當前位置:首頁 » 石油礦藏 » 石油多少度分解
擴展閱讀
職工工資怎麼結轉成本 2024-04-27 07:46:54
資興旅遊資源有哪些 2024-04-27 07:42:09

石油多少度分解

發布時間: 2022-08-12 02:16:25

⑴ 石油形成的幾種說法

近日,一項新的研究認為,石油不是由死亡的植物和動物而是由簡單的古老岩石形成的。休斯頓一家石油勘探公司的傑·弗·肯尼說,石油是由地下100公里的無機碳和水在高溫和高壓下產生的碳氫化合物。他和俄羅斯的3名同事認為,所有的石油都是以這種方式形成的。但正統的石油地質學家不能接受「石油不能在淺表地層形成」的斷言。

通常人們認為,石油是來自於糜爛的有機物,是由微生物將動植物殘骸分解成的有機物沉積形成的。按現在教科書上的觀點,大多數石油是由埋藏在地下沉積層中的有機物經過幾百萬年在75~200攝氏度的溫度下形成的。微生物把某些埋在地下淺層的動植物殘骸分解成有機物,隨著地層深度的增加,溫度和壓力升高,沉積的有機物可以發生化學反應,這樣有機物逐漸裂解產生碳氫化合物。

而肯尼認為,石油來源於更深的地下,他在美國國家科學院院刊上著文說,在低壓下可能優先形成甲烷,而不是首先形成較重的石油碳氫化合物。只有在約3萬個大氣壓力下(相當於100公里深的地下的壓力)才能產生較重的、更穩定的碳氫化合物。這意味著天然石油肯定只能在不低於100公里的地下深處生成。

研究人員在實驗室中看到,將氧化鐵、大理石和水混合後在高壓下加熱到900攝氏度,可以產生重型碳氫化合物。化學家們並不否認這些實驗結果,石油地質學家承認有些石油是以這種方式形成的。美國地質勘探局的邁克·萊萬說,「對存在無機碳源沒有爭議」。但是,由於常見的商業性油田一般都位於地下500~700米處,而在10公里以下預計很少有石油和天然氣。因此,他對肯尼的「石油不可能是由淺層岩石中的有機物形成」的觀點持強烈異議。萊萬舉例說,「在石油中存在的微量化合物和地球表層原始岩石中的有機沉積物是一致的,實驗也證明了這種聯系,我們可以在實驗室中模擬天然石油由表層富含有機物的原始岩石產生。」

新墨西哥采礦和礦產資

源局的布賴恩·布里斯特更是氣憤地說,斷言「『所有的石油都來自高壓下的岩石「的理論,是對有機化學學科和石油地質學家幾十年的研究成果不負責任的輕視」。

肯尼的石油形成新理論也許還需要進一步探索。但即使有關深層石油的形成理論只是部分正確,也可能為開辟全新的石油勘探領域打開大門。

摘自《大眾科技報》

⑵ 石油怎樣分解出汽油柴油的

加熱達到沸點分離。
混合物中的各種烴,一般是含碳原子數越少的分子,沸點越低;含碳原子較多的分子,其沸點越高。當給石油混合物加熱時,低溫,低沸點的烴先氣化,經過冷凝分離出來;隨溫度的升高,較高沸點的烴再氣化,經過冷凝分離出來,不斷繼續加熱、氣化、冷凝,就可以把石油分成不同沸點范圍的蒸餾產物,這種方法叫石油的分餾。石油分餾出來的各種成分為石油的餾分(仍然是混合物),為了不使高溫下高沸點的烴受熱變化和炭化結焦,常採用低於常壓的條件下進行分餾,叫做減壓分餾。
石油分餾的產品:溶劑油(C5~C6 30~150℃)、汽油(C5~C11 220℃C以下)、煤油(C11~C16 180~310℃)、柴油(C15~C18 200~360℃)、凡士林(C16~C20 360℃以上)、石蠟(C20~C30360℃以上)、瀝青(C30~C40360℃以上)。

