當前位置:首頁 » 生產成本 » 噴射沉積法為什麼成本高
擴展閱讀
王者一天能積攢多少鑽石 2025-05-16 07:40:07

噴射沉積法為什麼成本高

發布時間: 2022-10-02 18:04:27

㈠ 硅鋁合金的基本工藝

1)熔煉鑄造法
熔煉鑄造法設備簡單、成本低及可實現大批量工業化生產,是合金材料最廣泛的制備方法。利用常規鑄造的高硅鋁合金,Si的分布極不均勻,加工時易產生裂紋,材料存在嚴重的成分偏析,晶粒粗大,力學性能差等局限性,難以進行機械加工等後續處理。隨著合金中硅含量的提高,問題更為突出,所以常規鑄造很難制備高硅鋁合金材料。
2)浸滲法
浸滲法分為壓力浸滲法和無壓浸滲法。壓力浸滲法是通過機械加壓或壓縮氣體加壓,使得基體金屬熔體浸入增強體間隙,可以解決增強材料和金屬液不潤濕而浸滲不完全等問題,但由於加壓系統相對復雜,故限制其應用發展
3)粉末冶金
粉末冶金法的主要工藝是使一定比例的鋁粉和硅粉以及粘合劑均勻分散,通過干壓、注射等方法使粉末混合成型,最後在保護氣氛下燒結形成較為緻密的材料。該法解決了硅顆粒與鋁基體潤濕性不好,硅顆粒難以加入熔體的問題,並且材料可以一次成形,少切削加工,克服了金屬基復合材料難以加工的缺點。但是這種方法工藝復雜,難以進行精確控制,壓型不緻密,成本高。
4)真空熱壓法
真空熱壓法是指加壓成型和加壓燒結同時進行的一種燒結工藝, 其優點是: ①粉末容易塑性流動和緻密化; ②燒結溫度和燒結時間短; ③緻密度高。一般工藝為: 在真空條件下, 將粉末裝在模腔內, 在加壓的同時使粉末加熱, 經過較短時間的加壓形成緻密均勻的材料。但是由於自身工序復雜,可操作性差,限制了該技術在高硅鋁合金制備中的應用。
5)急速冷卻/噴射沉積
急速冷卻/噴射沉積技術是為了克服工序復雜,氧化嚴重等問題,與粉末冶金等技術相抗衡而發展起來的一種快速凝固技術。由於這種工藝具有其它工藝無法比擬的優勢,近年來發展迅速。急速冷卻/噴射沉積具有以下優點 :1)無宏觀偏析;2)細小而均勻的等軸晶顯微組織;3)細小的初生沉澱相;4)氧含量低;5)熱加工性能得到改善。 ⑴ 亞共晶硅鋁合金其中含有 9%~12%的硅。
⑵ 共晶硅鋁合金含 11%~13%的硅。
⑶ 過共晶硅鋁合金硅含量在 12%以上,主要是在 15%~20%范圍。
(4)硅含量在22%以上的,被稱作高硅鋁合金,其中以25%-70%為主,國際上硅含量最高可達80%。

㈡ 目前金屬基復合材料的制備工藝主要有哪些

(一)粉末冶金復合法
粉末冶金復合法基本原理與常規的粉末冶金法相同,包括燒結成形法、燒結制坯加塑法加工成形法等適合於分散強化型復合材料(顆粒強化或纖維強化型復合材料)的制備與成型。粉末冶金復合法的工藝主要優點是:基體金屬或合金的成分可自由選擇,基體金屬與強化顆粒之間不易發生反應;可自由選擇強化顆粒的種類、尺寸,還可多種顆粒強化;強化顆粒添加量的范圍大;較容易實現顆粒均勻化。缺點是:工藝復雜,成本高;製品形狀、尺寸受限制;微細強化顆粒的均勻分散困難;顆粒與基體的界面不如鑄造復合材料等。
(二)鑄造凝固成型法
鑄造凝固成型法是在基體金屬處於熔融狀態下進行復合。主要方法有攪拌鑄造法、液相滲和法和共噴射沉積法等。鑄造凝固成型鑄造復合材料具有工藝簡單化、製品質量好等特點,工業應用較廣泛。
1、原生鑄造復合法
原生鑄造復合法(也稱液相接觸反應合成技術Liquid Contact Reaction:LCR)是將生產強化顆粒的原料加到熔融基體金屬中,利用高溫下的化學反應強化相,然後通過澆鑄成形。這種工藝的特點是顆粒與基體材料之間的結合狀態良好,顆粒細小(0.25~1.5μm),均勻彌散,含量可高達40%,故能獲得高性能復合材料。常用的元素粉末有鈦、碳、硼等,化合物粉末有Al2O3、TiO2、B2O3等。該方法可用於制備A1基、Mg基、Cu基、Ti基、Fe基、Ni基復合材料,強化相可以是硼化物、碳化物、氮化物等。
2、攪拌鑄造法
攪拌鑄造法也稱摻和鑄造法等,是在熔化金屬中加入陶瓷顆粒,經均勻攪拌後澆入鑄模中獲得製品或二次加工坯料,此法易於實現能大批量生成,成本較低。該方法在鋁基復合材料的制備方面應用較廣,但其主要缺點是基體金屬與強化顆粒的組合受限制。原因有兩方面:①強化顆粒與熔體基本金屬之間容易產生化學反應;②強化顆粒不易均勻分散在鋁合金一類的合金熔體中,這是由於陶瓷顆粒與鋁合金的潤滑性較差,另一個問題是陶瓷顆粒容易與溶質原子一起在枝晶間產生偏析。
3、半固態復合鑄造法
半固態復合鑄造法是從半固態鑄造法發展而來的。通常金屬凝固時,初生晶以枝晶方式長大,固相率達0.2%左右時枝晶就形成連續網路骨架,失去宏觀流動性。如果在液態金屬從液相到固相冷卻過程中進行強烈攪拌則使樹枝晶網路骨架被打碎而保留分散的顆粒狀組織形態,懸浮於剩餘液相中,這種顆粒狀非枝晶的微組織在固相率達0.5%~0.6%仍具有一定的流變性。液固相共存的半固態合金因具有流變性,可以進行流變鑄造;半固態漿液同時具有觸變性,可將流變鑄錠重新加熱到固、液相變點軟化,由於壓鑄時澆口處及型壁的剪切作用,可恢復流變性而充滿鑄型。強化顆粒或短纖維強化材料加入到受強烈攪拌的半固態合金中,由於半固態漿液球狀碎晶粒對添加顆粒的分散和捕捉作用,既防止顆粒的凝聚和偏析,又使顆粒在漿液中均勻分布,改善了潤濕性並促進界面的結合。
4、含浸凝固法(MI技術)
含浸凝固法是一種將預先制備的含有較高孔隙率的強化相成形體含浸於熔融基體金屬之中,讓基體金屬浸透預成型體後,使其凝固以制備復合材料的方法。有加壓含浸和非加壓含浸兩種方法。含浸法適合於強化相與熔融基體金屬之間潤濕性很差的復合材料的制備。強化相含量可高達30%~80%;強化相與熔融金屬之間的反應得到抑止,不易產生偏折。但用顆粒作強化相時,預成形體的制備較困難,通常採用晶須、短纖維制備預成形體。熔體金屬不易浸透至預成形體的內部,大尺寸復合材料的制備較困難。
5、離心鑄造法
廣泛應用於空心件鑄造成形的離心鑄造法,可以通過兩次鑄造成型法成形雙金屬層狀復合材料,此方法簡單,具有成本低、鑄件緻密度高等優點,但是界面質量不易控制,難以形成連續長尺寸的復合材料。
6、加壓凝固鑄造法
該法是將金屬液澆注鑄型後,加壓使金屬液在壓力下凝固。金屬從液態到凝固均處於高壓下,故能充分浸滲,補縮並防止產生氣孔,得到緻密鑄件。鑄、鍛相結合的方法又稱擠壓鑄造、液態模鍛、鍛鑄法等。加壓凝固鑄造法可制備較復雜的MMCs零件,亦可局部增強。由於復合材料易在熔融狀態下壓力復合,故結合十分牢固,可獲得力學性能很高的零件。這種高溫下製成的復合坯,二次成型比較方便,可進行各種熱處理,達到對材料的多種要求。
