❶ 用稀硫酸和废铁制氢气的成本多少把制气设备装汽车上给汽车用氢气比汽油便宜吗
化学反应方程式为:
H2SO4+Fe=H2↑+FeSO4
理论上说,98份(质量单位而非摩尔单位)的硫酸和56份的铁能制2份的氢和156份的硫酸亚铁,比如,你用98公斤(这里就的是100%硫酸,市场上没有卖,且只能用稀硫酸)的硫酸和56公斤的铁能得到2公斤的氢气和156的硫酸亚铁(俗称绿矾),他们的市场价我不太清楚,你可以去问问,但我觉得不可能比汽油便宜~~~
再者就算比汽油便宜,但氢气的燃烧不好控制,容易发生爆炸,自己制的氢气,不可做到纯净,还有硫酸在运输过程中比较危险~~
所以不管怎么样建议都不要这样做,安全第一吗~~
❷ 韩国研发低成本耐腐蚀催化剂 可降低电解水制氢的成本
盖世汽车讯推动以氢燃料汽车为代表的氢经济发展的关键是以低成本生产可以发电的氢气。制氢的方法有很多,如捕获副产品氢气、重组化石燃料获取氢气以及电解水制氢。其中,电解水制氢的方法是一种环保的方法,但是其中催化剂的使用是决定其效率和价格竞争力最重要的因素。因为,电解水装置需要使用铂(Pt)催化剂,以加速产氢反应以及提升耐用性。不过,虽然该催化剂的性能很好,但其成本很高,在价格方面不如其他制氢方法有竞争力。
(图片来源:韩国科学技术研究院)
根据电解质在水中的溶解状况,电解水装置也会不同。例如,采用质子交换膜(PEM)的装置,即使采用过渡金属制成的催化剂,而不是昂贵的铂基催化剂,也能够实现高速率的产氢反应。因此,有很多研究都专注于将该技术实现商业化。不过,虽然此类研究专注于实现高反应活性,但是提高此类易在电化学环境中腐蚀的过渡金属耐久性的研究却被忽视了。
据外媒报道,韩国科学技术研究院(KIST)的一个研究小组研发了一种催化剂,由具备长期耐久性的过渡金属制成,可以提高制氢效率,而且还通过克服非铂催化剂的耐久性问题,无需使用到铂。
该研究小组利用喷雾热解工艺,将少量钛(Ti)注入到低成本过渡金属磷化钼(MoP)中。由于钼价格低廉,且易于处理,因而常被用作能量转换和储能设备的催化剂,但是其弱点是容易被氧化,进而腐蚀。
研究人员发现,在催化剂合成过程中,每种材料的电子结构完全得以重构,最终实现了与铂催化剂相同的析氧反应(HER)活性。电子结构的改变解决了高腐蚀性的问题,因此该催化剂比现有的过渡金属基催化剂的耐久性提高了26倍,可加速实现非铂催化剂的商业化。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
❸ 怎样制氢气成本最低
卖氢气球的人时直接从厂子买的, 一、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。 三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。 四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。 五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。 六、酿造工业副产 用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。 七、铁与水蒸气反应制氢 但品质较差,此系较陈旧的方法现已基本淘汰。
❹ 氢能和燃料电池产业爆发前夜,如何突破瓶颈
氢能和燃料电池技术正加速改变着世界能源格局。
“全球能源转型、汽车转型共同聚焦于低碳化、绿色化,氢能是实现这两大领域转型的重要支撑。”中国电动汽车百人会副理事长兼秘书长张永伟15日在2020氢能产业发展创新峰会上表示,“当前全球主要汽车公司基本上都制定了发展燃料电池汽车的时间表和路线图。越来越多的国家把氢能作为更重要的未来替代性能源,制定氢能源、氢产业、氢经济、氢社会发展的时间表和路线图。我们离氢的全面应用越来越近。”
刘小诗在百人会《中国氢能产业发展报告2020》中也对产业政策提出了建言:一是针对氢能标准体系不完善的现象,建立健全氢安全基础研究体系,二是针对各地发展氢能经济的规划同质化现象,鼓励基础好的地区加速建立示范运营区,鼓励模式创新,探索多能互补模式,因地制宜,避免低水平重复建设。三是针对产业链薄弱环节给予政策激励。如加大基础设施建设,出台和落实电解水制氢的电价优惠措施等。四是把握电动汽车与氢燃料电池车错位互补原则,进行有效资源配置,防止顾此失彼。
