing)和反应法(reactive spray forming)两种。Osprey Metals研究的Osprey工艺是喷射成形法的代表,其强化颗粒与熔融金属接触时间短,界面反应得以有效抑制。反应喷射沉积法是使强化陶瓷颗粒在金属雾或基体中自动生成的方法。
(四)叠层复合法
叠层复合法是先将不同金属板用扩散结合方法复合,然后采用离子溅射或分子束外延方法交替地将不同金属或金属与陶瓷薄层叠合在一起构成金属基复合材料。这种复合材料性能很好,但工艺复杂难以实用化。目前这种材料的应用尚不广泛,过去主要少量应用或试用于航空、航天及其它军用设备上,现在正努力向民用方向转移,特别是在汽车工业上有很好的发展前景。
(五)原位生成复合法
原位生成复合法也称反应合成技术,金属基复合材料的反应合成法是指借助化学反应,在一定条件下在基体金属内原位生成一种或几种热力学稳定的增强相的一种复合方法。这种增强相一般为具有高硬度、高弹性模量和高温强度的陶瓷颗粒,即氧化物、碳化物、氯化物、硼化物、甚至硅化物,它们往往与传统的金属材料,如Al、Mg、Ti、Fe、Cu等金属及其合金,或(NiTi)(、AlTi)等金属间化合物复合,从而得到具有优良性能的结构材料或功能材料。
金属基复合材料的原位复合工艺基本上能克服其它工艺中常出现的一系列问题,如基体与增强体浸润不良、界面反应产生脆性、增强体分布不均匀、对微小的(亚微米和纳米级)增强体极难进行复合等。它作为一种具有突破性的新工艺方法而受到普遍的重视,其中包括直接氧化法、自蔓延法和原位共晶生长法等。
1、直接氧化(DIMON)法
直接氧化法是由氧化性气体在一定工艺条件下使金属合金液直接氧化形成复合材料。通常直接氧化法的温度比较高,添加适量的合金元素如Mg、Si等,可使反应速度加快。这类复合材料的强度、韧性取决于形成粒子的状态和最终显微组织形态。由于形成的增强体可以通过合金化及其反应热力学进行判断,因此可以通过合金化、炉内气氛的控制来制得不同类型增强体的复合材料。
2、放热弥散(XD)法
放热弥散复合技术(Exothermic Dispersion)的基本原理是将增强相反应物料与金属基粉末按一定的比例均匀混合,冷压或热压成型,制成坯块,以一定的加热速率加热,在一定的温度下(通常是高于基体的熔点而低于增强相的熔点)保温,使增强相各组分之间进行放热化学反应,生成增强相。增强相尺寸细小,呈弥散分布。XD技术具有很多优点:①可合成的增强相种类多,包括硼化物、碳化物、硅化物等;②增强相粒子的体积百分比可以通过控制增强相组分物料的比例和含量加以控制;③增强相粒子的大小可以通过调节加热温度加以控制;④可以制备各种MMC;⑤由于反应是在融熔状态下进行,可以进一步近终形成型。XD技术是合成颗粒增强金属基及金属间化合物基复合材料的最有效的工艺之一。但用XD工艺制成的产品存在着较大孔隙度的问题,目前一般采用在反应过程中直接压实来提高致密度。
3、 SHS-铸渗法
SHS-铸渗法是将金属基复合材料的自蔓延高温合成技术(Self-Propagating High Temperature Synthesis)和液态铸造法结合起来的一种新技术,包括增强颗粒的原位合成和铸造成型两个过程。当前,SHS-铸渗法是有竞争力的反应合成工艺之一,但过程控制非常困难。其典型工艺为:利用合金熔体的高温引燃铸型中的固体SHS系,通过控制反应物和生成物的位置,在铸件表面形成复合涂层,它可使SHS材料合成与致密化、铸件的成形与表面涂层的制备同时完成。
4、反应喷射沉积技术(RSD)
反应喷射沉积工艺(Reactive Spray Deposition)生成陶瓷颗粒的反应有气—液反应、液—液反应、固—液反应和加盐反应等多种类型。它综合了快速凝固及粉末冶金的优点,并克服了喷射共沉积工艺中存在的如颗粒与基体接近机械结合、增强相体积分数不能太高等缺点,成为目前金属基复合材料研究的重要方向之一。反应喷射沉积工艺过程为:金属液被雾化前喷入高活性的固体颗粒发生液固反应,导致喷入的颗粒在雾化过程中溶解并与基体中的一种或多种元素反应形成稳定的弥散相,控制喷雾的冷却速率以及随后坯件的冷却速率可以控制弥散相的尺寸。
㈢ 简述热喷涂技术的原理,种类和技术特点以及主要的应用领域
1
热喷涂技术概述
众所周知, 除少数贵金属外,金属材料会与周围介质发生化学反应和电
化学反应而遭受腐蚀. 此外,金属表面受各种机械作用而引起的磨损也极为
严重.大量的金属构件因腐蚀和磨损而失效, 造成极大的浪费和损失. 据一些
工业发达国家统计, 每年钢材因腐蚀和磨损而造成的损失约占钢材总产量的
10 %, 损失金额约占国民经济总产值的2 - 4 %. 如果将因金属腐蚀和磨损
而造成的停工、停产和相应引起的工伤、失火、爆炸事故等损失统计在内的
话, 其数值更加惊人. 因此, 发展金属表面防护和强化技术, 是各国普遍关
心的重大课题.
随着尖端科学和现代工业的发展,各工业部门越来越多地要求机械设备
能在高参数(高温、高压、高速度和高度自动化)和恶劣的工况条件(如严重的
磨损和腐蚀)下长期稳定的运行.因此,对材料的性能也提出更高要求. 采用
高性能的高级材料制造整体设备及零件以获得表面防护和强化的效果, 显然
是不经济的,有时甚至是不可能的。所以, 研究和发展材料的表面处理技术就
具有重大的技术和经济意义。而表面处理技术也在这种需求的推动下获得了
飞速的发展和提高.
热喷涂技术就是这种表面防护和强化的技术之一, 是表面工程中一门重
要的学科. 所谓热喷涂, 就是利用某种热源, 如电弧、等离子弧、燃烧火焰
等将粉末状或丝状的金属和非金 属涂层材料加热到熔融或半熔融状态, 然
后借助焰流本身的动力或外加的高速气流雾化并以一定的速度喷射到经过预
处理的基体材料表面, 与基体材料结合而形成具有各种功能的表面覆盖涂层
的一种技术。
一. 热喷涂技术的分类
根据热源的种类热喷涂技术主要分类为:
热 源 温 度 ℃ 喷 涂 方 法
粉末火焰喷涂(焊)
火 丝材火焰喷涂
约3000 陶瓷棒材火焰喷涂
焰 高速火焰喷涂(HVOF)
爆炸喷涂(D - GUN)
电 弧 约5000 电弧喷涂
大气等离子喷涂(APS)
等离子弧 10000 以上 低压等离子喷涂(LPPS)
水稳等离子喷涂
2
各种热喷涂方法的热源温度和流速
二. 热喷涂设备
虽然因热喷涂的方法不同其设备也各有差异, 但依据热喷涂技术的原理,
其设备都主要由喷枪、热源、涂层材料供给装置以及控制系统和冷却系统组
成.下图为等离子喷涂的设备配置图.
三. 热喷涂工艺
热喷工艺过程如下:
工件表面预处理 → 工件预热 → 喷涂 → 涂层后处理
1. 表面预处理
为了使涂层与基体材料很好地结合,基材表面必须清洁及粗糙, 净化和
粗化表面的方法很多, 方法的选择要根据涂层的设计要求及基材的材质、形
状、厚薄、表面原始状况以及施工条件等因素而定.