7、熱浸鍍與反向凝固法
熱浸鍍與反向凝固法都是用來制備連續長尺寸包覆材料的方法。熱浸鍍主要用於線材的連續鍍層,主要控制通過鍍層區的長度和芯線通過該區的速度等。反向凝固法是利用薄帶作為母帶,以一定的拉速穿過反向凝固器,由於母帶的速度遠遠低於熔融金屬的速度,在母帶的表面附近形成足夠大的過冷度,熔融金屬以母帶表面開始凝固生長,配置在反向凝固器上方的一對軋輥,同時起到拉坯平整和焊合的作用。
8、真空鑄造法
真空鑄造法是先將連續纖維纏繞在繞線機上,用聚甲丙烯酸等能分解的有機高分子化合物方法製成半固化帶,把預成型體放入鑄型中,加熱到500℃使有機高分子分解。鑄型的一端浸入基體金屬液,另一端抽真空,將金屬液吸入型腔浸透纖維。
(三)噴射成形法
噴射成形又稱噴射沉積(Spray Forming),是用惰性氣體將金屬霧化成微小的液滴,並使之向一定方向噴射,在噴射途中與另一路由惰性氣體送出的增強微細顆粒會合,共同噴射沉積在有水冷襯底的平台上,凝固成復合材料。凝固的過程比較復雜,與金屬的霧化情況、沉積凝固條件或增強體的送入角有關,過早凝固不能復合,過遲的凝固則使增強體發生上浮下沉而分布不勻。這種方法的優點是工藝快速,金屬大范圍偏析和晶粒粗化可以得到抑制,避免復合材料發生界面反應,增強體分布均勻。缺點是出現原材料被氣流帶走和沉積在效應器壁上等現象而損失較大,還有復合材料氣孔率以及容易出現的疏鬆。利用噴射成形原理制備工藝有添加法(inert spray form-ing)和反應法(reactive spray forming)兩種。Osprey Metals研究的Osprey工藝是噴射成形法的代表,其強化顆粒與熔融金屬接觸時間短,界面反應得以有效抑制。反應噴射沉積法是使強化陶瓷顆粒在金屬霧或基體中自動生成的方法。
(四)疊層復合法
疊層復合法是先將不同金屬板用擴散結合方法復合,然後採用離子濺射或分子束外延方法交替地將不同金屬或金屬與陶瓷薄層疊合在一起構成金屬基復合材料。這種復合材料性能很好,但工藝復雜難以實用化。目前這種材料的應用尚不廣泛,過去主要少量應用或試用於航空、航天及其它軍用設備上,現在正努力向民用方向轉移,特別是在汽車工業上有很好的發展前景。
(五)原位生成復合法
原位生成復合法也稱反應合成技術,金屬基復合材料的反應合成法是指藉助化學反應,在一定條件下在基體金屬內原位生成一種或幾種熱力學穩定的增強相的一種復合方法。這種增強相一般為具有高硬度、高彈性模量和高溫強度的陶瓷顆粒,即氧化物、碳化物、氯化物、硼化物、甚至硅化物,它們往往與傳統的金屬材料,如Al、Mg、Ti、Fe、Cu等金屬及其合金,或(NiTi)(、AlTi)等金屬間化合物復合,從而得到具有優良性能的結構材料或功能材料。
金屬基復合材料的原位復合工藝基本上能克服其它工藝中常出現的一系列問題,如基體與增強體浸潤不良、界面反應產生脆性、增強體分布不均勻、對微小的(亞微米和納米級)增強體極難進行復合等。它作為一種具有突破性的新工藝方法而受到普遍的重視,其中包括直接氧化法、自蔓延法和原位共晶生長法等。
1、直接氧化(DIMON)法
直接氧化法是由氧化性氣體在一定工藝條件下使金屬合金液直接氧化形成復合材料。通常直接氧化法的溫度比較高,添加適量的合金元素如Mg、Si等,可使反應速度加快。這類復合材料的強度、韌性取決於形成粒子的狀態和最終顯微組織形態。由於形成的增強體可以通過合金化及其反應熱力學進行判斷,因此可以通過合金化、爐內氣氛的控制來製得不同類型增強體的復合材料。
2、放熱彌散(XD)法
放熱彌散復合技術(Exothermic Dispersion)的基本原理是將增強相反應物料與金屬基粉末按一定的比例均勻混合,冷壓或熱壓成型,製成坯塊,以一定的加熱速率加熱,在一定的溫度下(通常是高於基體的熔點而低於增強相的熔點)保溫,使增強相各組分之間進行放熱化學反應,生成增強相。增強相尺寸細小,呈彌散分布。XD技術具有很多優點:①可合成的增強相種類多,包括硼化物、碳化物、硅化物等;②增強相粒子的體積百分比可以通過控制增強相組分物料的比例和含量加以控制;③增強相粒子的大小可以通過調節加熱溫度加以控制;④可以制備各種MMC;⑤由於反應是在融熔狀態下進行,可以進一步近終形成型。XD技術是合成顆粒增強金屬基及金屬間化合物基復合材料的最有效的工藝之一。但用XD工藝製成的產品存在著較大孔隙度的問題,目前一般採用在反應過程中直接壓實來提高緻密度。
3、 SHS-鑄滲法
SHS-鑄滲法是將金屬基復合材料的自蔓延高溫合成技術(Self-Propagating High Temperature Synthesis)和液態鑄造法結合起來的一種新技術,包括增強顆粒的原位合成和鑄造成型兩個過程。當前,SHS-鑄滲法是有競爭力的反應合成工藝之一,但過程式控制制非常困難。其典型工藝為:利用合金熔體的高溫引燃鑄型中的固體SHS系,通過控制反應物和生成物的位置,在鑄件表面形成復合塗層,它可使SHS材料合成與緻密化、鑄件的成形與表面塗層的制備同時完成。
4、反應噴射沉積技術(RSD)
反應噴射沉積工藝(Reactive Spray Deposition)生成陶瓷顆粒的反應有氣—液反應、液—液反應、固—液反應和加鹽反應等多種類型。它綜合了快速凝固及粉末冶金的優點,並克服了噴射共沉積工藝中存在的如顆粒與基體接近機械結合、增強相體積分數不能太高等缺點,成為目前金屬基復合材料研究的重要方向之一。反應噴射沉積工藝過程為:金屬液被霧化前噴入高活性的固體顆粒發生液固反應,導致噴入的顆粒在霧化過程中溶解並與基體中的一種或多種元素反應形成穩定的彌散相,控制噴霧的冷卻速率以及隨後坯件的冷卻速率可以控制彌散相的尺寸。

㈢ 簡述熱噴塗技術的原理,種類和技術特點以及主要的應用領域

1
熱噴塗技術概述
眾所周知, 除少數貴金屬外,金屬材料會與周圍介質發生化學反應和電
化學反應而遭受腐蝕. 此外,金屬表面受各種機械作用而引起的磨損也極為
嚴重.大量的金屬構件因腐蝕和磨損而失效, 造成極大的浪費和損失. 據一些
工業發達國家統計, 每年鋼材因腐蝕和磨損而造成的損失約占鋼材總產量的
10 %, 損失金額約占國民經濟總產值的2 - 4 %. 如果將因金屬腐蝕和磨損
而造成的停工、停產和相應引起的工傷、失火、爆炸事故等損失統計在內的
話, 其數值更加驚人. 因此, 發展金屬表面防護和強化技術, 是各國普遍關
心的重大課題.