从氢的产、储、运、加、用等全产业链出发,依托地方政府、企业、科研院所、平台等多主体,逐步打造“基础设施配套完善,运营模式成熟、创新成果丰富、资金保障充足、示范效果明显、生态效应显着”的氢能产业商业生态圈。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
❺ 为什么获得氢气的成本高不是电解水就可以了吗
因为电解的耗电量会很大,所以成本会很高啊~
因为氢气燃烧会放出大量的能量,产生水
反过来如果要将水中的氢气电离出来,要吸收比燃烧放出的能量更多的能量才行的。
所以电解氢会需要大量的能量,而这些能量就是电能,所以会消耗大量的电能,成本会很高
储存困难这是因为H2属于易燃气体,其爆炸极限的范围比较宽,所以混入少量的空气都可能引起爆炸。
其储存可以保存在钢瓶中,要有一定的压力,但是,H2的半径很小,较容易穿透金属材料,即对钢瓶的材料要求较高,对压力也有一定的要求。
所以,目前正在研究合金储氢材料,即某些特殊的合金能与H2形成特殊的非整比化合物,起到储存H2的作用,简单理解就是H2储存在合金中某些金属原子的空隙里。
❻ 氢能源“降成本”为何困难重重
制氢方式决定降成本可能性不高
制氢的常见方式包括:
这是五种常见的制氢方式,第一种的常规燃料指的是天然气,均为不可再生的化石燃料;很显然这种方式不能普及,投入巨大的人力物力和财力去研发电动 汽车 ,初衷正是为了减少对常规能源的依赖,同时去减少二氧化碳排放,可是通过这种方式会产生大量的二氧化碳,会加剧温室效应;且国内天然气的储能比较有限,满足CNG车辆使用都有压力,更别提去制氢了。
甲醇重整制氢也标记哦常见,上世纪应用的很广泛,理论上用甲醇制氢确实能做到无排放,但是甲醇可不像江河水一样随处可取;制备甲醇主要是以一氧化碳、二氧化碳加压催化氢化法合成,使用的原料主要是天然气、石脑油、重油、煤炭和焦炭等,燃料是否清洁不能只看燃料本身,还要看获取或制造燃料是否存在污染,那么用甲醇制氢就不是理想选项了,车辆燃烧甲醇也没有什么意义。
工业副产品制氢主要是从焦炉煤气变压吸附工艺制氢,作为副产物仍旧要去看主体,主体本身不够清洁也就不用讨论氢气的规模化生产与应用了。水铝制氢技术近几年热度较高,但这种制氢的方式同样存在污染的问题,以目前的技术似乎就没有“清洁制氢”的理想方式,至此似乎决定了氢燃料普及无望,唯一的希望就是“电解水制氢”,然而看起来还是不靠谱。
2021年出现过“拉闸限电”,初衷不论是为了去垃圾产能还是对虚拟币行业进行打击,实际上也确实有用电紧张的问题;那么电解水制氢也就行不通了,电解水可以获得氢气,这是个很成熟的制氢方式,但是损耗也特别大。
氢燃料 汽车 不是“用氢气替代天然气”,以燃烧氢气产生热能的“燃气车”,本质实际是电动 汽车 。
氢气加注到氢燃料 汽车 的储氢罐里,增程模式中为消耗氢气发电,电流输入到电池组和电机以实现充电和驱动车辆行驶;这是典型的“增程式电动 汽车 ”,一公斤的氢在车辆上通过燃料电池发电,能转化出大约20kwh左右的电能。普通代步车高速巡航驾驶的电耗都在20kwh/100km以上,中大型车可以达到30kwh左右,也就是说“百公里氢耗可以达到1.0-2.0kg”。
但是用电解水制备一公斤的氢所消耗的电大约为60kwh左右,那么跳过“电制氢、氢转电”的流程,是不是等于这种氢燃料增程电车的实际耗电量达到了60-120kwh/100km左右了呢?实际上就是这样,这是在浪费有限的电能。
有些说法认为光伏发电、电解水制氢、氢燃料增程的方式可行,这看起来也有些天方夜谭;光伏发电的效率不高,按照 计算的话,1 的发电功率能有200瓦左右就算不错。假设一台车要加注5kg的氢,制氢需要耗电300kwh左右,想要在一小时内获得300kwh的电能,需要的是大约1500 的光伏发电板,发电板的成本是相当高的哦。
所以用这种方式制氢的成本也会非常之高,其次储氢罐的成本也非常高,目前每公斤高压储氢的成本在6000元上下,实制造成本极高、储备和运输成本极高,这样车即便量产也用不起,所以氢燃料 汽车 目前看来没有什么前景可言。
天和MCN发布,保留版权保护权利
我们单位就有负责制造氢气的车间,很危险!特爱容易爆炸,有一次爆炸,两百多公斤的阀门飞出好几公里!给附近老百姓的房子都震裂了。我们的技术就是烧煤然后产生一氧化碳在通过反应得到氢气,成本很高。氢气不易储存和运输,还爱爆炸!如果装到 汽车 上,稍微泄露一点,遇到一点打火就容易爆炸!