净化处理的目的是除去工件表面的所有污垢,如氧化皮、油渍、油漆及
低速火焰喷涂
250 500 750 1000 m/s
2500 5000 7500 10000 oC
0
0
电弧喷涂
等离子喷涂
高速火焰喷涂
温度
速度
3
其他污物, 关键是除去工件表面和渗入其中的油脂. 净化处理的方法有, 溶
剂清洗法、蒸汽清洗法、碱洗法及加热脱脂法等.
粗化处理的目的是增加涂层与基材间的接触面, 增大涂层与基材的机械
咬合力, 使净化处理过的表面更加活化,以提高涂层与基材的结合强度. 同时
基材表面粗化还改变涂层中的残余应力分布,对提高涂层的结合强度也是有
利的. 粗化处理的方法有喷砂、机械加工法(如车螺纹、滚花)、电拉毛等。
其中喷砂处理是最常用的粗化处理方法,常用的喷砂介质有氧化铝、碳化硅
和冷硬铸铁等。喷砂时,喷砂介质的种类和粒度、喷砂时风压的大小等条件
必须根据工件材质的硬度、工件的形状和尺寸等进行合理的选择。对于各种
金属基体,推荐采用的砂粒粒度约为16-60 号砂,粗砂用于坚固件和重型件
的喷砂,喷砂压力为0.5-0.7Mpa,薄工件易于变形,喷砂压力为0.3-0.4
Mpa。特别值得注意的一点是,用于喷砂的压缩空气一定要是无水无油的,
否则会严重影响涂层的质量。喷涂前工件表面的粗化程度对大多数金属材料
来说2.5-13 μmRa 就够了。随着表面粗糙度的增加涂层与基体材料的结合
增强,但是当表面粗糙度超过10μmRa 后,涂层结合强度的提高程度便会减
低。
对于一些与基材粘结不好的涂层材料, 还应选择一种与基体材料粘结好
的材料喷涂一层过渡层,称为粘结底层,常用作粘结底层的材料有Mo、NiAl、
NiCr 及铝青铜等.粘结底层的厚度一般为0.08-0.18μm。
2.预热
预热的目的是为了消除工件表面的水分和湿气, 提高喷涂粒子与工件接
触时的界面温度, 以提高涂层与基体的结合强度;减少因基材与涂层材料的
热膨胀差异造成的应力而导致的涂层开裂. 预热温度取决于工件的大小、形
状和材质,以及基材和涂层材料的热膨胀系数等因素,一般情况下预热温度控
制在60 - 120 ℃之间.
3.喷涂
采用何种喷涂方法进行喷涂主要取决于选用的喷涂材料、工件的工况
及对涂层质量的要求。例如,如果是陶瓷涂层,则最好选用等离子喷涂;如
果是碳化物金属陶瓷涂层则最好采用高速火焰喷涂;若是喷涂塑料则只能采
用火焰喷涂;而若要在户外进行大面积防腐工程的喷涂的话,那就非灵活高
效的电弧喷涂或丝材火焰喷涂莫属了。总之,喷涂方法的选择一般来说是多
样的,但对某种应用来说总有一种方法是最好的。
预处理好的工件要在尽可能短的时间内进行喷涂,喷涂参数要根据涂层
材料、喷枪性能和工件的具体情况而定, 优化的喷涂条件可以提高喷涂效率、
并获得致密度高、结合强度高的高质量涂层.
4.涂层后处理
喷涂所得涂层有时不能直接使用, 必须进行一系列的后处理.
4
用于防腐蚀的涂层,为了防止腐蚀介质透过涂层的孔隙到达基材引起基
材的腐蚀,必须对涂层进行封孔处理. 用作封孔剂的材料很多,有石腊、环氧
树脂、硅树脂等有机材料及氧 化物等无机材料, 如何选择合适的封孔剂, 要
根据工件的工作介质、环境、温度及成本等多种因素进行考虑.
对于承受高应力载荷或冲击磨损的工件,为了提高涂层的结合强度,要对
喷涂层进行重熔处理(如火焰重熔、感应重熔、激光重熔以及热等静压等), 使
多孔的且与基体仅以机械结合的涂层变为与基材呈冶金结合的致密涂层.
有尺寸精度要求的,要对涂层进行机械加工. 由于喷涂涂层具有与一般的
金属及陶瓷材料不同的特点, 如涂层有微孔,不利于散热;涂层本身的强度较
低,不能承受很大的切削力;涂层中有很多硬的质点,对刀具的磨损很快等,
因而形成了喷涂涂层不同于一般材料的难于加工的特点.所以必须选用合理
的加工方法和相应的工艺参数才能保证喷涂层机械加工的顺利进行和保证达
到所要求的尺寸精度.
四. 热喷涂技术的特点
从热喷涂技术的原理及工艺过程分析,热喷涂技术具有以下一些特点.
1. 由于热源的温度范围很宽,因而可喷涂的涂层材料几乎包括所有固态
工程材料,如金属、合金、陶瓷、金属陶瓷、塑料以及由它们组成的复合物等.
因而能赋予基体以各种功能(如耐磨、耐蚀、耐高温、抗氧化、绝缘、隔热、
生物相容、红外吸收等)的表面.
2. 喷涂过程中基体表面受热的程度较小而且可以控制,因此可以在各种
材料上进行喷涂(如金属、陶瓷、玻璃、布疋、纸张、塑料等),并且对基材的
组织和性能几乎没有影响,工件变形也小.
3.设备简单、操作灵活, 既可对大型构件进行大面积喷涂,也可在指定的
局部进行喷涂;既可在工厂室内进行喷涂也可在室外现场进行施工.
4.喷涂操作的程序较少,施工时间较短,效率高,比较经济.
随着热喷涂应用要求的提高和领域的扩大, 特别是喷涂技术本身的进步,
如喷涂设备的日益高能和精良,涂层材料品种的逐渐增多、性能逐渐提高, 热
喷涂技术近十年来获得了飞速的发展, 不但应用领域大为扩展, 而且该技术
已由早期的制备一般的防护涂层发展到制备各种功能涂层;由单个工件的维
修发展到大批的产品制造;由单一的涂层制备发展到包括产品失效分析、表
面预处理、 涂层材料和设备的研制、选择, 涂层系统设计和涂层后加工在内
的喷涂系统工程;成为材料表面科学领域中一个十分活跃的学科。并且在现
代工业中逐渐形成 象铸、锻、焊和热处理那样的独立的材料加工技术。成为
工业部门节约贵重材料、节约能源、提高产品质量、延长产品使用寿命、降
低成本、提高工效的重要的工艺手段, 在国民经济的各个领域内得到越来越
广泛的应用。
5
五. 各种热喷涂方法概述
1. 氧乙炔火焰喷涂(焊)
是最早的一种喷涂方法。它是利用氧和乙炔的燃烧火焰将粉末状或丝
状、棒状的涂层材料加热到熔融或半熔融状态后喷向基体表面而形成涂层的
一种方法。它具有设备简单、工艺成熟、操作灵活、投资少、见效快的特点。
它可制备各种金属、合金、陶瓷及塑料涂层, 是目前国内最常用的喷涂方法
之一。但是, 由该方法制备的涂层孔隙度较大, 与基体材料的结合强度也较
低。但是, 对于自熔合金而言,如若采用燃烧火焰将其一次喷融或将喷涂层进
行 二次重熔(有火焰重熔、感应重熔和炉熔等)的方法则称为喷焊, 喷焊涂层
由于与基体材料呈冶金结合状态, 因而与基体材料的结合强度大大提高,可
以应用于冲击大、负荷重的工况下,如连续铸造拉矫辊、热轧矫直辊表面采用
镍基自熔合金喷焊涂层进行强化, 均获得了十分良好的耐蚀、耐磨和抗热疲
劳的强化效果.