隨著尖端科學和現代工業的發展,各工業部門越來越多地要求機械設備
能在高參數(高溫、高壓、高速度和高度自動化)和惡劣的工況條件(如嚴重的
磨損和腐蝕)下長期穩定的運行.因此,對材料的性能也提出更高要求. 採用
高性能的高級材料製造整體設備及零件以獲得表面防護和強化的效果, 顯然
是不經濟的,有時甚至是不可能的。所以, 研究和發展材料的表面處理技術就
具有重大的技術和經濟意義。而表面處理技術也在這種需求的推動下獲得了
飛速的發展和提高.
熱噴塗技術就是這種表面防護和強化的技術之一, 是表面工程中一門重
要的學科. 所謂熱噴塗, 就是利用某種熱源, 如電弧、等離子弧、燃燒火焰
等將粉末狀或絲狀的金屬和非金 屬塗層材料加熱到熔融或半熔融狀態, 然
後藉助焰流本身的動力或外加的高速氣流霧化並以一定的速度噴射到經過預
處理的基體材料表面, 與基體材料結合而形成具有各種功能的表面覆蓋塗層
的一種技術。
一. 熱噴塗技術的分類
根據熱源的種類熱噴塗技術主要分類為:
熱 源 溫 度 ℃ 噴 塗 方 法
粉末火焰噴塗(焊)
火 絲材火焰噴塗
約3000 陶瓷棒材火焰噴塗
焰 高速火焰噴塗(HVOF)
爆炸噴塗(D - GUN)
電 弧 約5000 電弧噴塗
大氣等離子噴塗(APS)
等離子弧 10000 以上 低壓等離子噴塗(LPPS)
水穩等離子噴塗
2
各種熱噴塗方法的熱源溫度和流速
二. 熱噴塗設備
雖然因熱噴塗的方法不同其設備也各有差異, 但依據熱噴塗技術的原理,
其設備都主要由噴槍、熱源、塗層材料供給裝置以及控制系統和冷卻系統組
成.下圖為等離子噴塗的設備配置圖.
三. 熱噴塗工藝
熱噴工藝過程如下:
工件表面預處理 → 工件預熱 → 噴塗 → 塗層後處理
1. 表面預處理
為了使塗層與基體材料很好地結合,基材表面必須清潔及粗糙, 凈化和
粗化表面的方法很多, 方法的選擇要根據塗層的設計要求及基材的材質、形
狀、厚薄、表面原始狀況以及施工條件等因素而定.
凈化處理的目的是除去工件表面的所有污垢,如氧化皮、油漬、油漆及
低速火焰噴塗
250 500 750 1000 m/s
2500 5000 7500 10000 oC
0
0
電弧噴塗
等離子噴塗
高速火焰噴塗
溫度
速度
3
其他污物, 關鍵是除去工件表面和滲入其中的油脂. 凈化處理的方法有, 溶
劑清洗法、蒸汽清洗法、鹼洗法及加熱脫脂法等.
粗化處理的目的是增加塗層與基材間的接觸面, 增大塗層與基材的機械
咬合力, 使凈化處理過的表面更加活化,以提高塗層與基材的結合強度. 同時
基材表面粗化還改變塗層中的殘余應力分布,對提高塗層的結合強度也是有
利的. 粗化處理的方法有噴砂、機械加工法(如車螺紋、滾花)、電拉毛等。
其中噴砂處理是最常用的粗化處理方法,常用的噴砂介質有氧化鋁、碳化硅
和冷硬鑄鐵等。噴砂時,噴砂介質的種類和粒度、噴砂時風壓的大小等條件
必須根據工件材質的硬度、工件的形狀和尺寸等進行合理的選擇。對於各種
金屬基體,推薦採用的砂粒粒度約為16-60 號砂,粗砂用於堅固件和重型件
的噴砂,噴砂壓力為0.5-0.7Mpa,薄工件易於變形,噴砂壓力為0.3-0.4
Mpa。特別值得注意的一點是,用於噴砂的壓縮空氣一定要是無水無油的,
否則會嚴重影響塗層的質量。噴塗前工件表面的粗化程度對大多數金屬材料
來說2.5-13 μmRa 就夠了。隨著表面粗糙度的增加塗層與基體材料的結合
增強,但是當表面粗糙度超過10μmRa 後,塗層結合強度的提高程度便會減
低。
對於一些與基材粘結不好的塗層材料, 還應選擇一種與基體材料粘結好
的材料噴塗一層過渡層,稱為粘結底層,常用作粘結底層的材料有Mo、NiAl、
NiCr 及鋁青銅等.粘結底層的厚度一般為0.08-0.18μm。
2.預熱
預熱的目的是為了消除工件表面的水分和濕氣, 提高噴塗粒子與工件接
觸時的界面溫度, 以提高塗層與基體的結合強度;減少因基材與塗層材料的
熱膨脹差異造成的應力而導致的塗層開裂. 預熱溫度取決於工件的大小、形
狀和材質,以及基材和塗層材料的熱膨脹系數等因素,一般情況下預熱溫度控
制在60 - 120 ℃之間.
3.噴塗
採用何種噴塗方法進行噴塗主要取決於選用的噴塗材料、工件的工況
及對塗層質量的要求。例如,如果是陶瓷塗層,則最好選用等離子噴塗;如
果是碳化物金屬陶瓷塗層則最好採用高速火焰噴塗;若是噴塗塑料則只能采
用火焰噴塗;而若要在戶外進行大面積防腐工程的噴塗的話,那就非靈活高
效的電弧噴塗或絲材火焰噴塗莫屬了。總之,噴塗方法的選擇一般來說是多
樣的,但對某種應用來說總有一種方法是最好的。
預處理好的工件要在盡可能短的時間內進行噴塗,噴塗參數要根據塗層
材料、噴槍性能和工件的具體情況而定, 優化的噴塗條件可以提高噴塗效率、
並獲得緻密度高、結合強度高的高質量塗層.
4.塗層後處理
噴塗所得塗層有時不能直接使用, 必須進行一系列的後處理.