2022年,即将到来的北京冬奥会刮起了一阵氢能源的旋风。冬奥会的火炬传递,全部采用氢能源。在核心赛区,延庆和张家口投入了700余辆氢燃料大巴车,用于日常的交通运输。
这股“氢旋风”还刮到了A股市场上,氢能源概念红到发紫,刺激个股频频涨停——主营气体运输装备的京城股份,在去年12月份实现了14个涨停板,股价单月飙涨300%;主营高压容器的石重装实现了六连板;开发氢能电源产品的动力源,也在上月下旬连续三个涨停板。
这是氢能源在当下火热的缩影。与其他新能源相比,氢能源不仅储量大、无污染,还兼具零碳排的特性。每单位质量所蕴含的能量更是石油的3倍、煤炭的4-5倍。除此之外,氢能源应用场景广泛,氢燃料电池可以供给重载卡车、有轨电车、船舶、无人机、分布式发电等行业;绿色制氢还可消纳太阳能和风能发电间歇式、状态高低起伏不定的问题。
根据中国氢能联盟的预测,到2025和2035年,我国氢产业产值将分别达到1万亿和5万亿规模。
氢能前景固然广阔,但落地的困境却不容忽视。
在国外,日美的氢能源能占到各自能源总量的10%以上。日本拥有世界上数量最多加氢站,美国则拥有最低廉的氢能源价格,两国燃料电池应用均已经投入商业销售。
反观国内,当前氢能源的占比只有4%。据未来智库测算,2020年我国氢能总成本约为60-80元/kg,距离30元/kg的可商用价格相距甚远。
氢能源价格居高不下,还要追溯到制氢、储氢和运氢三大环节,它们使我国氢能发展面临着开局不利、技术瓶颈与规模化约束等重重难题,令“降成本”困难重重。
那么,氢能降成本难题究竟如何拆解?又如何破解?