2. 爆炸喷涂(D - GUN)
本方法是利用氧和可燃性气体的混合气,经点火后在喷枪中爆炸, 利用
脉冲式气体爆炸的能量, 将被喷涂的粉末材料加热、加速轰击到工件表面而
形成涂层。气体燃烧和爆炸的结果可产生超音速高能气流, 爆炸波的传播速
度高达3000 m / s, 其中心温度可达3450℃, 粉末粒子的飞行速度可达1200
m / s。因而爆炸喷涂层涂层致密, 与基体的结合强度高, 最高可达24 kg /
mm2. 该法的缺点是噪音大, 而且爆炸是不连续的, 因而效率较低。爆炸喷涂
是20 世纪50 年代由美国联合碳化物公司发明,但问世后许多年都由该公司所
垄断, 不对外出售技术和设备, 只在其服务公司内为用户进行喷涂加工, 主
要喷涂陶瓷和金属陶瓷, 进行航空发动机的维修.
3. 高速火焰喷涂(HVOF)
高速火焰喷涂(或称超音速火焰喷涂)是20 世纪80 年代出现的一种高
能喷涂方法, 它的开发是继等离子喷涂之后热喷涂工业最具创造性的进展。
虽然高速火焰喷涂方法可喷涂的材料很多, 但由于其火焰含氧少温度适中,
焰流速度很高,能有效地防止粉末涂层材料的氧化和分解, 故特别适合碳化
物类涂层的喷涂。该设备发展到第三代, 性能有了大幅度的提高, 例如
JP-5000、DJ - 2700 等设备其室压达到8 -12 bar,功率达到100 -120 kw, 喷
涂效率可达10 kg / h ( WC -Co), 涂层厚度可达数mm, 涂层性能已能达到
爆炸喷涂的水平。在许多工业部门获得广泛的应用.如航空发动中的耐磨涂
层、造纸机械用的镜面涂层等.近年来,由于电镀铬工艺的环境污染问题,电镀
铬工业在一些工业发达国家受到严格的限制,并逐渐被淘汰, 采用高速火焰
喷涂涂层代替镀铬层的应用越来越受到工业界的关注和重视.
4. 电弧喷涂
电弧喷涂是在两根丝状的金属材料之间产生电弧, 电弧产生的热使金属
6
丝熔化, 熔化部分由压缩空气气流雾化并喷向基体表面而形成涂层。该工艺
也具有设备一次投资少, 使用方便、效率高等特点, 但喷涂材料必须是导电
的金属及合金丝, 因而其应用受到了一定的限制, 但它的高效率使得它在喷
涂Al、Zn 及不锈钢等大面积防腐应用方面成为首选工艺。
5. 等离子喷涂(APS)
当某种气体如氮、氩、氢及氦等通过一压缩电弧时产生电离而形成电中
性的等离子体(是物质除气、液、固态外的第四态).等离子弧的能量集中温度
很高, 其焰流的温度在万度以上, 可以将所有固态工程材料熔化. 以这种高
温等离子体作热源将涂层材料熔化制备涂层的工艺就是等离子喷涂。国内外
已有数百种材料用于等离子喷涂, 是应用较普遍的喷涂方法。
等离子喷涂涂层的致密度及与基体材料的结合强度均比火焰喷涂涂层
和电弧喷涂涂层的高,而且也是制备陶瓷涂层的最佳工艺.
等离子技术中引人注目之处是设备的大容量化和高输出功率化, 目前气
体等离子喷涂设备已有200 kw 的设备出售, 不但大大提高了喷涂效率, 也
使涂层质量更为改善, 因而可以实现大面积高质量涂层的连续生产, 如柔性
印刷用网纹辊镜面陶瓷层以及高分子薄膜电晕处理用陶瓷绝缘涂层的制备
等.
6. 低压等离子喷涂(LPPS)
等离子喷涂可以在不同气氛和不同压力下实现, 当喷涂作业在气氛可控
的负压密封容器内进行时就成为低压等离子喷涂。低压等离子喷涂的优点是:
焰流速度高、粒子动能大,形成的涂层致密、结合强度高; 低压环境下可对
基体进行预热和进行反向转移弧电清理, 进一步提高涂层与基体的结合强
度;由于没有大气污染, 涂层材料不氧化成分变化小, 因而可以进行活性金
属如Ti、Ta、Nb 等的喷涂;还可使形成等离子体的气体在喷涂过程中与涂层
材料进行反应,形成特殊化合物涂层。由于具有以上特点, 低压等离子喷涂主
要用于制备航空工业等高科技领域的涂层, 如飞机涡轮发动机叶片抗高温氧
化和热腐蚀的MCrAlY(M = Co、Ni、Fe)涂层,以及制备人体人工植入体用生
物功能涂层.
7. 水稳等离子喷涂
水稳等离子喷涂是一种高功率和高速等离子喷涂方法, 它是在由高速旋
转的水形成的隧道里产生的弧中,水蒸气分解形成O2 和 H2 的等离子工作气的
喷涂方法。与气体等离子喷涂方法相比, 其焰流温度更高体积更大更长, 特
别是能量更高, 因而特别适合于高熔点氧化物陶瓷的大量喷涂。其主要优点
是:输出功率大(150 -200 kw), 涂层结合强度是气体等离子喷涂涂层的2 -
3 倍, 并且涂层致密, 其硬度、耐磨性和耐热冲击性能也有很大提高; 喷涂
效率高, 喷涂能力最大为50 kg / h, 涂层厚度可达20 mm , 而且可以喷涂
分散性较大的粉末, 因而特别适合陶瓷部件的喷涂成形; 只需水和空气, 运
行成本低, 比其他喷涂方法经济。 本方法的缺点是焰流为氧化焰, 不适喷
7
涂容易氧化的材料。此外, 喷涂枪体积较大, 比较笨重.