⑶ 油的最高溫度是多少度超過了會怎麼樣石油和食用油是一樣的嗎

食用油和石油肯定是不一樣的呀 食用油也就200多度吧
石油就難講了 畢竟石油含的物質太多了,很明顯汽油和柴油就不一樣,溫度高就汽化了,或者燃、爆了。。

⑷ 石油的分餾,50度到200度分餾出機油,200到300度分餾出煤油

石油常壓分餾產物:液化石油氣、汽油、煤油、柴油、重油。
減壓分餾過程和產物:重柴油、潤滑油、凡士林、石蠟、瀝青。
塑料不是石油分餾產物,而是以石油裂化生成的乙烯等為原料進一步加工得到的。
CPL是己內醯胺(CPL),即尼龍。它是以石油為原料做成的,當然會受到石油價格變化的影響。

⑸ 石油提煉汽油要取多少度的溜份

一般汽油是60-180度餾分,不過現在很少有直餾汽油的

⑹ 石油的物理性質

石油的化學成分將決定它的物理性質和經濟價值,而石油沒有固定的成分,因此也就沒有固定的物理常數。但通過對分布廣泛的石油大量相關資料的分析整理,還是能歸納出反映石油總特徵的物理性質或相關物理性質的變化范圍。了解這些性質對認識石油、進行石油地質研究和評價石油品質及經濟價值是很有用的。

( 一) 顏色

在透射光下石油顏色可以呈淡黃、褐黃、深褐、淡紅、棕、黑綠及黑等顏色。原油顏色的深淺主要取決於膠質、瀝青質的含量,其含量愈高,則顏色愈深。

( 二) 密度

石油與天然氣地質學

石油密度一般介於 0. 75 ~ 0. 98 之間。通常把密度大於 0. 90 的稱為重質石油,小於0. 90 的稱為輕質石油。世界各國的原油大多為輕質石油,重質石油居次要地位。石油密度最大的可達 1. 00 以上,這種石油用一般方法難於開采。

石油的密度主要取決於化學組成。就烴類而言,密度隨碳數增加而增大。碳數相同的烴類,烷烴密度小些,環烷烴居中,芳烴密度較大。

密度是單位體積物質的質量,一般用 g/ml 或 g/cm3表示。密度與物質本身的成分和體積變化相關。液體石油的體積,在常壓下隨溫度升高而增大。溫度每增加1 ℉,單位體積所增加的體積數稱為膨脹系數。它不是一個固定的常數,而是隨密度減小而增大 ( 表 1 - 4) 。壓力對石油的體積也有影響,隨壓力增大體積將因被壓縮而減小。壓力每增加 101325Pa,單位體積被壓縮的體積數稱為壓縮系數。壓縮系數也不是一個常數。

顯然,溫度和壓力是影響石油體積的兩個主要因素。考慮原油是氣、液、固三相物質的混合物,以液態烴為主體的石油中含有不同數量的溶解氣態烴、固態烴及非烴。實際上,在地下油氣藏中,溫度和壓力不僅影響石油的體積,同時還影響到石油本身的物質組成,從而影響其質量。一方面,溫度的增加有使溶解氣逸出液態石油的趨勢; 另一方面,壓力的增加,將使原油中溶解氣量增加。在地下油氣藏中,溫度、壓力同時增加,而壓力增加使溶解氣增加的效應遠大於溫度增加使溶解氣逸出的效應; 與此同時,溶解氣量增加引起體積增加的效應遠遠超過隨壓力增加而使體積減小的效應。因此出現壓力增加體積不是縮小而是增大,直至達到飽和壓力為止 ( 圖 1 -5) 。

表 1 -4 不同密度石油的膨脹系數

圖 1 -5 在有氣頂氣條件下石油體積隨壓力增大而變化的情況( 轉引自 A. I. Levorsen,1954)