01 点歪“ 科技 树”的制氢
中国的能源结构可以归纳为“富煤、贫油、少气”。这种特殊的结构令中国成了名副其实的“煤炭大国”——大量的化工产业平均每天要消耗掉95万吨的煤炭资源,同时产生巨量的化工副产物。
这些副产物中,焦炉气和氯碱等是极其便利的制氢原料。我国氢能源产业发展的初期,就依托化工生产中的副产物作为主供氢源的原材料,以节省制氢投资,降低成本。
借助原生资源的优势,短短几年间,我国就成为世界第一大产氢国。2020年中国氢气产量突破2500万吨,已连续多年位列世界第一。
但成也萧何,败也萧何。
依托化工副产物生产的氢能源,有个致命的问题——不能算作真正的“绿色能源”。
事实上按照制氢工艺的不同,氢能源大体分为 “灰氢”、“蓝氢”和“绿氢”三类。其中,借由对工业副产物进行提纯获取氢气,俗称“灰氢”。通过裂解煤炭或者天然气所得的氢气,便是“蓝氢”。“绿氢”则是通过可再生能源、电解水等方法,实现全程百分之百零碳排、零污染。
“灰氢”和“蓝氢”本质上仍然是用化石燃料提供能量,会产生大量的碳排放。相关研究表明,制造“蓝氢”所产生的碳足迹,比直接使用天然气或煤炭取暖高出20%,比使用柴油取暖高出约60%。而“灰氢”的污染还要高出18%-25%。纵使有碳捕捉与封存技术(CCS)降低碳排放,依旧是杯水车薪。
也就是说,要符合氢能源产业零碳排的核心理念,产业界只能期望于绿氢。
但中国的绿氢产能着实少得可怜。由于我国氢能源产业相较欧美日发展较晚,为了在短期内快速发展,我国优先选择了依托于优势资源煤炭发展氢产业,其代价便是,“绿氢”制备所需的基础建设的投资和相关技术迟迟未有发展。2020年,我国灰氢的占比超过60%,绿氢尚且不足1%。
一笔经济账可以看出绿氢与灰氢的成本差距:
在我国,电解水制氢的平均成本是38元/kg,其中电力成本要占到总成本的50%以上,而使用工业副产物制氢,平均成本仅仅只8-14元/kg。这意味着,工业电价要从当前的0.6kW·h对半折到0.3kW·h以下,绿氢才能在市场上具有竞争性。
但对标欧美日等国家,欧盟的绿氢的成本价低于14元/kg;美国的绿氢在12元/kg左右,而日本的绿氢成本固定在13.2元/kg。
如何让绿氢从奢侈品行列变成经济适用型,成为困扰中国氢能产业的一大难题。
而进一步拆分成本,造成绿氢高成本的两大因素分别是电力消耗量和架设电解槽费用。欧美给出的解答是政府引导+技术革新。
在欧盟,从2020起由政府牵头投资相继安装了6千兆瓦的可再生氢能电解槽,降低企业制造绿氢时电解槽的费用。
在技术上,欧盟摒弃采取工业用电电解水的模式,而使用PEM技术电解制氢。PEM技术的电解池结构紧凑、体积小,这使得其电解槽运行电流密度通常是碱性水电解槽的4倍以上,效率极高,平均每生产1立方米氢气可节省1千瓦时的电力。
想要让这个棵歪掉的“ 科技 树”回到正轨,就需要投入很高的时间成本和资金成本。
去年11月,中石化建成首座PEM氢气提纯设施,其阴极和阳极催化剂、双极板以及集电器等关键核心材料部件均实现国产化,制氢效率达85%以上。而这笔投资的门槛是数十亿,研发周期在两年以上。
宝丰能源也在斥巨资投入绿氢项目。其在互动平台上表示,2021年4月,耗时两年后,公司首批电解水制氢项目全部投产,预计年产2.4亿标方“绿氢”和1.2亿标方“绿氧”。据其公开披露数据,近两年来,宝丰能源在绿氢项目上已投入超过20亿元。
除了两家代表性头部企业以外,绝大多数中下游的企业,仍在生产灰氢。如何将点歪的灰氢 科技 树扭转回绿氢产业,必将需要长时间的产业引导。
02 被“氢脆”卡脖子的储氢
作为一种化学性质活泼的气体,氢气生产之后,需要用一种既安全又经济的方式储存起来。储氢不仅是令我国头疼的难题,而且在全世界,都没有很好的解决办法。
国内的主流方法是采取高压气态储氢。目前,我国储氢瓶的成本造价在27000元左右,同时配套设施的价格在15万元,对标美国,储氢瓶的价格也在22000元左右,略低于中国,但同样高昂。
高成本源于氢顽皮的特性,学术上称作“氢脆现象”。