六. 热喷涂原理和涂层性能
♦热喷涂原理
1. 热喷涂涂层的形成
热喷涂时,涂层材料的粒子被热源加热到熔融态或高塑性状态,在外
加气体或焰流本身的推力下,雾化并高速喷射向基体表面,涂层材料的粒子
与基体发生猛烈碰撞而变形、展平沉积于基体表面,同时急冷而快速凝固,
颗粒这样遂层沉积而堆积成涂层。
2.热喷涂涂层的结构特点
热喷涂涂层形成过程决定了涂层的结构特点,喷涂层是由无数变形粒
子相互交错呈波浪式堆叠在一起的层状组织结构,涂层中颗粒与颗粒之间不
可避免地存在一些孔隙和空洞,并伴有氧化物夹杂。涂层剖面典型的结构如
下图,其特点为:
* 呈层状
* 含有氧化物夹杂
* 含有孔隙或气孔
典型的涂层剖面图
3. 热喷涂涂层的结合机理
涂层的结合包括涂层与基体的结合和涂层内部的结合。涂层与基体表
面的粘结力称为结合力,涂层内部的粘结力称为内聚力。涂层中颗粒与基体
之间的结合以及颗粒之间的结合机理,目前尚无定论,通常认为有以下几种
方式。
(1) 机械结合
碰撞成扁平状并随基体表面起伏的颗粒和凹凸不平的表面相互嵌
合,贝以颗粒的机械联锁而形成的结合(抛锚效应),一般来说,涂层与基
体的结合以机械结合为主。
(2) 冶金-化学结合
这是当涂层和基体表面产主冶金反应,如出现扩散和合金化时的
一种结合类型。当喷涂后进行重熔即喷焊时,喷焊层与基体的结合主要是冶
金结合。
基体粗糙度
氧化物加杂 孔隙或孔洞 颗粒间的粘接颗粒基体粗糙度
基体
涂层
对基体的粘接力
8
(3) 物理结合
颗粒与基体表面间由范德华力或次价键形成的结合。
4。涂层的残余应力
当熔融颗粒碰撞基体表面时,在产生变形的同时受到激冷而凝固,从
而产生收缩应力。涂层的外层受拉应力,基体有时也包括涂层的内层则产生
压应力。涂层中的这种残余应力是由热喷涂条件及喷涂材料与基体材料的物
理性质的差异所造成的。它影响涂层的质量、限制涂层的厚度。工艺上要采
取措施以消除和减少涂层的残余应力。
♦ 热喷涂涂层的性能
1. 化学成分
由于涂层材料在熔化和喷射过程中,在高温下会与周围介质发生作
用生成氧化物、氮化物,以及在高温下会发生分解, 因而涂层的成分与涂
层材料的成分是有一定的差异的,并在一定程度上影响涂层的性能。如
MCrAlY 氧化后会影响其耐蚀性,而WC-Co 经氧化和高温分解后其耐磨性
会降低。通过喷涂方法的选择可以避免和减轻这一现象的发生。如采用低压
等离子喷涂可大大减少涂层材料的氧化,而高速火焰喷涂则可以防止碳化物
的高温分解。
2. 孔隙度
热喷涂涂层中不可避免地存在着孔隙,孔隙度的大小与颗粒的温度
和速度以及喷涂距离和喷涂角度等喷涂参数有关。一般来说,温度及速度都
低的火焰喷涂和电弧喷涂涂层的孔隙度都比较高,一般达到百分之几,甚至
可达百分之十几。而高温的等离子喷涂涂层及高速的超音速火焰喷涂涂层则
孔隙度较低。最低可达0.5%以下。
3. 硬度
由于热喷涂涂层在形成时的激冷和高速撞击,涂层晶粒细化以及晶
格产生畸变使涂层得到强化,因而热喷涂涂层的硬度比一般材料的硬度要高
一些,其大小也会因喷涂方法的不同而有所差异。
4. 结合强度
热喷涂涂层与基体的结合主要依靠与基体粗糙表面的机械咬合(抛
描效应)。基材表面的清洁程度、涂层材料的颗粒温度和颗粒撞击基体的速
度以及涂层中残余应力的大小均会影响涂层与基体的结合强度,因而涂层的
结合强度也与所采用的喷涂方法有关。
5. 冷热疲劳性能
对于一些在冷热循环状态下使用的工件,其涂层的抗冷热疲劳(或称
热震)性能至关重要,如若该涂层的抗热震性能不好,则工件在使用过程中
便会很快开裂甚至剥落。涂层抗热震性能的好坏主要取决于涂层材料与基体
材料的热膨胀系数差异的大小和涂层与基体材料结合的强弱。
9
七.热喷涂材料及涂层功能和应用
热喷涂材料
目前实际应用中已实现工业化生产的喷涂材料有金属、合金和陶瓷等, 主
要以粉末、丝材、棒材状态使用, 其中喷涂粉末占喷涂材料总用量的70 %以
上. 用作涂层的材料有:
1. 热喷涂用粉末
纯金属粉末: W,Mo,Al,Cu,Ni,Ti,Ta,Nb 等
合金粉末: Al-Ni,Ni-Cr,Ti-Ni,Ni-Cr-Al,Co-Cr-W,
MCrAlY(M=Co、Ni、Fe),Co 基、Ni 基、Fe 基自
熔合金等
氧化物陶瓷粉末: Al2O3,ZrO2,Cr2O3,TiO2 等
碳化物粉末: WC,TiC,Cr3C2 等
金属陶瓷粉末: WC-Co,Cr3C2-NiCr 等
塑料粉末: 尼龙, 聚乙烯,聚苯硫醚等
2. 热喷涂用丝材
Al、Cu,Zn,Al-Zn 合金,巴氏合金,不锈钢,Ni-Al 丝等
3. 热喷涂用棒材
Al2O3,Cr2O3,ZrO2 等
涂层功能和应用
1. 抗磨损涂层
磨损是造成工业部门设备损坏的主要原因之一, 可能产生磨损的工作条
件包括微振、滑动、冲击、擦伤、侵蚀等.抗磨损涂层应该是坚硬的,而且具
有耐热和耐化学腐蚀的性能.Fe、Ni、Co 基自熔合金以及WC - Co 和Cr3C2-NiCr
等金属陶瓷以及 Al2O3、Cr2O3 等陶瓷材料具有上述这些性能. 采用涂层技术
提高工件表面耐磨性的应用非常广泛, 如活塞环、齿轮同步环喷涂Mo 涂层,
纺织机械中的罗拉、导丝钩等零部件喷涂耐纤维磨损的 Al2O3、 Al2O3 -TiO2
陶瓷涂层, 泵和阀门密封面喷涂Cr2O3、WC-Co 等耐磨涂层, 大马力载重汽车
曲轴及大型磨煤机、排风机轴等采用Fe 基合金材料进行磨损修复和耐磨强化
等。
2. 防腐蚀涂层
长期暴露在户外大气(海洋、工业及城乡大气)和不同介质(海水、河水、
溶剂及油类等)环境中的大型钢铁构件,如输变电铁塔、钢结构桥、海上钻井
平台、煤矿井架以及各种化工容器如储罐等,受到不同程度的环境氧化和侵蚀.
采用Al、Zn、Al - Zn 合金及不锈钢等涂层进行防护,可以获得长达20 年以
上的长期防护效果.一些受到气体腐蚀和化学腐蚀的部件,可以根据具体工况
(如介质、浓度、温度、压力等)选择合适的金属、合金、陶瓷及塑料等涂层
10
材料进行防护.
3. 抗高温氧化和耐热腐蚀涂层
对于一些暴露在高温腐蚀气体中的部件,受到高温、气体腐蚀及气流冲
刷的作用,严重影响了设备的寿命和运行的安全.抗高温氧化及高温腐蚀的材
料除了必须抗高温氧化和耐腐蚀外,还必须具有与基体材料相似的热膨胀系
数,方不会因温度周期变化和局部过热导致涂层抗热疲劳性能下降.用作抗高
温氧化和高温腐蚀的涂层材料有:NiCr、NiAl、MCrAl、MCrAlY(M = Co、 Ni、
Fe)及Hastiloy 和Stellite 合金等. 这类涂层的典型应用如电厂锅炉四管
(水冷壁管、再热器管、过热器管及省煤器管)及水冷壁等的高温氧化腐蚀一
直是电力、造纸、化工等工业锅炉用户需要解决的问题,经多年研究、实践证
明, 采用电弧喷涂Ni - Cr、Fe -Cr -Al、Ni-Cr -Al、45CT 等涂层能获得良
好的防护作用,使用寿命最长达9 年.MCrAlY 涂层用于航空涡轮发动机叶片涂
层以及作为涡轮发动机燃烧室、火焰筒等用热障涂层的粘结底层。
4. 热障涂层
ZrO2、Al2O3 等陶瓷涂层,熔点高、导热系数低, 在高温条件下对基体金
属具有良好的隔热保护作用称为热障涂层.这种涂层一般 由两个系统构成,
一是由金属作底层, 另一则是由陶瓷作表层.有时为了降低金属和陶瓷间的
热膨胀差异和改善涂层中的应力分布, 常在粘结底层和陶瓷面层间增加一过
渡层,该过渡层或为由底层金属和面层陶瓷材料以不同比例混合的多层涂层
或为由金属及陶瓷材料成分连续变化的涂层来形成所谓的成分(或功能)梯度
涂层.金属粘结底层为Co 或Ni、加有Cr、Al、Y 的合金材料, 陶瓷材料最好
采用由Y2O3 稳定的ZrO2, 热障涂层一般用于柴油发动机活塞、涡轮发动机燃
烧室、阀门和火焰稳定器等.
