⑴ 石油形成的条件
地质科学没有什么绝对正确,至少现在是,因为人们始终无法直观认识地质现象,所以只有主流观点一说。
石油成因,有两种观点,一种是有机成因,一种是无机成因说。一般来说,我们通常所科普的都是有机成因中的晚期成因说。
如你所说,大量生物有机沉积物富集,经过沉积、成岩的作用,一部分转化为干酪根,在温度、时间、压力、催化剂、微生物等的作用下地下的环境中,大量转化成为石油。
其中,温度和时间比较关键。
温度在促使有机质发生热降解并生成石油过程中起着至关重要的作用。有关温度的几个概念:门限温度:生油数量开始显着增长时的温度叫做门限温度。门限深度:与门限温度对应的深度叫做门限深度。主要生油阶段的起始温度(门限温度)不低于50℃,而终止温度很少高于175℃。也就是说地壳中的生油过程只出现于有限的温度和深度范围。门限温度高低主要与有机质受热持续时间或地质时代有关, 此外还与有机质类型和催化作用有关。
时间本身不能单独起作用,但在有机质的热降解演化过程中,时间却是一个不可忽略的因素。与温度相比,时间居于次要地位;温度与时间可以互补(温度不足可以用时间来补偿)。
大量研究表明,石油的生成不仅是烃类的富集过程,更主要的是烃类的新生过程。在有机质改造过程中,只有达到一定温度或埋藏深度,有机质才能大量转化成石油。
⑵ 石油的形成原因是什么
石油的成油机理有生物沉积变油和石化油两种学说,前者较广为接受,认为石油是古代海洋或湖泊中的生物经过漫长的演化形成,属于生物沉积变油,不可再生;
后者认为石油是由地壳内本身的碳生成,与生物无关,可再生。石油主要被用来作为燃油和汽油,也是许多化学工业产品,如溶液、化肥、杀虫剂和塑料等的原料。
(2)石油分成主要跟什么条件有关系扩展阅读:
性质
具有代表性的大庆石油属低硫石蜡基石油,已开采酌石油以低硫石蜡基居多。这种石油,硫含量低,含蜡量高,凝点高,能生产出优质的煤油、柴油、溶剂油、润滑油及商品石蜡,直馏汽油的感铅性好。
有的石油硫含量高,胶质含量高,属含硫石蜡基。其直馏汽油馏分产率高,感铅性也好。柴油馏分的十六烷值高,闪点高,硫含量高,酸度大,经精制后可生产轻柴油与专用柴油。润滑油馏分中,有一部分组分的粘度指数在90以上,是生产内燃机油的良好的原料。
有的石油硫含量低,含蜡量较高,属低硫环烷一中间基。其汽油馏分感铅性好,且也富含环烷烃与芳香烃,故也是催化重整的良好原料。柴油馏分的凝点及硫含量均较低,酸度较大,产品需碱洗。减压渣油经氧化后可生产石油建筑沥青。
另有些低凝石油硫含量低、含蜡量也低,属低硫中间基。适于生产一些特殊性能的低凝产品,同时还可提取环烷酸是不可多得的宝贵资源。
⑶ 形成石油需要哪几个条件
形成石油要具备三个条件:一是要有大量的生物遗体;二是要有储集石油的地层和保护石油不跑掉的盖层;三是还要有有利于石油富集的地质构造。
一些石油地质学家认为,大陆架海底通常是厚度很大的中生代和第三纪与第三纪以后的海相沉积,这种地质构造是石油生成与储蓄的良好的场所。大陆架与近海紧相连,近海有着大量的藻类,鱼类以及其他浮游生物,这些都是形成石油的原料。当这些生物迅速被河流带来的沉积物掩埋后,这些被埋藏的生物遗体与空气隔绝,长期处在缺氧的环境里,再加上厚的岩石的压力,高温及细菌作用,便开始分解。再经过长期的地质时期,这些生物遗体逐渐变成了分散的石油。在浅海,特别是在岛屿岬角阻隔的海湾中,水域处于平静的半封闭状态,最利于有机物的堆积,随着大量泥沙的沉积,这就为石油的储集创造了良好的条件。