4
用於防腐蝕的塗層,為了防止腐蝕介質透過塗層的孔隙到達基材引起基
材的腐蝕,必須對塗層進行封孔處理. 用作封孔劑的材料很多,有石臘、環氧
樹脂、硅樹脂等有機材料及氧 化物等無機材料, 如何選擇合適的封孔劑, 要
根據工件的工作介質、環境、溫度及成本等多種因素進行考慮.
對於承受高應力載荷或沖擊磨損的工件,為了提高塗層的結合強度,要對
噴塗層進行重熔處理(如火焰重熔、感應重熔、激光重熔以及熱等靜壓等), 使
多孔的且與基體僅以機械結合的塗層變為與基材呈冶金結合的緻密塗層.
有尺寸精度要求的,要對塗層進行機械加工. 由於噴塗塗層具有與一般的
金屬及陶瓷材料不同的特點, 如塗層有微孔,不利於散熱;塗層本身的強度較
低,不能承受很大的切削力;塗層中有很多硬的質點,對刀具的磨損很快等,
因而形成了噴塗塗層不同於一般材料的難於加工的特點.所以必須選用合理
的加工方法和相應的工藝參數才能保證噴塗層機械加工的順利進行和保證達
到所要求的尺寸精度.
四. 熱噴塗技術的特點
從熱噴塗技術的原理及工藝過程分析,熱噴塗技術具有以下一些特點.
1. 由於熱源的溫度范圍很寬,因而可噴塗的塗層材料幾乎包括所有固態
工程材料,如金屬、合金、陶瓷、金屬陶瓷、塑料以及由它們組成的復合物等.
因而能賦予基體以各種功能(如耐磨、耐蝕、耐高溫、抗氧化、絕緣、隔熱、
生物相容、紅外吸收等)的表面.
2. 噴塗過程中基體表面受熱的程度較小而且可以控制,因此可以在各種
材料上進行噴塗(如金屬、陶瓷、玻璃、布疋、紙張、塑料等),並且對基材的
組織和性能幾乎沒有影響,工件變形也小.
3.設備簡單、操作靈活, 既可對大型構件進行大面積噴塗,也可在指定的
局部進行噴塗;既可在工廠室內進行噴塗也可在室外現場進行施工.
4.噴塗操作的程序較少,施工時間較短,效率高,比較經濟.
隨著熱噴塗應用要求的提高和領域的擴大, 特別是噴塗技術本身的進步,
如噴塗設備的日益高能和精良,塗層材料品種的逐漸增多、性能逐漸提高, 熱
噴塗技術近十年來獲得了飛速的發展, 不但應用領域大為擴展, 而且該技術
已由早期的制備一般的防護塗層發展到制備各種功能塗層;由單個工件的維
修發展到大批的產品製造;由單一的塗層制備發展到包括產品失效分析、表
面預處理、 塗層材料和設備的研製、選擇, 塗層系統設計和塗層後加工在內
的噴塗系統工程;成為材料表面科學領域中一個十分活躍的學科。並且在現
代工業中逐漸形成 象鑄、鍛、焊和熱處理那樣的獨立的材料加工技術。成為
工業部門節約貴重材料、節約能源、提高產品質量、延長產品使用壽命、降
低成本、提高工效的重要的工藝手段, 在國民經濟的各個領域內得到越來越
廣泛的應用。
5
五. 各種熱噴塗方法概述
1. 氧乙炔火焰噴塗(焊)
是最早的一種噴塗方法。它是利用氧和乙炔的燃燒火焰將粉末狀或絲
狀、棒狀的塗層材料加熱到熔融或半熔融狀態後噴向基體表面而形成塗層的
一種方法。它具有設備簡單、工藝成熟、操作靈活、投資少、見效快的特點。
它可制備各種金屬、合金、陶瓷及塑料塗層, 是目前國內最常用的噴塗方法
之一。但是, 由該方法制備的塗層孔隙度較大, 與基體材料的結合強度也較
低。但是, 對於自熔合金而言,如若採用燃燒火焰將其一次噴融或將噴塗層進
行 二次重熔(有火焰重熔、感應重熔和爐熔等)的方法則稱為噴焊, 噴焊塗層
由於與基體材料呈冶金結合狀態, 因而與基體材料的結合強度大大提高,可
以應用於沖擊大、負荷重的工況下,如連續鑄造拉矯輥、熱軋矯直輥表面採用
鎳基自熔合金噴焊塗層進行強化, 均獲得了十分良好的耐蝕、耐磨和抗熱疲
勞的強化效果.
2. 爆炸噴塗(D - GUN)
本方法是利用氧和可燃性氣體的混合氣,經點火後在噴槍中爆炸, 利用
脈沖式氣體爆炸的能量, 將被噴塗的粉末材料加熱、加速轟擊到工件表面而
形成塗層。氣體燃燒和爆炸的結果可產生超音速高能氣流, 爆炸波的傳播速
度高達3000 m / s, 其中心溫度可達3450℃, 粉末粒子的飛行速度可達1200
m / s。因而爆炸噴塗層塗層緻密, 與基體的結合強度高, 最高可達24 kg /
mm2. 該法的缺點是噪音大, 而且爆炸是不連續的, 因而效率較低。爆炸噴塗
是20 世紀50 年代由美國聯合碳化物公司發明,但問世後許多年都由該公司所
壟斷, 不對外出售技術和設備, 只在其服務公司內為用戶進行噴塗加工, 主
要噴塗陶瓷和金屬陶瓷, 進行航空發動機的維修.
3. 高速火焰噴塗(HVOF)
高速火焰噴塗(或稱超音速火焰噴塗)是20 世紀80 年代出現的一種高
能噴塗方法, 它的開發是繼等離子噴塗之後熱噴塗工業最具創造性的進展。
雖然高速火焰噴塗方法可噴塗的材料很多, 但由於其火焰含氧少溫度適中,
焰流速度很高,能有效地防止粉末塗層材料的氧化和分解, 故特別適合碳化
物類塗層的噴塗。該設備發展到第三代, 性能有了大幅度的提高, 例如
JP-5000、DJ - 2700 等設備其室壓達到8 -12 bar,功率達到100 -120 kw, 噴
塗效率可達10 kg / h ( WC -Co), 塗層厚度可達數mm, 塗層性能已能達到
爆炸噴塗的水平。在許多工業部門獲得廣泛的應用.如航空發動中的耐磨塗
層、造紙機械用的鏡面塗層等.近年來,由於電鍍鉻工藝的環境污染問題,電鍍
鉻工業在一些工業發達國家受到嚴格的限制,並逐漸被淘汰, 採用高速火焰
噴塗塗層代替鍍鉻層的應用越來越受到工業界的關注和重視.
4. 電弧噴塗
電弧噴塗是在兩根絲狀的金屬材料之間產生電弧, 電弧產生的熱使金屬
6
絲熔化, 熔化部分由壓縮空氣氣流霧化並噴向基體表面而形成塗層。該工藝
也具有設備一次投資少, 使用方便、效率高等特點, 但噴塗材料必須是導電
的金屬及合金絲, 因而其應用受到了一定的限制, 但它的高效率使得它在噴
塗Al、Zn 及不銹鋼等大面積防腐應用方面成為首選工藝。
5. 等離子噴塗(APS)
當某種氣體如氮、氬、氫及氦等通過一壓縮電弧時產生電離而形成電中
性的等離子體(是物質除氣、液、固態外的第四態).等離子弧的能量集中溫度
很高, 其焰流的溫度在萬度以上, 可以將所有固態工程材料熔化. 以這種高
溫等離子體作熱源將塗層材料熔化制備塗層的工藝就是等離子噴塗。國內外
已有數百種材料用於等離子噴塗, 是應用較普遍的噴塗方法。
等離子噴塗塗層的緻密度及與基體材料的結合強度均比火焰噴塗塗層
和電弧噴塗塗層的高,而且也是制備陶瓷塗層的最佳工藝.