5. 绝缘涂层
陶瓷材料不仅具有高的硬度和优良的耐磨性能, 还具有十分优良的绝缘
性能, 采用高能等离子喷涂的Al2O3 涂层涂层致密、绝缘强度高, 是理想的绝
缘涂层。 如果采用有机或无机物质对喷涂层再进行封孔处理, 则将获得更为
优良的绝缘效果.目前这种高度绝缘的涂层已用于对高分子材料薄膜进行活
化处理的电晕放电辊表面,效果良好.
6. 间隙控制涂层
采用复合粉末, 在基体上喷涂软质的可磨耗密封涂层是航空、航天工业
中迅速发展起来的高温密封、控隙技术, 是现代热喷涂涂层的重要应用之一。
在配合件的接触运动中采用可磨耗涂层可以使配合件自动形成所必须的间隙,
提供最佳的密封状态. 目前,高技术的可磨耗涂层材料是由两种粉末的混合
粉或团聚粉组成,用火焰或等离子喷涂方法制备. 一般来说, 可磨耗涂层由金
属本体和非金属填料组成 , 填料通常是石墨、聚脂、氮化硼等. 填料的作用
是减弱涂层本身的整体性,从而增强涂层的可磨损性. 已经开发了一系列的
喷涂用可磨损涂层材料,这些涂层用 于表面的空气密封部位,压气机或透平
11
叶片与金属表层结构或机匣之间,获得了良好的密封效 果.可磨耗 涂层还可
用于迷宫式密封,该涂层用来疏导冷却空气,减少发动机压缩空气的损失,并
保持转子轴的压力平衡.
7. 尺寸恢复涂层
热喷涂是恢复零部件尺寸的一种经济而有效的方法.无论是因工作磨损
还是因加工超差造成工件尺寸不合要求,均能利用热喷涂技术予以恢复.这种
方法既没有焊接时的变形问题, 也不象特殊的电镀工艺那样昂贵.同时新表
面可以由耐磨或抗蚀材料构成,也可以与工件的构成材料相同.修复各种轴类
和柱塞件是典型的应用, 包括迥转轴、汽车轴、往复柱塞、轴颈、轧辊、造
纸烘缸以及石油化工工业中的泵类叶轮叶片及外壳等.发电机汽缸中分面现
场热喷涂修复是热喷涂恢复平面工件尺寸的一个成功的应用例。发电机汽缸
在长期的使用中其中分面由于微振、热汽流腐蚀及冲蚀等作用而发生多处形
状不同、面积不等及深浅各异的破坏,引起泄漏而影响发电机效率。采用热
喷涂方法分别对各破坏处进行喷涂填补,然后通过打磨使得汽缸平面恢复平
整并达到所需的尺寸精度。热喷涂技术不失为重量大、结构复杂和价格昂贵
的汽缸的中分面现场修复的安全(不会发生变形)、简便而高效的方法。
8. 生物功能涂层
在不锈钢或钛基体上喷涂生物功能陶瓷涂层,如羟基磷灰石等, 能有效
地克服金属型人工骨骼与生物体组织不相容和体液腐蚀问题,并能改善人体
组织与人工植入体的结合.
9.远红外幅射涂层
某些氧化物具有高的热幅射率, 在受热时能够幅射出远红外波, 这种波
的能量极易被高分子有机物(如油漆)、水、空气等物质的分子吸收产生共振
而产生内热, 从而加速过程的进行. 在加热元件上喷涂这种涂层, 其节电效
率一般平均在25-40 % 左右。
㈣ 多孔材料的前景
在众多的多孔材料中, 制备角度, 无序孔多孔材料的制备较易, 成本较低, 易于大量推广和使用。例如泡沫金属。常见的方法有五种:(1)粉末冶金法, 它又可分为松散烧结和反应烧结两种;(2)渗流法;(3)喷射沉积法;(4)熔体发泡法;(5)共晶定向凝固法。图 2 所示为渗流法, 将一定粒径的可溶性盐粒装填在模具中压实, 并随模具一起放入炉内加热, 同时在电阻式坩埚炉内配制所需的合金, 待合金熔化完毕, 出炉浇入模具中, 通过在金属液表面施加一定的压力使其渗透到粒子之间的缝隙之中;当金属液凝固后便可得到金属合金与粒子的复合体, 用水将复合体中的盐粒溶去, 即可制得具有三维连通泡孔的泡沫合金。但是这种方法生产的材料性能不均匀, 质量很难控制。
可控孔多孔材料的制备过程相对复杂, 且技术条件要求较高。从前面分析的特性来看, 可控孔多孔材料拥有许多无序孔多孔材料所不具备的特性, 随着新技术的发展, 可控孔多孔材料的制备方法将越来越成熟, 这类方法必将成为今后多孔材料科学的发展趋势。
㈤ 怎样将两种金属粉末进行内外复合模压成型,要怎样装模
金属基复合材料的制备技术班级: 班级:材料 085 学号: 学号:09024431 姓名: 姓名:李培 前言: 前言:金属基复合材料是以金属或合金为基体,并以纤维、晶须、颗粒等为增强 体的复合材料。其特点在力学方面为横向及剪切强度较高,韧性及疲劳等综合力 学性能较好,同时还具有导热、导电、耐磨、热膨胀系数小、阻尼性好、不吸湿、 不老化和无污染等优点。金属基复合材料除了和树脂基复合材料同样具有高强 度、高弹性率外,它能耐高温,同时不易燃、不吸潮、导热导电性好、抗辐射, 是令人注目的复合材料。 关键字:金属基复合材料 1. 金属基复合材料的分类 金属基复合材料按组织形态可分为宏观组合型和微观强化型两类;根据复合 材料基体不同可分为钢基、 铁基、 铝基、 镁基复合材料等; 按增强相形态的 不同可分为颗粒增强复合材料、 晶须或短纤维增强金属复合材料及连续纤维增强 金属基复合材料。 2.金属基复合材料的特点 (1)优点:高比强度和高比模量,耐高温性好,导电导热,热膨胀系数小,尺 寸稳定性好,耐磨性与阻尼性好,不吸湿、不老化、无放气污染 。 (2)缺点:制造困难,难于形成理想的界面,加工困难,价格昂贵。 3.金属基复合材料的制备技术 由于金属材料熔点较高,同时不少金属对增强体表面润湿性很差加上金属原 子在高温状态下很活泼,易与多种增强体发生反应,所以金属基复合材料的复合 工艺比较复杂和困难,这也是金属基复合材料的发展受到制约的主要原因。 3.1 喷射成形法 喷射成形又称喷射沉积 ( Spray Forming) , 是用惰性气体将金属雾化成 微小的液滴, 并使之向一定方向喷射, 在喷射途中与另一路由惰性气体送出的 分类 特点 制备技术 增强微细颗粒会合, 共同喷射沉积在有水冷衬底的平台上, 凝固成复合材料。 凝固的过程比较复杂, 与金属的雾化情况、 沉积凝固条件或增强体的送入角有 关, 过早凝固不能复合, 过迟的凝固则使增强体发生上浮下沉而分布不匀,这 种方法的优点是工艺快速,金属大范围偏析和晶粒粗化可以得到抑制, 避免复 合材料发生界面反应, 增强体分布均匀。缺点是出现原材料被气流带走和沉积 在效应器壁上等现象而损失较大, 还有复合材料气孔率以及容易出现的疏松。 利用喷 射成 形原 理制 备工艺 有添 加法 ( inert spray form-ing) 和反 应 法 ( reactive spray forming) 两种。Osprey Metals 研究的 Osprey 工艺是喷射成形 法的代表, 其强化颗粒与熔融金属接触时间短, 界面反应得以有效抑制。反应 喷射沉积法是使强化陶瓷颗粒在金属雾或基体中自动生成的方法。Lawly 等人[9] 采用含氧 5%~ 12%的氮气, 将 Fe- Al 〔 ω ( Al) =2%〕 熔雾合金雾化, 使其生成 Al2O3 获得非常细小的 Al2O3 弥散强化铁基复合材料的预成型体。 