石油储集在砂岩的孔隙中,就好像水充满在海绵里一样,不致石油流失而长期缓慢地沉降在大陆架浅海区。那些沉降幅度大、沉降地层厚的盆地,往往是形成石油最有利的地区。在这些大型沉积盆地中,因受挤压而突出的一些构造,又往往是储积石油最多的地方。因此在海上找石油,就要找那些既有生油地层和储油地层,又有很好的盖层保护的储油构造地区。
⑷ 石油怎样分解出汽油柴油的
加热达到沸点分离。
混合物中的各种烃,一般是含碳原子数越少的分子,沸点越低;含碳原子较多的分子,其沸点越高。当给石油混合物加热时,低温,低沸点的烃先气化,经过冷凝分离出来;随温度的升高,较高沸点的烃再气化,经过冷凝分离出来,不断继续加热、气化、冷凝,就可以把石油分成不同沸点范围的蒸馏产物,这种方法叫石油的分馏。石油分馏出来的各种成分为石油的馏分(仍然是混合物),为了不使高温下高沸点的烃受热变化和炭化结焦,常采用低于常压的条件下进行分馏,叫做减压分馏。
石油分馏的产品:溶剂油(C5~C6 30~150℃)、汽油(C5~C11 220℃C以下)、煤油(C11~C16 180~310℃)、柴油(C15~C18 200~360℃)、凡士林(C16~C20 360℃以上)、石蜡(C20~C30360℃以上)、沥青(C30~C40360℃以上)。
⑸ 石油形成的各个条件
石油的形成条件非常复杂。目前有两种观点。
一是无机论,认为石油和天然气是来自地球内部无机物质,或者是来自宇宙炭、氢元素,结果复杂的化学作用形成的。
二是有机论,认为石油是在一定的压力、温度下,地层中的大量生物经过复杂的缺氧还原环境发生细菌作用、温度作用、压力作用、催化作用,而形成的。
目前公认的是有机生成论。
其主要生成条件是:具有能够大量繁殖的微生物的温度和压力条件,并有大量的微生物生成,沉积岩中的大量古生物,就是石油生成的物质基础;具有合适的压力、温度,长期处于还原环境;长期处于稳定的下降地区,沉积厚度大;具有完好的生、储、盖组合。
⑹ 石油生成所需的各个条件是什么
石油和天然气的聚集——油气田可以在全球各地的地下找到。但是尽管如此,石油与天然气的聚集和进一步形成油气田是需要一些必要条件的。石油的形成必须具备7个基本条件,每一个条件都是下一步发展的基础,且所有这些进程都发展得十分缓慢。
第一,需要能够转化为石油的足够量的有机质,这就是烃源岩。第二,存在适合这种转化的所有适宜条件,即必须存在这些有可能使石油和天然气成熟的地质条件。第三,新生成的石油和天然气开始向地表运移。第四,在这种运移过程中,烃类物质遇到能够将它们大量聚集的岩石层,即储集层。第五,这种储集层必须是非渗透性的,因此就需要一种屏障(封闭或盖层),即一套非渗透性岩石,把石油和天然气向上逃逸的路径阻断,这种岩石就是封闭或盖层岩石。第六,能够聚集起可供勘探的足够量的石油和天然气,必须有范围足够大且具备了封闭地质条件的地层——这就是聚集了足够量的含油圈闭。第七,内部的石油和天然气的平衡状态必须不能受到外来的干扰,即必须存在烃类良好的保存条件。当石油科技人员在研究一套地层时,他们主要的目标之一就是确定上述7个条件是否真的存在,是否具备各自发育的机会。这种具备了7个条件的石油系统称为一套石油生成体系。