由此可見,地下石油的密度不僅與溫度、壓力有關,還與溶解氣量有關,且後者才是影響石油密度的本質因素。溶解氣量增加則密度降低。地表與地下溫度、壓力條件不同,不僅影響石油體積,更主要的是由於溶解氣量的差異,導致石油物質組成的差異,實質上是改變了石油的質量。地下石油含有較多的溶解氣,這是地下石油密度比地表石油密度低的根本原因。

( 三) 黏度

黏度是反映流體流動難易程度的一個物理參數。黏度值實質上是反映流體流動時分子之間相對運動所引起內摩擦力的大小。黏度大則流動性差,反之則流動性好。石油黏度是制定石油開發方案、油井動態分析及石油儲運都必須考慮的重要參數。黏度分為動力黏度、運動黏度和相對黏度。

動力黏度又稱絕對黏度。在國際計量單位SI制中,單位為帕斯卡·秒(Pa·s)。其定義為:流體通過長度(L)為1m,橫截面積(F)為1m2,滲透率(K)為1μm2的介質,當壓差(ΔP)為1Pa,流量(Q)為1m3/s時,流體的黏度(η)為1Pa·s。其表達式為:

石油與天然氣地質學

1Pa·s相當於C.G.S制10P,1mPa·s=10-3Pa·s。在101325Pa,20℃時,水的動力黏度為1mP·s。不同溫度下的動力黏度用ηt表示。

動力黏度/密度,稱為運動黏度。其單位為m2/s,稱二次方米每秒。不同溫度下的運動黏度用νt表示。

相對黏度又稱恩氏黏度,是在恩氏黏度計中200mL原油與20℃時同體積的蒸餾水流出時間之比。常用Et表示。根據實驗室測定的Et值,可以通過查換算表獲得運動黏度,並計算出動力黏度。

石油地質學上通常所用的黏度多指動力黏度。石油黏度大小主要取決於其化學組成,如果小分子的烷烴、環烷烴含量高,黏度就低;而如果石蠟、膠質、瀝青質含量高,黏度就高。

石油黏度隨溫度升高、溶解氣量增加而降低。因此,地下石油的黏度常低於地表。在地下1500~1700m處,石油的黏度通常僅為地表的一半。如我國克拉瑪依的原油,在地下溫度為50℃時,η50=19.2mPa·s,在地表20℃時,η20=64.11mPa·s。

(四)溶解性

石油能溶於多種有機溶劑。如氯仿、四氯化碳、苯、醚等。石油是多種有機化合物的混合物,實際上各種化合物都可以看做有機溶劑,換言之,各成分之間具有互溶性。其中輕質組分對重質組分的溶解作用可能更明顯些,也更容易理解。有可能這種溶解作用正是重質組分得以實現運移的有效途徑。

石油在水中的溶解度一般很低,通常隨分子量的增加很快變小,但隨不同烴類化學性質的差異而有很大的差別。其中芳烴的溶解度最大,可達數百到上千微克/克;環烷烴次之,一般為(14~150)微克/克;烷烴最低,僅幾個到幾十微克/克。在碳數相同時,一般芳烴的溶解度大於鏈烷。如己烷、環己烷和苯分別為9.5mg/L、60mg/L和1750mg/L,差別是非常明顯的。苯和甲苯是溶解度最大的液態烴。

當壓力不變時,烴在水中的溶解度隨溫度升高而變大,芳烴更明顯,但其隨含鹽度和壓力的增大而變小(McAuliffe,1979)。當水中飽和CO2和烴氣時,石油的溶解度將明顯增加。

(五)凝固和液化

石油的凝固和液化溫度沒有固定的數值。在凝固和液化之間可以出現中間狀態。富含瀝青的石油在溫度降低時無明顯凝固現象。石油的凝固點與黏度和重質石蠟的含量有關,尤其與後者關系密切。富石蠟的石油在溫度下降到結蠟點時,即伴隨石蠟晶出而出現凝固現象;高黏度原油一般富含石蠟,10℃左右便會變成黏糊狀或固體狀;石油凝固點的高低與含蠟量及烷烴碳原子數具有正相關性。凝固點高的原油容易使井底及油管結蠟,這給採油增加困難。輕質石油凝固點很低,所以一般低凝固點的石油為優質石油。