3.2 铸造凝固成型法 铸造凝固成型法是在基体金属处于熔融状态下进行复合。 主要方法有搅拌铸 造法、 液相渗和法和共喷射沉积法等。铸造凝固成型铸造复合材料具有工艺简 单化、 制品质量好等特点, 工业应用较广泛。 3.2.1 原生铸造复合法 原生铸造复合法 ( 也称液相接触反应合成技术 Liquid Contact Reaction: LCR)是将生产强化颗粒的原料加到熔融基体金属中, 利用高温下的化学反应 强化相, 然后通过浇铸成形。如 TiB 强化铝基复合材料原生复合法的化学反应 式 2B+Ti+Al→TiB2+Al。这种工艺的特点是颗粒与基体材料之间的结合状态良 好,颗粒细小 ( 0.25~1.5?m) 均匀弥散, 含量可高达 40%, 故能获得高 性能复合材料。常用的元素粉末有钛、碳、硼等,化合物粉末有 Al2O3、 TiO2、 B2O3 等。该方法可用于制备 A1 基、 Mg 基、 Cu 基、 Ti 基、 Fe 基、 Ni 基 复合材料。强化相可以是硼化物、 碳化物、 氮化物等。 近年来,哈尔滨工业大学从事接触反应法制备复合材料的研究工作[4], 已成 功制备了 Al- Si /TiC、 Al- Cu /TiC 和 Al/TiB2 复合材料, 其机械性能优异。 3.2.2 搅拌铸造法 搅拌铸造法也称掺和铸造法等。是在熔化金属中加入陶瓷颗粒,经均匀搅拌 后浇入铸模中获得制品或二次加工坯料, 此法易于实现能大批量生成, 成本较 低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强 化颗粒的组合受限制。 3.2.3 半固态复合铸造法 半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶 以枝晶方式长大,固相率达 0.2%左右时枝晶就形成连续网络骨架, 失去宏观流 动性。 如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网络骨 架被打碎而保留分散的颗粒状组织形态, 悬浮于剩余液相中, 这种颗粒状非枝 晶的微组织在固相率达 0.5%~ 0.6%仍具有一定的流变性。液固相共存的半固 态合金因具有流变性, 可以进行流变铸造; 半固态浆液同时具有触变性, 可 将流变铸锭重新加热到固、 液相变点软化, 由于压铸时浇口处及型壁的剪切作 用, 可恢复流变性而充满铸型。强化颗粒或短纤维强化材料加入到受强烈搅拌 的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既 防止颗粒的凝聚和偏析, 又使颗粒在浆液中均匀分布, 改善了润湿性并促进界 面的结合。[8] 3.2.4 含浸凝固法 ( M I 技术) 含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融 基体金属之中,让基体金属浸透预成型体后, 使其凝固以制备复合材料的方法。 有加压含浸和非加压含浸两种方法。 含浸法适合于强化相与熔融基体金属之间润 湿性很差的复合材料的制备。强化相含量可高达 30%~ 80%; 强化相与熔融 金属之间的反应得到抑止, 不易产生偏折。但用颗粒作强化相时, 预成形体的 制备较困难, 通常采用晶须、 短纤维制备预成形体。熔体金属不易浸透至预成 形体的内部,大尺寸复合材料的制备较困难。 近几年来,含浸凝固技术有了新的发展,美国 Lanxide 公司利用高温下金属 Zr 熔体与 BC4 预成型体之间的定向反应制备出了 Zr-ZrC-Zr 复合材料,并已 在工程上得到应用[7],Breslin 等人采用 Al 浸渍 SiO2 的预成型体, 制备出了 Al2O3-A1 ( Si) 复合材料, 这种材料中的两相互相穿插、 连续, 并具有某 些特殊的性能被称为 C4 材料。该技术可以制备各种大小部件,强化相的体积比 可达 60%, 工艺较简单, 原料成本低。 3.3 粉末冶金复合法 粉末冶金复合法基本原理与常规的粉末冶金法相同, 包括烧结成形法、 烧 结制坯加塑法加工成形法等。适合于分散强化型复合材料 ( 颗粒强化或纤维强 化型复合材料) 的制备与成型。 该方法在铝基复合材料的制备方面应用较广, 但其主要缺点是基体金属与强化颗粒的组合受限制。 粉末冶金复合法的工艺主要 优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生 反应; 可自由选择强化颗粒的种类、 尺寸, 还可多种颗粒强化; 强化颗粒添 加量的范围大; 较容易实现颗粒均匀化。但缺点是: 工艺复杂, 成本高; 制 品形状、 尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如 铸造复合材料等。 3.4 原位生成复合法 原位生成复合法也称反应合成技术[1], 最早出现于 1967 年前用 SHS 法合成 TiB2 /Cu 功能梯度材料的研究中[2]。 金属基复合材料的反应合成法是指借助化 学反应, 在一定条件下在基体金属内原位生成一种或几种热力学稳定的增强相的 一种复合方法。 这种增强相一般为具有高硬度、高弹性模量和高温强度的陶瓷 颗粒, 即氧化物、 碳化物、氯化物、 硼化物、 甚至硅化物, 它们往往与传 统的金属材料, 如 Al、 Mg、 Ti、 Fe、 Cu 等金属及其合金, 或 ( NiTi) 、 ( AlTi) 等金属间化合物复合,从而得到具有优良性能的结构材料或功能材料 [3] 。 3.4.1 直接氧化 ( DIMON) 法 直接氧化法是由氧化性气体在一定工艺条件下使金属合金液直接氧化形成复 合材料。通常直接氧化法的温度比较高, 添加适量的合金元素如 Mg、 Si 等, 可使反应速度加快。 这类复合材料的强度、 韧性取决于形成粒子的状态和最终 显微组织形态。 由于形成的增强体可以通过合金化及其反应热力学进行判断, 因 此可以通过合金化、 炉内气氛的控制来制得不同类型增强体的复合材料。 3.4.2 放热弥散 ( XD) 法 放热弥散复合技术 ( Exothermic Dispersion) 的基本原理是将增强相反应 物料与金属基粉末按一定的比例均匀混合, 冷压或热压成型, 制成坯块, 以 一定的加热速率加热, 在一定的温度下 ( 通常是高于基体的熔点而低于增强 相的熔点)保温,使增强相各组分之间进行放热化学反应, 生成增强相。增强 相尺寸细小, 呈弥散分布。 3.4.3 SHS-铸渗法 SHS-铸渗法[3] 是将金属基复合材料的自蔓延高温合成技术 ( Self- Propagating High Temperature Synthesis) 和液态铸造法结合起来的一种新技术,包括增强颗 粒的原位合成和铸造成型二个过程。