等離子技術中引人注目之處是設備的大容量化和高輸出功率化, 目前氣
體等離子噴塗設備已有200 kw 的設備出售, 不但大大提高了噴塗效率, 也
使塗層質量更為改善, 因而可以實現大面積高質量塗層的連續生產, 如柔性
印刷用網紋輥鏡面陶瓷層以及高分子薄膜電暈處理用陶瓷絕緣塗層的制備
等.
6. 低壓等離子噴塗(LPPS)
等離子噴塗可以在不同氣氛和不同壓力下實現, 當噴塗作業在氣氛可控
的負壓密封容器內進行時就成為低壓等離子噴塗。低壓等離子噴塗的優點是:
焰流速度高、粒子動能大,形成的塗層緻密、結合強度高; 低壓環境下可對
基體進行預熱和進行反向轉移弧電清理, 進一步提高塗層與基體的結合強
度;由於沒有大氣污染, 塗層材料不氧化成分變化小, 因而可以進行活性金
屬如Ti、Ta、Nb 等的噴塗;還可使形成等離子體的氣體在噴塗過程中與塗層
材料進行反應,形成特殊化合物塗層。由於具有以上特點, 低壓等離子噴塗主
要用於制備航空工業等高科技領域的塗層, 如飛機渦輪發動機葉片抗高溫氧
化和熱腐蝕的MCrAlY(M = Co、Ni、Fe)塗層,以及制備人體人工植入體用生
物功能塗層.
7. 水穩等離子噴塗
水穩等離子噴塗是一種高功率和高速等離子噴塗方法, 它是在由高速旋
轉的水形成的隧道里產生的弧中,水蒸氣分解形成O2 和 H2 的等離子工作氣的
噴塗方法。與氣體等離子噴塗方法相比, 其焰流溫度更高體積更大更長, 特
別是能量更高, 因而特別適合於高熔點氧化物陶瓷的大量噴塗。其主要優點
是:輸出功率大(150 -200 kw), 塗層結合強度是氣體等離子噴塗塗層的2 -
3 倍, 並且塗層緻密, 其硬度、耐磨性和耐熱沖擊性能也有很大提高; 噴塗
效率高, 噴塗能力最大為50 kg / h, 塗層厚度可達20 mm , 而且可以噴塗
分散性較大的粉末, 因而特別適合陶瓷部件的噴塗成形; 只需水和空氣, 運
行成本低, 比其他噴塗方法經濟。 本方法的缺點是焰流為氧化焰, 不適噴
7
塗容易氧化的材料。此外, 噴塗槍體積較大, 比較笨重.
六. 熱噴塗原理和塗層性能
♦熱噴塗原理
1. 熱噴塗塗層的形成
熱噴塗時,塗層材料的粒子被熱源加熱到熔融態或高塑性狀態,在外
加氣體或焰流本身的推力下,霧化並高速噴射向基體表面,塗層材料的粒子
與基體發生猛烈碰撞而變形、展平沉積於基體表面,同時急冷而快速凝固,
顆粒這樣遂層沉積而堆積成塗層。
2.熱噴塗塗層的結構特點
熱噴塗塗層形成過程決定了塗層的結構特點,噴塗層是由無數變形粒
子相互交錯呈波浪式堆疊在一起的層狀組織結構,塗層中顆粒與顆粒之間不
可避免地存在一些孔隙和空洞,並伴有氧化物夾雜。塗層剖面典型的結構如
下圖,其特點為:
* 呈層狀
* 含有氧化物夾雜
* 含有孔隙或氣孔
典型的塗層剖面圖
3. 熱噴塗塗層的結合機理
塗層的結合包括塗層與基體的結合和塗層內部的結合。塗層與基體表
面的粘結力稱為結合力,塗層內部的粘結力稱為內聚力。塗層中顆粒與基體
之間的結合以及顆粒之間的結合機理,目前尚無定論,通常認為有以下幾種
方式。
(1) 機械結合
碰撞成扁平狀並隨基體表面起伏的顆粒和凹凸不平的表面相互嵌
合,貝以顆粒的機械聯鎖而形成的結合(拋錨效應),一般來說,塗層與基
體的結合以機械結合為主。
(2) 冶金-化學結合
這是當塗層和基體表面產主冶金反應,如出現擴散和合金化時的
一種結合類型。當噴塗後進行重熔即噴焊時,噴焊層與基體的結合主要是冶
金結合。
基體粗糙度
氧化物加雜 孔隙或孔洞 顆粒間的粘接顆粒基體粗糙度
基體
塗層
對基體的粘接力
8
(3) 物理結合
顆粒與基體表面間由范德華力或次價鍵形成的結合。
4。塗層的殘余應力
當熔融顆粒碰撞基體表面時,在產生變形的同時受到激冷而凝固,從
而產生收縮應力。塗層的外層受拉應力,基體有時也包括塗層的內層則產生
壓應力。塗層中的這種殘余應力是由熱噴塗條件及噴塗材料與基體材料的物
理性質的差異所造成的。它影響塗層的質量、限制塗層的厚度。工藝上要采
取措施以消除和減少塗層的殘余應力。
♦ 熱噴塗塗層的性能
1. 化學成分
由於塗層材料在熔化和噴射過程中,在高溫下會與周圍介質發生作
用生成氧化物、氮化物,以及在高溫下會發生分解, 因而塗層的成分與塗
層材料的成分是有一定的差異的,並在一定程度上影響塗層的性能。如
MCrAlY 氧化後會影響其耐蝕性,而WC-Co 經氧化和高溫分解後其耐磨性
會降低。通過噴塗方法的選擇可以避免和減輕這一現象的發生。如採用低壓
等離子噴塗可大大減少塗層材料的氧化,而高速火焰噴塗則可以防止碳化物
的高溫分解。
2. 孔隙度
熱噴塗塗層中不可避免地存在著孔隙,孔隙度的大小與顆粒的溫度
和速度以及噴塗距離和噴塗角度等噴塗參數有關。一般來說,溫度及速度都
低的火焰噴塗和電弧噴塗塗層的孔隙度都比較高,一般達到百分之幾,甚至
可達百分之十幾。而高溫的等離子噴塗塗層及高速的超音速火焰噴塗塗層則
孔隙度較低。最低可達0.5%以下。
3. 硬度
由於熱噴塗塗層在形成時的激冷和高速撞擊,塗層晶粒細化以及晶
格產生畸變使塗層得到強化,因而熱噴塗塗層的硬度比一般材料的硬度要高
一些,其大小也會因噴塗方法的不同而有所差異。
4. 結合強度
熱噴塗塗層與基體的結合主要依靠與基體粗糙表面的機械咬合(拋
描效應)。基材表面的清潔程度、塗層材料的顆粒溫度和顆粒撞擊基體的速
度以及塗層中殘余應力的大小均會影響塗層與基體的結合強度,因而塗層的
結合強度也與所採用的噴塗方法有關。
5. 冷熱疲勞性能
對於一些在冷熱循環狀態下使用的工件,其塗層的抗冷熱疲勞(或稱
熱震)性能至關重要,如若該塗層的抗熱震性能不好,則工件在使用過程中