所谓“氢脆”是指,氢气会在金属晶粒附近聚集起来,破坏金属的结构,让金属胀气变脆。氢气会在金属内累积成18.7兆帕的高压,这是地表气压187倍。更糟糕的是,氢脆一经产生,就消除不了。
氢脆在 历史 上引发过严重的事故。
1943年1月16日的晚上,俄勒冈州造船厂发出巨响,尚未交付的自由轮一下子断成了两半,这在当时引起了巨大的恐慌,众人都以为是纳粹的黑 科技 。
无独有偶,2013年,世界上最宽的桥,旧金山-奥克兰海湾大桥为即将到来的通车进行测试。然而仅仅2周,负责把桥面固定在水泥柱上的保险螺栓就出现了裂痕,96个保险螺栓里有30个坏掉了,使得这座大桥几乎成了废品。
为了缓解“氢脆”的困扰,全球想出了一种特殊的解决方法——低温液态储氢。将氢气压缩成液体,能大幅避开气态氢造成的安全隐患。
学界普遍认为,液氢储运技术是储氢技术发展的重要方向。
但目前,我国液氢储运技术相对落后,缺少大容量、低蒸发率的液氢存储设备的开发。仅有的一些研究,多聚焦在高压气态储氢方面。
例如,2020年,中科院宁波材料所使用高强高模碳纤维作为储氢瓶的内胆,大幅提升了储氢瓶性能。企业方面,京城股份投建了全亚洲最大的高压储氢瓶设计测试中心及生产线。
储氢成本的大山,路漫漫其修远兮。
03 “爹不疼妈不爱”的运氢
作为氢气“出厂”前的最后一步,运氢在整个氢能产业链中地位举足轻重。
然而长期以来,我国的氢气运输产业处于“爹不疼妈不爱”的境地,没有系统性的规划——几乎所有中央和地方层面的战略规划中,都提到了制氢和终端应用环节。
理论上,氢气运输产业分为短途和中长途两种。短途的运输可依赖长管拖车,中长距离的运输对成本敏感许多。其中一种经济的方式,是先将氢气转为高密度的液氢状态再进行运输。
液氢能适应陆运和海运的模式。在陆运上,液氢储罐最大容积可达到200立方米,是长管拖车模式的2倍。海运的液氢储罐最大容积可达到1000立方米,在欧洲和加拿大氢气运输中,就均采用液氢海运的模式。
如此重要的液氢在中国却产能极低。目前,液氢工厂仅有陕西兴平、海南文昌、中国航天 科技 集团有限公司第六研究院第101研究所和西昌卫星发射中心等,主要服务于航天发射, 总产能仅有4t/d, 最大的海南文昌液氢工厂产能也仅2t/d。目前, 中国民用液氢市场基本空白。
而对标欧美,美国是全球最大、最成熟的液氢生产和应用地域,拥有15座以上的液氢工厂, 全部是5t/d以上的中大规模,总产能达到375t/d。此外,亚洲有16座液氢工厂, 日本占了2/3。
另外一种是借由管道运输,但现实是,我国氢气管网严重不足,全国累计仅有100km输氢管道,且主要分布在环渤海湾、长江三角洲等地。在2016年的统计数据,全球共有4542km的氢气管道,其中美国有2608km的输氢管道, 欧洲有1598km的输氢管道。
目前,我国仅仅在《中国氢能产业基础设施发展蓝皮书》提到,期望在2030年建成1000m长的氢气运输管道。而对比国外,管道运输已经开始全面与上下游形成联动。
例如,德国在北莱茵至威斯特法伦州铺设的240km的氢气管道,在给用户供氢的同时这些氢气管道也为工业所用。德国Frankfurt的氢气管道直连加氢站与氯碱电解工厂,可以免去压缩机直接供氢。
总结来说,由于上层规划的缺失,我国氢能运输仍处于“地方割据”的局面,还未形成规模经济。
04 破题关键词:液氢
氢能源产业的相关的难题是多方面的,但抽丝剥茧,氢能源产业迫切需要解决的问题集中在存储和运输之上。
原理很简单,“绿氢”的生产技术可以逐步迭代,但氢气如果不能长期低成本地存储,生产再多的“绿氢”都是徒增消耗。
此外,氢气如果不能便捷运输,氢能的广泛应用就是无从谈起。对照电力行业,正是高压输电技术的成熟,电力才能在全国范围内大规模应用。
而储氢与运氢问题的源头,在于液氢。
无论是存储端的低温业态储氢技术,还是中长距离的液氢运输,都少不了大规模液氢的身影。因此,如何提升液氢产量、开发相关储运设备,是氢能应用降成本的关键。