当前, SHS-铸渗法是有竞争力的反应合成 工艺之一, 但过程控制非常困难。 其典型工艺为:利用合金熔体的高温引燃铸型中的固体 SHS 系, 通过控制 反应物和生成物的位置, 在铸件表面形成复合涂层, 它可使 SHS 材料合成与 致密化、 铸件的成形与表面涂层的制备同时完成。潘复生[6]等人将 SHS 技术和 铸渗工艺相结合,制备了颗粒增强的铁基复合材料涂层。在这种工艺中, SHS 过程使基体产生一定数量的增强颗粒, 而随后的熔铸过程则利用高温金属液的 流动,对 SHS 过程中易产生的孔隙进行充填,因此两个过程的综合作用下获得 较为致密的复合材料。 3.4.4 反应喷射沉积技术 ( RSD) 反应喷射沉积工艺 ( Reactive Spray Deposition) 生成陶瓷颗粒的反应有气 -液反应、 液-液反应、 固-液反应和加盐反应等多种类型。它综合了快速凝固 及粉末冶金的优点, 并克服了喷射共沉积工艺中存在的如颗粒与基体接近机械结 合、 增强相体积分数不能太高等缺点, 成为目前金属基复合材料研究的重要方 向之一。 反应喷射沉积工艺过程为:金属液被雾化前喷入高活性的固体颗粒发生液固 反应, 导致喷入的颗粒在雾化过程中溶解并与基体中的一种或多种元素反应形成 稳定的弥散相, 控制喷雾的冷却速率以及随后坯件的冷却速率可以控制弥散相的 尺寸。杨滨等人[5]采用液相接触反应合成技术进行反应合成,然后再进行后续的 雾化喷射沉积成形步骤, 成功地开发出了一种熔铸-原位反应喷射沉积成形颗粒 增强金属基复合材料制备新技术。制备出 TiC/Al- 20Si- 5Fe 复合材料。 3.5 叠层复合法 叠层复合法是先将不同金属板用扩散结合方法复合,然后采用离子溅射或分 子束外延方法交替地将不同金属或金属与陶瓷薄层叠合在一起构成金属基复合 材料。这种复合材料性能很好, 但工艺复杂难以实用化。目前这种材料的应用 尚不广泛,过去主要少量应用或试用于航空、 航天及其它军用设备上, 现在正 努力向民用方向转移, 特别是在汽车工业上有很好的发展前景。 4.结束语 [3] 目前, 我国金属基复合材料的研究、 制备技术与国外先进水平仍有较大 的差距, 许多问题还有待进一步解决,如基础性研究落后、制备技术及工艺的 工业化应用能力差、 制品质量不稳定、 价格高等。 随着现代高科技的迅猛发展, 金属基复合材料已经并将继续大量取代传统材料, 在各个领域发挥更重要的积 极作用。 为此, 我们应大力加强复合材料理论、 制备技术和应用的研究, 加 快科研成果转化生产应用的进程。 参考文献〕 〔 参考文献〕 1995, 〔 1〕 程秀兰, 潘复生.金属复合材料的反应合成技术 〔 J〕 .材料导报, (5):61- 66. 〔 2 〕 吴人洁.金属基复合材料的现状与展望 〔 J〕 .金属学报, 1997, 33(1):78- 82. 〔 3〕 汤爱涛, 汪凌云, 潘复生.金属基复合材料固/液反应制备技术的研究 进展 〔 J〕 .重庆大学学报, 2004, 27 ( 11) : 151- 156. 〔 4〕 陈子勇, 陈玉勇, 安阁英.金属基复合材料的熔体直接反应合成工艺 〔 J〕 .材料导报, 1997, 11(2):62- 63. 〔 5〕 杨滨, 王锋, 黄赞军, 等.喷射沉积成形颗粒增强金属基复合材料制 备技术的发展 〔 J〕 .材料导报, 2001, 15(3):4- 6. 〔 6〕 潘复生, 张静, 陈万志, 丁培道.SHS-铸渗法制备铁基复合材料涂层 〔 J〕 .材料研究学报, 1997, (11):165- 166. 〔 7 〕 BRESLIN M C,RINCNALDA J. A1umina/aluminum co- coHtinu-ous ceramic composite (c4) materials Prouced by solid/1iquid disPlacement reactions:Processing kinetics and cicrostructures 〔 J〕 .Ceram.Eng.Sci.Proc., 1994, 15(7- 8):104. 〔 8〕 于春田.纤维增强金属的制法及特征 〔 J〕 .铸造, 1995, (7):36- 39. 〔 9〕 鲁云, 马鸣图, 潘复生.先进复合材料 〔 M〕 .北京:机械工业出版 社, 2003. ( 编辑 黄 荻)
㈥ 什么是支撑辊,工作辊,水冷辊!请给予定义!谢谢!急!
轧辊
轧辊(roll)
轧机上使受轧制的金属发生塑性变形的部件。轧辊的形状、尺寸和材质须与轧机和轧制产品相适应。图1指出轧辊的基本形状和各部分名称。辊身是轧辊的工作部分;辊颈是与轴承接触的部分;用接头与传动装置相联接。
发展简史
轧辊的品种和制造工艺随冶金技术的进步和轧钢设备的演变而不断发展。中世纪轧制软的有色金属时使用强度低的灰铸铁轧辊。18世纪中叶英国掌握了轧制钢板用的冷硬铸铁轧辊的生产技术。19世纪下半叶欧洲炼钢技术的进步要求轧制更大吨位的钢锭,无论是灰铸铁或冷硬铸铁轧辊的强度均已不能满足要求。含碳量为0.4%~0.6%普通铸钢轧辊相应诞生。重型锻压设备的出现更使这种成分的锻造轧辊的强韧性得到进一步提高。20世纪初期合金元素的使用和热处理的引入显着改善铸钢和锻钢热轧辊和冷轧辊的耐磨性和强韧性。热轧板带用的铸铁轧辊中加入钼后改善了轧材的表面质量。冲洗法复合浇注(见铸铁轧辊)明显提高了铸造轧辊的芯部强度。轧辊中大量使用合金元素是在第二次世界大战以后,这是轧钢设备朝着大型化、连续化、高速化、自动化发展以及轧材强度提高、变形抗力加大后对轧辊性能提出更高要求的结果。这段时期中先后出现了半钢轧辊以及球墨铸铁轧辊。20世纪60年代以后又研制成功了粉末碳化钨轧辊。70年代初期在日本和欧洲广泛推广的轧辊的离心铸造技术、差温热处理技术等使板带轧辊的综合性能显着改善。复合高铬铸铁轧辊也成功地用于热带轧机上。同期,锻造白口铁和半钢轧辊在日本得到应用。80年代欧洲又推出高铬钢轧辊及超深淬硬层的冷轧辊以及用于小型型钢及线材精轧的特殊合金铸铁轧辊。当代轧钢技术的发展促使更高性能轧辊的开发研制。采用离心铸造法和新的复合方法如连续浇注复合法(CPC法)、喷射沉积法(Osprey法)、电渣焊法以及热等静压法生产的芯部为强韧性好的锻钢或球墨铸铁、外层为高速钢系列的复合轧辊以及金属陶瓷轧辊已分别在欧洲、日本新一代型材、线材、带钢轧机上得到应用。