油气田示意图
⑺ 石油是由什么物质在什么条件下产生的,
石油的形成:石油是由数百万年前的史前海洋生物遗骸形成的。这些生物死后躯体下沉,并被埋在泥沙层下。泥沙层
后来逐渐变成岩石层 。岩石层的压力和细菌的作用使生物遗骸变成了浓稠的石油。石油会穿过疏松岩石层向上流动,
一直流到致密岩石层才被挡住。天然气和煤的形成方式与此相似。因此,它们统称为石化燃料。石油、天然气、煤等
在地球上的蕴藏量是有限的,将来必定会用完。所以,我们应该好好地珍惜这些宝贵的资源,不能随意浪费。
石油和天然气的化学成分,暴露了它们的来源,它们都是有机物,应当与古代生物有关系。一部分科学家认为,油气(石油和天然气)是伴随着沉积岩的形成而产生的。远古时期繁盛的生物制造了大量的有机物,在流水的搬运下,大量的有机物被带到了地势低洼的湖盆或海盆里。在自然界这些巨大的水盆中,有机物与无机的碎屑混合,并沉积在盆底。宁静的深层水体是缺乏氧气的还原环境,有机物中的氧逐渐散失了,而碳和氢保留下来,形成了新的碳氢化合物,并与无机碎屑共同形成了石油源岩。 在石油源岩中,油气是零散地分布的,还没有形成可以开采的油田。此时,水盆底部的沉积物,在重力的作用下,开始下沉。在地下的压力和高温的影响下,沉积物逐渐被压实,最终变成沉积岩。而液体的石油油滴们拒绝变成岩石,在沉积物体积缩小的过程中,它们被挤了出来,并聚集在一处,由于密度比水还轻,所以石油开始向上迁移。幸运的话,在岩石裂隙中穿行的石油,最终会遭遇一层致密的岩石,比如页岩、泥岩、盐岩等,这些岩石缺少让石油通过的裂隙,拒绝给石油发通行证,石油于是停留在致密岩层的下面,逐渐富集,形成了油田。含有石油的岩层,叫做储集层,拒绝让石油通过的岩石,叫做盖层。如果没有盖层,石油会上升回到地表,最终消失在地球历史的尘烟中,保留不到人类出现的时候。
⑻ 石油的概念及化学组成
(一)石油的概念
石油是存在于地下岩石孔隙中的以液态烃为主体的可燃有机矿产。地下油气藏中的石油是气态、液态及固态烃类及其衍生物的混合物,在成分上以烃类为主,含有数量不等的非烃化合物及多种微量元素。在相态上以液态为主,溶有大量烃气及少量非烃气,以及数量不等的固态烃类及非烃类物质。油气藏中组成石油的各种成分和相态的比例因地而异,因此,石油没有确定的化学成分和物理常数。
(二)石油的元素组成
石油没有确定的化学成分,因而也就没有确定的元素组成。但组成石油的化学元素主要是碳(C)和氢(H),其次是硫(S)、氮(N)、氧(O)。不同产地的石油元素组成含量存在差异(表1-1)。
石油中碳含量一般为80%~88%,氢含量为10%~14%,两种元素占绝对优势,一般含量在95%~99%之间。硫、氮、氧总量在0.3%~7%之间变化,一般含量低于2%~3%,个别石油含硫量可高达10%。
由于硫具有腐蚀性,因此含硫量的高低关系到石油的品质。原油中含硫量变化很大,从万分之几(克拉玛依,0.05%)到百分之几(委内瑞拉,5.48%)。根据含硫量可把原油分为高硫原油(含硫量大于1%)和低硫原油(含硫量小于1%)。原油中的硫主要来自有机物的蛋白质和围岩的含硫酸盐矿物如石膏等,故产于海相环境的石油较形成于陆相环境的石油含硫量高。