便會很快開裂甚至剝落。塗層抗熱震性能的好壞主要取決於塗層材料與基體
材料的熱膨脹系數差異的大小和塗層與基體材料結合的強弱。
9
七.熱噴塗材料及塗層功能和應用
􀂋 熱噴塗材料
目前實際應用中已實現工業化生產的噴塗材料有金屬、合金和陶瓷等, 主
要以粉末、絲材、棒材狀態使用, 其中噴塗粉末占噴塗材料總用量的70 %以
上. 用作塗層的材料有:
1. 熱噴塗用粉末
純金屬粉末: W,Mo,Al,Cu,Ni,Ti,Ta,Nb 等
合金粉末: Al-Ni,Ni-Cr,Ti-Ni,Ni-Cr-Al,Co-Cr-W,
MCrAlY(M=Co、Ni、Fe),Co 基、Ni 基、Fe 基自
熔合金等
氧化物陶瓷粉末: Al2O3,ZrO2,Cr2O3,TiO2 等
碳化物粉末: WC,TiC,Cr3C2 等
金屬陶瓷粉末: WC-Co,Cr3C2-NiCr 等
塑料粉末: 尼龍, 聚乙烯,聚苯硫醚等
2. 熱噴塗用絲材
Al、Cu,Zn,Al-Zn 合金,巴氏合金,不銹鋼,Ni-Al 絲等
3. 熱噴塗用棒材
Al2O3,Cr2O3,ZrO2 等
􀂋 塗層功能和應用
1. 抗磨損塗層
磨損是造成工業部門設備損壞的主要原因之一, 可能產生磨損的工作條
件包括微振、滑動、沖擊、擦傷、侵蝕等.抗磨損塗層應該是堅硬的,而且具
有耐熱和耐化學腐蝕的性能.Fe、Ni、Co 基自熔合金以及WC - Co 和Cr3C2-NiCr
等金屬陶瓷以及 Al2O3、Cr2O3 等陶瓷材料具有上述這些性能. 採用塗層技術
提高工件表面耐磨性的應用非常廣泛, 如活塞環、齒輪同步環噴塗Mo 塗層,
紡織機械中的羅拉、導絲鉤等零部件噴塗耐纖維磨損的 Al2O3、 Al2O3 -TiO2
陶瓷塗層, 泵和閥門密封面噴塗Cr2O3、WC-Co 等耐磨塗層, 大馬力載重汽車
曲軸及大型磨煤機、排風機軸等採用Fe 基合金材料進行磨損修復和耐磨強化
等。
2. 防腐蝕塗層
長期暴露在戶外大氣(海洋、工業及城鄉大氣)和不同介質(海水、河水、
溶劑及油類等)環境中的大型鋼鐵構件,如輸變電鐵塔、鋼結構橋、海上鑽井
平台、煤礦井架以及各種化工容器如儲罐等,受到不同程度的環境氧化和侵蝕.
採用Al、Zn、Al - Zn 合金及不銹鋼等塗層進行防護,可以獲得長達20 年以
上的長期防護效果.一些受到氣體腐蝕和化學腐蝕的部件,可以根據具體工況
(如介質、濃度、溫度、壓力等)選擇合適的金屬、合金、陶瓷及塑料等塗層
10
材料進行防護.
3. 抗高溫氧化和耐熱腐蝕塗層
對於一些暴露在高溫腐蝕氣體中的部件,受到高溫、氣體腐蝕及氣流沖
刷的作用,嚴重影響了設備的壽命和運行的安全.抗高溫氧化及高溫腐蝕的材
料除了必須抗高溫氧化和耐腐蝕外,還必須具有與基體材料相似的熱膨脹系
數,方不會因溫度周期變化和局部過熱導致塗層抗熱疲勞性能下降.用作抗高
溫氧化和高溫腐蝕的塗層材料有:NiCr、NiAl、MCrAl、MCrAlY(M = Co、 Ni、
Fe)及Hastiloy 和Stellite 合金等. 這類塗層的典型應用如電廠鍋爐四管
(水冷壁管、再熱器管、過熱器管及省煤器管)及水冷壁等的高溫氧化腐蝕一
直是電力、造紙、化工等工業鍋爐用戶需要解決的問題,經多年研究、實踐證
明, 採用電弧噴塗Ni - Cr、Fe -Cr -Al、Ni-Cr -Al、45CT 等塗層能獲得良
好的防護作用,使用壽命最長達9 年.MCrAlY 塗層用於航空渦輪發動機葉片塗
層以及作為渦輪發動機燃燒室、火焰筒等用熱障塗層的粘結底層。
4. 熱障塗層
ZrO2、Al2O3 等陶瓷塗層,熔點高、導熱系數低, 在高溫條件下對基體金
屬具有良好的隔熱保護作用稱為熱障塗層.這種塗層一般 由兩個系統構成,
一是由金屬作底層, 另一則是由陶瓷作表層.有時為了降低金屬和陶瓷間的
熱膨脹差異和改善塗層中的應力分布, 常在粘結底層和陶瓷面層間增加一過
渡層,該過渡層或為由底層金屬和面層陶瓷材料以不同比例混合的多層塗層
或為由金屬及陶瓷材料成分連續變化的塗層來形成所謂的成分(或功能)梯度
塗層.金屬粘結底層為Co 或Ni、加有Cr、Al、Y 的合金材料, 陶瓷材料最好
採用由Y2O3 穩定的ZrO2, 熱障塗層一般用於柴油發動機活塞、渦輪發動機燃
燒室、閥門和火焰穩定器等.
5. 絕緣塗層
陶瓷材料不僅具有高的硬度和優良的耐磨性能, 還具有十分優良的絕緣
性能, 採用高能等離子噴塗的Al2O3 塗層塗層緻密、絕緣強度高, 是理想的絕
緣塗層。 如果採用有機或無機物質對噴塗層再進行封孔處理, 則將獲得更為
優良的絕緣效果.目前這種高度絕緣的塗層已用於對高分子材料薄膜進行活
化處理的電暈放電輥表面,效果良好.
6. 間隙控制塗層
採用復合粉末, 在基體上噴塗軟質的可磨耗密封塗層是航空、航天工業
中迅速發展起來的高溫密封、控隙技術, 是現代熱噴塗塗層的重要應用之一。
在配合件的接觸運動中採用可磨耗塗層可以使配合件自動形成所必須的間隙,
提供最佳的密封狀態. 目前,高技術的可磨耗塗層材料是由兩種粉末的混合
粉或團聚粉組成,用火焰或等離子噴塗方法制備. 一般來說, 可磨耗塗層由金
屬本體和非金屬填料組成 , 填料通常是石墨、聚脂、氮化硼等. 填料的作用
是減弱塗層本身的整體性,從而增強塗層的可磨損性. 已經開發了一系列的
噴塗用可磨損塗層材料,這些塗層用 於表面的空氣密封部位,壓氣機或透平
11
葉片與金屬表層結構或機匣之間,獲得了良好的密封效 果.可磨耗 塗層還可
用於迷宮式密封,該塗層用來疏導冷卻空氣,減少發動機壓縮空氣的損失,並
保持轉子軸的壓力平衡.