欧美日氢能产业的发展也能佐证这一点。欧盟早《未来氢能和燃料电池展望总结报告》就提到液氢重要性,同时在液氢方面的投资也从不吝啬。2021年在法国,一个液氢厂的投资就超过1.5亿美元。
美国垄断了全球85%的液氢生产和应用,根据美国氢能分析中心的统计,在液氢的帮助下,美国的氢能源被大量用于石油化工行业和电子、冶金等行业,两大行业平均每年要消耗掉82000吨的液氢。
日本则在液氢加氢站方面走在了前列。液氢加氢站具有占地小,储量大的优势,甚至能完成制氢就发生在加氢站里。
目前,日本有建成142座,占全球加氢站总数的25%,依托于加氢站,日本燃料 汽车 投放使用全球领先,燃料 汽车 的商业化也是全球最好的。
所以,中国的液氢亟需从当前军用、航天领域,走向大规模民用环节。
思考欧美日液氢的发展历程,我们有许多借鉴之处,概括而言,包括三点:
一、政策引导,为相关工作提前铺好路。2021年5月,国家相关部门陆续出台了《氢能 汽车 用燃料液氢》、《液氢生产系统技术规范》和《液氢贮存和运输技术要求》三个文件,制定了三项国家标准,这将对液氢发展起到关键性引领作用。
二、龙头企业牵头,建成大规模氢液化系统。液氢生产工厂的建设成本高,必须由龙头企业率先投产,提高生产规模,才能有效降低单位成本。
三、系统整合相关资源,发挥产学研机制作用。例如,建立政府、研究机构和企业的氢能源产学研合作平台,将科研产品第一时间应用到实际生产当中。
05 结语
世界已进入双碳时代。国际氢能委员会预计,2050 年氢能源将占全球能源消耗总量的18%,催生年产值2.5万亿美元的产业。
世界各国对氢能源越发重视,欧美日各国氢能源产业的规划已经做到了2050年后,并且还在迭代更新;而在我国,自2021年氢能被列为“十四五”规划重点发展产业后,国家和各地政府迅速出台了400多项政策,规划了2025年之前的产业发展目标。
一场事关产业政策、技术竞技的产业争霸赛已经打响。
❼ 蔚来汽车如何降低成本
蔚来汽车不得不面对的几个问题:第一,签约换电站的汽车不多。即便是现在,全球新能源乘用车市场占有率依然不高放,而且有不少车主自己家或附近有充电桩,不需要投入高昂的换电费用。更重要的是各大车企之间电池技术不共享,由此导致电动汽车电池设计难以形成统一标准,这就意味着换电模式下电池很难在不同车型上使用,由此难以实现规模化运营而达到降低成本的目标。第二、换电站建设成本高。如果换电车辆数量不够,难以维持后期换电站的维护和继续推广。一个换电站最早期的成本在800万元,现在连站带电池接近500万元,这么重的资产投入,如果没有相应车辆匹配而变成闲置的话,就是很严重的问题。蔚来汽车虽然没有公布换电站成本,但应该不会比北汽新能源的便宜多少。这也注定了换电站不可能像加油站布局那么多。如果按500万一个换电站来计算,以蔚来汽车在ES8上市发布会上所讲到2020年在全国建设1100座换电站来计算,需要持续投入50亿元。以蔚来汽车目前的价格44.8—55.8万的平均价格50.3万来计算,需要卖约1万辆车才能达到的这个营业收入。当然这个还没有除去成本,如果除去各种成本,企业何时盈利真是个未知数。何况目前蔚来汽车已经亏损了100多亿美元。第三,换电成本并不低。车主每年免费高速换电12 次,再加上原本免费异地加电权限每年12次,每年高速公路免费换电的次数可以达到 24 次。看着很多,但对经常上高速的车主来讲根本不够用,超出部分每次180元或许只有这些土豪车主才能承受得起。第四,电池安全问题。不怕一万,就怕万一。由于电池是整车动力来源,频繁换电会让组装电池部件磨损及松动,一旦接触不良极容易导致动力中断及短路,进而引发车辆自燃甚至爆炸。这个责任如何划分?第五,贬值问题。新能源汽车一般都比燃油车保值率低,目前特斯拉三年的保值率在50%左右,国产纯电新能源汽车,三年后的保值率更低,甚至江淮IEV的保值率只有18.44%。如果选用租赁模式或换了旧电池,会不会加大蔚来汽车的贬值率?或因为蔚来汽车在江淮代工,贬值率会变得更低?第六,换电的管理和维护问题。