原油的含氮量在0.1%~1.7%之间,平均值0.094%。90%以上的原油含氮量小于0.2%。原油的含氧量在0.1%~4.5%之间,主要与其氧化变质程度有关。
表 1 -1 石油的元素组成 ( 质量分数/%)
( 据石毓程,1980,有改动)
除上述 5 种主要元素之外,还从原油灰分 ( 石油燃烧后的残渣) 中发现有铁 ( Fe) 、钙 ( Ca) 、镁 ( Mg) 、硅 ( Si) 、铝 ( Al) 、钒 ( V) 、镍 ( Ni) 、铜 ( Cu) 、锑 ( Sb) 、锰( Mn) 、锶 ( Sr) 、钡 ( Ba) 、硼 ( B) 、钴 ( Co) 、锌 ( Zn) 、钼 ( Mo) 、铅 ( Pb) 、锡( Sn) 、钠 ( Na) 、钾 ( K) 、磷 ( P) 、锂 ( Li) 、氯 ( Cl) 、铋 ( Bi) 、铍 ( Be) 、锗( Ge) 、银 ( Ag) 、砷 ( As) 、镓 ( Ga) 、金 ( Au) 、钛 ( Ti) 、铬 ( Cr) 、镉 ( Cd) 等 30多种元素。这些元素虽然种类繁多,但总量仅占石油质量的万分之几,在石油中属微量元素,或称之为灰分元素。
在石油微量元素中,以钒 ( V) 、镍 ( Ni) 两种元素含量高,分布普遍,且鉴于其与石油成因有关,最为石油地质学家所重视。V/Ni 比值可作为区分是来自海相环境还是陆相环境沉积物的标志之一。一般 V/Ni > 1 被认为是海相环境,V/Ni < 1 为陆相环境。
( 三) 石油的化合物组成
组成石油的主要元素是碳 ( C) 、氢 ( H) 、硫 ( S) 、氮 ( N) 、氧 ( O) ,但由这 5 种元素构成的化合物却是庞大的。笼统地说,组成石油的化合物多是有机化合物; 作为杂质混入的无机化合物不多,含量甚微,可以忽略不计。石油的化合物组成,归纳起来可以分为烃和非烃两大类,其中烃类是主要的,这与元素组成以碳 ( C) 、氢 ( H) 占绝对优势相一致。
现今从全世界经过分析的不同原油中分离出来的有机化合物有近 500 种,还不包括有机金属化合物。其中约 200 种为非烃,其余为烃类。原油的大半是由 150 种烃类组成的。
1. 烃类化合物
在化学上,烃类可以分为两大类: 饱和烃———烷烃、环烷烃,不饱和烃———烯烃、芳香烃和环烷-芳香烃。
(1)饱和烃
在石油中饱和烃在数量上占大多数,一般占石油所有组分的50%~60%。可细分为烷烃和环烷烃。
在常温常压下,烷烃C1—C4为气态,C5—C15为液态,C16以上为固态(天然石蜡)。
图1-1 异戊二烯型烷烃同系物立体化学结构图
石油中带支链(侧链)的异构烷烃以≤C10为主,常见于C6—C8中;C11—C25较少,且以异戊二烯型烷烃最重要。石油中的异戊二烯型烷烃(图1-1),一般被认为是由叶绿素的侧链———植醇演化而来的,因而是石油为生物成因的标志化合物。现已从石油中分离出多种异戊二烯型化合物,其总量达石油的0.5%。其中研究和应用较多的是2,6,10,14-四甲基十五烷(姥鲛烷)和2,6,10,14-四甲基十六烷(植烷)。研究表明,同一来源的石油,各种异戊二烯型化合物极为相似。因而常用作油源对比的标志。