7. 尺寸恢復塗層
熱噴塗是恢復零部件尺寸的一種經濟而有效的方法.無論是因工作磨損
還是因加工超差造成工件尺寸不合要求,均能利用熱噴塗技術予以恢復.這種
方法既沒有焊接時的變形問題, 也不象特殊的電鍍工藝那樣昂貴.同時新表
面可以由耐磨或抗蝕材料構成,也可以與工件的構成材料相同.修復各種軸類
和柱塞件是典型的應用, 包括迥轉軸、汽車軸、往復柱塞、軸頸、軋輥、造
紙烘缸以及石油化工工業中的泵類葉輪葉片及外殼等.發電機汽缸中分面現
場熱噴塗修復是熱噴塗恢復平面工件尺寸的一個成功的應用例。發電機汽缸
在長期的使用中其中分面由於微振、熱汽流腐蝕及沖蝕等作用而發生多處形
狀不同、面積不等及深淺各異的破壞,引起泄漏而影響發電機效率。採用熱
噴塗方法分別對各破壞處進行噴塗填補,然後通過打磨使得汽缸平面恢復平
整並達到所需的尺寸精度。熱噴塗技術不失為重量大、結構復雜和價格昂貴
的汽缸的中分面現場修復的安全(不會發生變形)、簡便而高效的方法。
8. 生物功能塗層
在不銹鋼或鈦基體上噴塗生物功能陶瓷塗層,如羥基磷灰石等, 能有效
地克服金屬型人工骨骼與生物體組織不相容和體液腐蝕問題,並能改善人體
組織與人工植入體的結合.
9.遠紅外幅射塗層
某些氧化物具有高的熱幅射率, 在受熱時能夠幅射出遠紅外波, 這種波
的能量極易被高分子有機物(如油漆)、水、空氣等物質的分子吸收產生共振
而產生內熱, 從而加速過程的進行. 在加熱元件上噴塗這種塗層, 其節電效
率一般平均在25-40 % 左右。

㈣ 多孔材料的前景

在眾多的多孔材料中, 制備角度, 無序孔多孔材料的制備較易, 成本較低, 易於大量推廣和使用。例如泡沫金屬。常見的方法有五種:(1)粉末冶金法, 它又可分為鬆散燒結和反應燒結兩種;(2)滲流法;(3)噴射沉積法;(4)熔體發泡法;(5)共晶定向凝固法。圖 2 所示為滲流法, 將一定粒徑的可溶性鹽粒裝填在模具中壓實, 並隨模具一起放入爐內加熱, 同時在電阻式坩堝爐內配製所需的合金, 待合金熔化完畢, 出爐澆入模具中, 通過在金屬液表面施加一定的壓力使其滲透到粒子之間的縫隙之中;當金屬液凝固後便可得到金屬合金與粒子的復合體, 用水將復合體中的鹽粒溶去, 即可製得具有三維連通泡孔的泡沫合金。但是這種方法生產的材料性能不均勻, 質量很難控制。
可控孔多孔材料的制備過程相對復雜, 且技術條件要求較高。從前面分析的特性來看, 可控孔多孔材料擁有許多無序孔多孔材料所不具備的特性, 隨著新技術的發展, 可控孔多孔材料的制備方法將越來越成熟, 這類方法必將成為今後多孔材料科學的發展趨勢。

㈤ 怎樣將兩種金屬粉末進行內外復合模壓成型,要怎樣裝模

金屬基復合材料的制備技術班級: 班級:材料 085 學號: 學號:09024431 姓名: 姓名:李培 前言: 前言:金屬基復合材料是以金屬或合金為基體,並以纖維、晶須、顆粒等為增強 體的復合材料。其特點在力學方面為橫向及剪切強度較高,韌性及疲勞等綜合力 學性能較好,同時還具有導熱、導電、耐磨、熱膨脹系數小、阻尼性好、不吸濕、 不老化和無污染等優點。金屬基復合材料除了和樹脂基復合材料同樣具有高強 度、高彈性率外,它能耐高溫,同時不易燃、不吸潮、導熱導電性好、抗輻射, 是令人注目的復合材料。 關鍵字:金屬基復合材料 1. 金屬基復合材料的分類 金屬基復合材料按組織形態可分為宏觀組合型和微觀強化型兩類;根據復合 材料基體不同可分為鋼基、 鐵基、 鋁基、 鎂基復合材料等; 按增強相形態的 不同可分為顆粒增強復合材料、 晶須或短纖維增強金屬復合材料及連續纖維增強 金屬基復合材料。 2.金屬基復合材料的特點 (1)優點:高比強度和高比模量,耐高溫性好,導電導熱,熱膨脹系數小,尺 寸穩定性好,耐磨性與阻尼性好,不吸濕、不老化、無放氣污染 。 (2)缺點:製造困難,難於形成理想的界面,加工困難,價格昂貴。 3.金屬基復合材料的制備技術 由於金屬材料熔點較高,同時不少金屬對增強體表面潤濕性很差加上金屬原 子在高溫狀態下很活潑,易與多種增強體發生反應,所以金屬基復合材料的復合 工藝比較復雜和困難,這也是金屬基復合材料的發展受到制約的主要原因。 3.1 噴射成形法 噴射成形又稱噴射沉積 ( Spray Forming) , 是用惰性氣體將金屬霧化成 微小的液滴, 並使之向一定方向噴射, 在噴射途中與另一路由惰性氣體送出的 分類 特點 制備技術 增強微細顆粒會合, 共同噴射沉積在有水冷襯底的平台上, 凝固成復合材料。 凝固的過程比較復雜, 與金屬的霧化情況、 沉積凝固條件或增強體的送入角有 關, 過早凝固不能復合, 過遲的凝固則使增強體發生上浮下沉而分布不勻,這 種方法的優點是工藝快速,金屬大范圍偏析和晶粒粗化可以得到抑制, 避免復 合材料發生界面反應, 增強體分布均勻。缺點是出現原材料被氣流帶走和沉積 在效應器壁上等現象而損失較大, 還有復合材料氣孔率以及容易出現的疏鬆。 利用噴 射成 形原 理制 備工藝 有添 加法 ( inert spray form-ing) 和反 應 法 ( reactive spray forming) 兩種。Osprey Metals 研究的 Osprey 工藝是噴射成形 法的代表, 其強化顆粒與熔融金屬接觸時間短, 界面反應得以有效抑制。反應 噴射沉積法是使強化陶瓷顆粒在金屬霧或基體中自動生成的方法。Lawly 等人[9] 採用含氧 5%~ 12%的氮氣, 將 Fe- Al 〔 ω ( Al) =2%〕 熔霧合金霧化, 使其生成 Al2O3 獲得非常細小的 Al2O3 彌散強化鐵基復合材料的預成型體。 3.2 鑄造凝固成型法 鑄造凝固成型法是在基體金屬處於熔融狀態下進行復合。 主要方法有攪拌鑄 造法、 液相滲和法和共噴射沉積法等。鑄造凝固成型鑄造復合材料具有工藝簡 單化、 製品質量好等特點, 工業應用較廣泛。 3.2.1 原生鑄造復合法 原生鑄造復合法 ( 也稱液相接觸反應合成技術 Liquid Contact Reaction: LCR)是將生產強化顆粒的原料加到熔融基體金屬中, 利用高溫下的化學反應 強化相, 然後通過澆鑄成形。