中国从20世纪30年代开始成批生产铸造轧辊,但品种极少。50年代末在河北邢台建立起中国第一个专业轧辊厂。1958年鞍山钢铁公司在国际上首次试制并使用了1050初轧用大型球墨铸铁轧辊。60年代相继制造成功冷轧工作辊和大型锻钢轧辊。70年代末太原钢铁公司和北京钢铁研究总院共同试制成功炉卷轧机和热连轧宽带钢机组用的离心铸造铸铁轧辊,邢台冶金机械轧辊股份有限公司试制成功热宽带钢轧机用半钢工作辊和冷轧宽带钢轧机用工作辊。80年代中国又陆续研制成功大型锻钢支承辊、锻造半钢和锻造白口铸铁轧辊、粉末碳化钨辊环、高铬铸铁轧辊等新品种。到90年代,中国轧辊生产已基本满足国内需要并有部分出口,但品种有待增加,质量尚须提高。
基本尺寸参数
有轧辊辊身直径D,辊身长度L,辊颈直径d和辊颈长度l。带轧槽的初轧轧辊和型钢轧辊的直径可根据最大咬入角α(或压下量△h与辊径之比△h/D)、轧制力和轧辊强度等要求来确定。辊身长度L上,主要取决于孔型配置、轧辊抗弯强度和钢度。板带轧机轧辊辊身长度L和所轧板带的最大宽度有关。二辊板带轧机轧辊的直径D根据轧制力、轧材尺寸、轧辊强度等因素选定,四辊或多辊轧机工作辊的直径则取决于成品尺寸和精度、辊颈和轴头强度等因素。而支承辊直径主要取决于刚度和强度要求。
轧辊的分类
轧辊有不同的分类方法。按辊身形状分为圆柱形和非圆柱形,前者主要用于板材、带材、型材和线材生产,后者主要用于管材生产。按是否接触轧件分为工作轧辊和支承辊。直接接触轧件的轧辊称工作轧辊;为增加工作轧辊的刚度和强度而置于工作轧辊背面或侧面又不直接接触轧件的轧辊称支承辊。按使用机架分为初轧辊、粗轧辊、中间轧辊和精轧辊。按轧材的品种分为板带轧辊、轨梁轧辊、线材轧辊和管材轧辊等。还可按轧制时轧件的状态分为热轧辊和冷轧辊。
轧辊的工作条件
轧机部件中轧辊的工作条件最为复杂。轧辊在制造和使用前的准备工序中会产生残余应力和热应力。使用时又进一步受到了各种周期应力的作用,包括有弯曲、扭转、剪力、接触应力和热应力等。这些应力沿辊身的分布是不均匀的、不断变化的,其原因不仅有设计因素,还有轧辊在使用中磨损、温度和辊形的不断变化。此外,轧制条件经常会出现异常情况。轧辊在使用后冷却不当,也会受到热应力的损害。所以轧辊除磨损外,还经常出现裂纹、断裂、剥落、压痕等各种局部损伤和表面损伤。一个好的轧辊,其强度、耐磨性和其他各种性能指标间应有较优的匹配。这样,不仅在正常轧制条件下持久耐用,又能在出现某些异常轧制情况时损伤较小。所以在制造轧辊时要严格控制轧辊的冶金质量或辅以外部措施以增强轧辊的承载能力。合理的辊形、孔型、变形制度和轧制条件也能减小轧辊工作负荷,避免局部高峰应力,延长轧辊寿命。轧辊消耗量决定于三个因素:①轧机、轧材和轧制条件,以及轧辊的合理选择;②轧辊材料及其制造质量;③轧辊的使用和维护制度。
轧辊的选用
小型20辊轧机的工作轧辊重仅100克左右,而宽厚板轧机的支承辊重量已超过200吨。选用轧辊时首先根据轧机对轧辊的基本强度要求,选定安全承载的主体材料(各种级别的铸铁、铸钢或锻钢等),然后考虑轧辊使用时所应有的耐磨性。由于轧辊的磨损机理很复杂,包括机械应力作用、轧制时的热作用、冷却作用、润滑介质的化学作用以及其他作用,目前还没有一项综合评定轧辊抗磨性的统一指标。由于硬度易于测量,并在一定条件下可以反映耐磨性,所以一般就用径向硬度曲线来近似地表述轧辊的耐磨指标。
通常对粗轧辊以强度、抗热裂为主要要求;而精轧辊速度较高,轧制最终产品要有一定的表面质量,对它以硬度、耐磨等为主要要求。此外,对轧辊还有一些特殊要求,如压下量大时,要求轧辊有较强的咬入能力,较耐冲击;轧制薄规格产品时,则对轧辊的刚性、组织性能均匀性、加工精度以及表面光洁度等要求较严;轧制复杂断面的型钢时,还要考虑辊身工作层的切削加工性能等。
选用轧辊时,对轧辊的有些性能要求往往是彼此对立的,轧辊购置费和维护费用又很昂贵,所以应充分权衡技术和经济上的利弊,决定用铸的还是锻的,合金的还是非合金的,单一材料的还是复合材料的。
轧辊种类
轧辊品种很多,主要有以下几类:①铸铁轧辊。一般按制造工艺分类:工作层因金属型的激冷作用呈白口组织(基体+碳化物)的轧辊称冷硬铸铁轧辊;用上述方法,但适当提高铁水碳当量而得到麻口组织(基体+碳化物+石墨)的轧辊称无限冷硬铸铁轧辊。“无限”—词源于英文“indefinite”,原意为“不明确”,指激冷层在断口上无明确界限,被误译为“无限”,现已沿用成习。采用衬砂金属型并继续提高碳当量可得粗麻口组织的轧辊,称半冷硬铸铁轧辊。所有上述品种的组织中凡石墨呈球状的,称球墨铸铁轧辊;复合浇铸的轧辊加“复合”一词。②铸钢轧辊。一般按含碳量分类:含碳极高(1.4~2.4%)的过共析钢轧辊,俗称半钢轧辊,高碳的半钢轧辊实际已伸入铸铁领域;高碳过共析钢轧辊还有一类为石墨钢轧辊,其石墨是通过孕育和热处理获得的。③锻钢轧辊。一般按用途分类。④其他,除采用特殊加工工艺的以外,都直接以材质称呼。如用电渣重熔铸造坯料锻压的轧辊称为电渣重熔锻压轧辊。
对大部分轧辊的芯部和工作表层有不同的性能要求。用单一材料难于满足要求时,内外层可分别用两种材料来制造。复合工艺可采用机械组合、复合铸造及其他复层技术。修复轧辊常用堆焊技术。
㈦ B4C晶体熔点低于单质c哪个更高
B4C晶体熔点低于单质c哪个更高?1、同晶体类型物质的熔沸点的判断:一般是原子晶体>离子晶体>分子晶体。金属晶体根据金属种类不同熔沸点也不同(同种金属的熔沸点相同)金属(少数除外)>分子。
2、原子晶体中原子半径小的,键长短,键能大,熔点高。
3、离子晶体中,阴阳离子的电荷数越多,离子半径越小,离子间作用就越强,熔点就越高。金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔点越高,一般来说,金属越活泼,熔点越低。分子晶体中分子间作用力越大,熔点越高,具有氢键的,熔点反常地高。
(7)喷射沉积法为什么成本高扩展阅读:
物质的熔点,即在一定压力下,纯物质的固态和液态呈平衡时的温度,也就是说在该压力和熔点温度下,纯物质呈固态的化学势和呈液态的化学势相等,而对于分散度极大的纯物质固态体系(纳米体系)来说,表面部分不能忽视,其化学势则不仅是温度和压力的函数,而且还与固体颗粒的粒径有关,属于热力学一级相变过程。
熔点是固体将其物态由固态转变(熔化)为液态的温度,缩写为m.p.。而DNA分子的熔点一般可用Tm表示。进行相反动作(即由液态转为固态)的温度,称之为凝固点。与沸点不同的是,熔点受压力的影响很小。而大多数情况下一个物体的熔点就等于凝固点。
在有机化学领域中,对于纯粹的有机化合物,一般都有固定熔点。即在一定压力下,固-液两相之间的变化都是非常敏锐的,初熔至全熔的温度不超过0.5~1℃(熔点范围或称熔距、熔程)。但如混有杂质则其熔点下降,且熔距也较长。因此熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。
测定方法一般用毛细管法和微量熔点测定法。在实际应用中我们都是利用专业的测熔点仪来对一种物质进行测定。