环烷烃在石油中所占的比例为20%~40%,平均30%左右。低分子量(<C10)的环烷烃,尤以环戊烷(C5—五员环)和环己烷(C6—六员环)及其衍生物为石油的重要组成部分,且一般环己烷多于环戊烷。中等到高分子量(C10—35)的环烷烃可以是单环到六环。石油中环烷烃以单环和双环为主,占石油中环烷烃的50%~55%,三环约占20%,四环以上占25%左右。在石油中多环环烷烃的含量随成熟度增加而减少,故高成熟原油中1-2环的环烷烃显着增多。
在常温常压下,环丙烷(C3H6)和甲基环丙烷(C4H8)为气态;除此之外,所有其他单环环烷烃均为液态,两环以上(>C11)的环烷烃为固态。
(2)不饱和烃
石油中的不饱和烃主要是芳香烃和环烷-芳香烃,平均占原油质量的20%~45%。此外原油中偶见有直链烯烃。烯烃及不饱和环烃,因其极不稳定,故很少见。
石油中已鉴定出的芳香烃,根据其结构不同可以分为单环、多环和稠环三类,而每个类型的主要分子常常不是母体,而是烷基衍生物。
单环芳烃包括苯、甲苯、二甲苯等;多环芳烃有联苯、三苯甲烷等;稠环芳烃包括萘(二环稠合)、蒽和菲(三环稠合),以及苯并蒽和崫(四环稠合)。
芳香烃在石油中以苯、萘、菲三种化合物含量最多,其主要分子也常常是以烷基的衍生物出现。如前者通常出现的主要是甲苯,而不是苯。
环烷-芳香烃包含一个或几个缩合芳环,并与饱和环及链烷基稠合在一起。石油中最丰富的环烷-芳香烃是两环(一个芳环和一个饱和环)构成的茚满和萘满以及它们的甲基衍生物。而最重要的是四环和五环的环烷-芳香烃,其含量和分布特征常用于石油的成因研究和油源对比。因为它们大多与甾族和萜族化合物有关(芳构化),而甾族和萜族化合物是典型的生物成因标志化合物。
2.非烃化合物
石油中的非烃化合物是指除碳、氢两种主要元素外,还含有硫或氮或氧,抑或金属原子(主要是钒和镍)的一大类化合物。石油中这些元素含量不多,但含这些元素的化合物却不少,有时可达石油质量的30%。其中又主要是含硫、氮、氧的化合物。
(1)含硫化合物
硫是石油中碳和氢之后的第三个重要元素,含硫的化合物也最为多见。目前石油中已鉴定出的含硫化合物将近100种,多呈硫醇、硫醚、硫化物(H2S)和噻吩(以含硫的杂环化合物的形式存在,在重质石油中含量较为丰富)。
(2)含氮化合物
石油中含氮化合物较为少见,平均含量小于0.1%。目前从石油中分离出来的含氮化合物有30多种,主要是以含氮杂环化合物的形式存在。可将其分为两组,一组为碱性化合物,有吡啶、喹啉、异喹啉、吖啶及卟啉、吲哚、咔唑及其同系物。其中以含钒和镍的金属卟啉化合物最为重要。
原油中的卟啉化合物首先是由特雷勃斯发现的(C.Treibs,1934)。包括初卟啉和脱氧玫红初卟啉,并提出石油中的卟啉是由植物叶绿素和动物氯化血红素转化来的。这个发现为石油有机成因说提供了有力的证据,引起了广泛的注意和重视。目前对卟啉的研究已逐步深入并发现了多种类型。卟啉是以4个吡咯核为基本结构,由甲川桥联结的含氮化合物。在石油中卟啉常与钒、镍等金属元素形成络合物,因而又称为有机金属化(络)合物,其基本结构与叶绿素结构极为相似(图1-2)。
图1-2 叶绿素(A)与原油中的卟啉(B)、植烷(Ph)、姥鲛烷(Pr)结构比较图(据G.D.Hobsohetal.,1981)