(六)蒸發與揮發

蒸發和揮發都是指在常溫常壓下液體表面汽化的現象。二者可視為同義詞。蒸發側重於氣化現象本身,而揮發則是側重於表述這種現象的動態過程和結果。石油蒸發時輕組分優先逸出;而通常石油的揮發性即指其輕組分以氣體形式離開石油散發掉的現象和事實;其結果使石油的密度增大。

(七)熒光性

石油在紫外光照射下可產生熒光的特性稱為熒光性。石油中只有不飽和烴及其衍生物具有熒光性。這是因為它們能吸收紫外光中波長較短、能量較高的光子,隨後放出波長較長、能量較低的光子,產生熒光。飽和烴不發熒光。熒光性可能與存在雙鍵有關。

熒光色隨不飽和烴及含雙鍵的非烴濃度和分子量增加而加深。芳烴呈天藍色,膠質為黃色,瀝青質為褐色。利用石油具有熒光性,可以用紫外燈鑒定岩石中微量石油和瀝青類物質的存在。在有機溶劑中只要含有10-5瀝青類物質即可被發現。

(八)旋光性

大多數石油都具有旋光性,即石油能使偏振光的振動面旋轉一定角度的性能。石油的旋光角一般是幾分之一度到幾度之間。絕大多數石油的旋光角是使偏振面向右旋移而成,僅有少數為左旋。石油的旋光性主要是與組成石油的化合物結構上存在不對稱碳原子(又稱手征碳原子或手征中心)有關。而通常存在手征碳原子的甾、萜類化合物是典型的生物成因標志化合物。因此旋光性可以作為石油有機成因的重要證據之一。

(九)導電性

石油及其產品具有極高的電阻率,石油的電阻率為109~1016Ω·m,與高礦化度的油田水(電阻率為0.02~0.1Ω·m)和沉積岩(1~104Ω·m)相比,可視為無限大。石油及其產品都是非導體。

(十)熱值

石油作為重要的能源,其主要經濟價值就在於它的熱能。石油的熱值因石油的品質差別而有所差異,密度在0.7~0.8kg/L的原油為44.5~47MJ/kg;密度為0.8~0.9kg/L的原油為43~44.5MJ/kg;密度為0.9~0.95kg/L的原油為42~43MJ/kg。與煤比較(煤的熱值為22~32MJ/kg),大約1.5t煤的熱值才相當於1t石油的熱值。

⑺ 剛開采出來的石油溫度是多少

剛開采出來的石油跟井深有關,井深越大,溫度越高,一般2000-3000米深的井,溫度在60-80度居多。

⑻ 石油液化氣在什麼溫度(高溫/常溫/低溫)的情況下壓縮到鋼瓶里

石油液化氣的主要成份為丙烷、丙烯、丁烷、丁烯。
它們的臨界溫度分別為:
丙烷—96.9℃
丙烯—92.1℃
丁烷—135℃以上
丁烯—144℃以上
所以在常溫下加壓(大約0.8MPa左右)就可以液化灌入鋼瓶。
(數據引自《城市煤氣規劃參考資料》)
對某種氣體,在不超過某一溫度時,在一定壓力下可以變為液體,如高於這一溫度,在任何壓力下也不會液化,此時的溫度稱為該氣體的臨界溫度。氣體的臨界溫度越高,越容易液化。

⑼ 石油轉換汽油所需要的溫度,轉換柴油所需要的溫度

石油轉化為汽油范圍(又稱餾程)為30~205°C,密度為0.70~0.78克/厘米3,商品汽油按該油在汽缸中燃燒時抗爆震燃燒性能的優劣區分,標記為辛烷值70、80、90或更高
石油轉化為柴油范圍有180~370℃和350~410℃兩類。對石油及其加工產品,習慣上對沸點或沸點范圍低的稱為輕,相反成為重。故上述前者稱為輕柴油,後者稱為重柴油