但是,并不是所有原油中都含有卟啉,有相当一部分原油中不含或仅含痕量。一般中、新生代地层中形成的原油含卟啉较多,而古生代地层中的原油中的卟啉含量甚低或不含。这可能与卟啉的稳定性差有关。在高温(>250℃)或氧化条件下,卟啉将发生开环裂解而破坏。
此外,原油中的卟啉类型还与沉积环境有密切关系,海相石油富含钒卟啉,而陆相石油富含镍卟啉。
(3)含氧化合物
石油中含氧化合物已鉴定出50多种。包括有机酸、酚和酮类化合物。其中主要是与酸官能团-COOH有关的有机酸,有C1—24的脂肪酸,C5—10的环烷酸,C10—15的类异戊二烯酸。石油中的有机酸和酚(酸性)统称为石油酸,其中以环烷酸最多,占石油酸的95%,主要是五员酸和六员酸。几乎所有石油中都含有环烷酸,但含量变化较大,在0.03%~1.9%之间。环烷酸易与碱金属化合作用生成环烷酸盐,环烷酸盐又特别易溶于水。因此,地下水中环烷酸盐的存在是找油的标志之一。
(四)石油的馏分组成
石油是数以百计的若干种烃类和非烃有机化合物的混合物,每种化合物都有自己的沸点和凝点。石油的馏分就是利用组成石油的化合物各自具有不同沸点的特性,通过对原油加热蒸馏,将石油分馏成不同沸点范围的若干部分,每一部分就是一个馏分。分馏所用的温度区间(馏程)不同,馏出物(馏分)有所差异(表1-2)。
表1-2 石油产品的大致馏程范围
通常石油的炼制过程可以看做是对石油的分馏,馏程的控制是根据原油的品质及对油品质量的具体要求来确定的。现代炼油工业为了提高石油中轻馏分的产量和提高产品质量,除了采用直馏法外,还采用催化热裂化、加氢裂化、热裂解、石油的铂重整等一系列技术措施。例如在常压下分馏出的汽油只占原油的15%~20%,在采用催化热裂化后,可使汽油的产量提高到50%~80%,以满足各方面以汽油作能源燃料的需求。
(五)石油的组分分析
石油的组分分析是利用有机溶剂和吸附剂对组成石油的化合物具有选择性溶解和吸附的性能,选用不同有机溶剂和吸附剂,将原油分成若干部分,每一部分就是一个组分。
一般在做组分分析之前,先对原油进行分馏,去掉低于210℃的轻馏分,切取>210℃的馏分进行组分分析。凡能溶于氯仿和四氯化碳的组分称为油质,它们是石油中极性最弱的部分,其成分主要是饱和烃和一部分低分子芳烃。溶于苯的组分称为苯胶质,其成分主要是芳烃和一些具有芳环结构的含杂元素的化合物(主要为含硫、氮、氧的多环芳烃)。用酒精和苯的混合液(或其他极性更强的如甲醇、丙酮等)作溶剂,可以得到酒精-苯胶质(或其他相应组分),此类胶质的成分主要是含杂元素的非烃化合物。用石油醚分离,溶于石油醚的部分是油质和胶质。其中能被硅胶吸附的部分是胶质,不被硅胶吸附的部分是油质,剩下不溶于石油醚的组分(但可溶于苯、二硫化碳和三氯甲烷等中性有机溶剂,呈胶体溶液,可被硅胶吸附)为沥青质。后者是渣油的主要组分,其主要成分是结构复杂的大分子非烃化合物。
⑼ 石油是怎样形成的
1.石油的成油机理有生物沉积变油和石化油两种学说。
2.生物沉积变油学说认为石油是古代海洋或湖泊中的生物死去后,尸骸沉积在海底。海洋中含有很多盐分,所以生物脂肪不能马上降解,在强大压力下,脂肪和蛋白质被逐渐液化,变成石油。
3.石化油学说认为石油是由地壳内本身的碳生成,与生物无关。