如 TiB 強化鋁基復合材料原生復合法的化學反應 式 2B+Ti+Al→TiB2+Al。這種工藝的特點是顆粒與基體材料之間的結合狀態良 好,顆粒細小 ( 0.25~1.5?m) 均勻彌散, 含量可高達 40%, 故能獲得高 性能復合材料。常用的元素粉末有鈦、碳、硼等,化合物粉末有 Al2O3、 TiO2、 B2O3 等。該方法可用於制備 A1 基、 Mg 基、 Cu 基、 Ti 基、 Fe 基、 Ni 基 復合材料。強化相可以是硼化物、 碳化物、 氮化物等。 近年來,哈爾濱工業大學從事接觸反應法制備復合材料的研究工作[4], 已成 功制備了 Al- Si /TiC、 Al- Cu /TiC 和 Al/TiB2 復合材料, 其機械性能優異。 3.2.2 攪拌鑄造法 攪拌鑄造法也稱摻和鑄造法等。是在熔化金屬中加入陶瓷顆粒,經均勻攪拌 後澆入鑄模中獲得製品或二次加工坯料, 此法易於實現能大批量生成, 成本較 低。該方法在鋁基復合材料的制備方面應用較廣,但其主要缺點是基體金屬與強 化顆粒的組合受限制。 3.2.3 半固態復合鑄造法 半固態復合鑄造法是從半固態鑄造法發展而來的。通常金屬凝固時,初生晶 以枝晶方式長大,固相率達 0.2%左右時枝晶就形成連續網路骨架, 失去宏觀流 動性。 如果在液態金屬從液相到固相冷卻過程中進行強烈攪拌則使樹枝晶網路骨 架被打碎而保留分散的顆粒狀組織形態, 懸浮於剩餘液相中, 這種顆粒狀非枝 晶的微組織在固相率達 0.5%~ 0.6%仍具有一定的流變性。液固相共存的半固 態合金因具有流變性, 可以進行流變鑄造; 半固態漿液同時具有觸變性, 可 將流變鑄錠重新加熱到固、 液相變點軟化, 由於壓鑄時澆口處及型壁的剪切作 用, 可恢復流變性而充滿鑄型。強化顆粒或短纖維強化材料加入到受強烈攪拌 的半固態合金中,由於半固態漿液球狀碎晶粒對添加顆粒的分散和捕捉作用,既 防止顆粒的凝聚和偏析, 又使顆粒在漿液中均勻分布, 改善了潤濕性並促進界 面的結合。[8] 3.2.4 含浸凝固法 ( M I 技術) 含浸凝固法是一種將預先制備的含有較高孔隙率的強化相成形體含浸於熔融 基體金屬之中,讓基體金屬浸透預成型體後, 使其凝固以制備復合材料的方法。 有加壓含浸和非加壓含浸兩種方法。 含浸法適合於強化相與熔融基體金屬之間潤 濕性很差的復合材料的制備。強化相含量可高達 30%~ 80%; 強化相與熔融 金屬之間的反應得到抑止, 不易產生偏折。但用顆粒作強化相時, 預成形體的 制備較困難, 通常採用晶須、 短纖維制備預成形體。熔體金屬不易浸透至預成 形體的內部,大尺寸復合材料的制備較困難。 近幾年來,含浸凝固技術有了新的發展,美國 Lanxide 公司利用高溫下金屬 Zr 熔體與 BC4 預成型體之間的定向反應制備出了 Zr-ZrC-Zr 復合材料,並已 在工程上得到應用[7],Breslin 等人採用 Al 浸漬 SiO2 的預成型體, 制備出了 Al2O3-A1 ( Si) 復合材料, 這種材料中的兩相互相穿插、 連續, 並具有某 些特殊的性能被稱為 C4 材料。該技術可以制備各種大小部件,強化相的體積比 可達 60%, 工藝較簡單, 原料成本低。 3.3 粉末冶金復合法 粉末冶金復合法基本原理與常規的粉末冶金法相同, 包括燒結成形法、 燒 結制坯加塑法加工成形法等。適合於分散強化型復合材料 ( 顆粒強化或纖維強 化型復合材料) 的制備與成型。 該方法在鋁基復合材料的制備方面應用較廣, 但其主要缺點是基體金屬與強化顆粒的組合受限制。 粉末冶金復合法的工藝主要 優點是:基體金屬或合金的成分可自由選擇,基體金屬與強化顆粒之間不易發生 反應; 可自由選擇強化顆粒的種類、 尺寸, 還可多種顆粒強化; 強化顆粒添 加量的范圍大; 較容易實現顆粒均勻化。但缺點是: 工藝復雜, 成本高; 制 品形狀、 尺寸受限制;微細強化顆粒的均勻分散困難;顆粒與基體的界面不如 鑄造復合材料等。 3.4 原位生成復合法 原位生成復合法也稱反應合成技術[1], 最早出現於 1967 年前用 SHS 法合成 TiB2 /Cu 功能梯度材料的研究中[2]。 金屬基復合材料的反應合成法是指藉助化 學反應, 在一定條件下在基體金屬內原位生成一種或幾種熱力學穩定的增強相的 一種復合方法。 這種增強相一般為具有高硬度、高彈性模量和高溫強度的陶瓷 顆粒, 即氧化物、 碳化物、氯化物、 硼化物、 甚至硅化物, 它們往往與傳 統的金屬材料, 如 Al、 Mg、 Ti、 Fe、 Cu 等金屬及其合金, 或 ( NiTi) 、 ( AlTi) 等金屬間化合物復合,從而得到具有優良性能的結構材料或功能材料 [3] 。 3.4.1 直接氧化 ( DIMON) 法 直接氧化法是由氧化性氣體在一定工藝條件下使金屬合金液直接氧化形成復 合材料。通常直接氧化法的溫度比較高, 添加適量的合金元素如 Mg、 Si 等, 可使反應速度加快。 這類復合材料的強度、 韌性取決於形成粒子的狀態和最終 顯微組織形態。 由於形成的增強體可以通過合金化及其反應熱力學進行判斷, 因 此可以通過合金化、 爐內氣氛的控制來製得不同類型增強體的復合材料。 3.4.2 放熱彌散 ( XD) 法 放熱彌散復合技術 ( Exothermic Dispersion) 的基本原理是將增強相反應 物料與金屬基粉末按一定的比例均勻混合, 冷壓或熱壓成型, 製成坯塊, 以 一定的加熱速率加熱, 在一定的溫度下 ( 通常是高於基體的熔點而低於增強 相的熔點)保溫,使增強相各組分之間進行放熱化學反應, 生成增強相。增強 相尺寸細小, 呈彌散分布。 3.4.3 SHS-鑄滲法 SHS-鑄滲法[3] 是將金屬基復合材料的自蔓延高溫合成技術 ( Self- Propagating High Temperature Synthesis) 和液態鑄造法結合起來的一種新技術,包括增強顆 粒的原位合成和鑄造成型二個過程。當前, SHS-鑄滲法是有競爭力的反應合成 工藝之一, 但過程式控制制非常困難。 其典型工藝為:利用合金熔體的高溫引燃鑄型中的固體 SHS 系, 通過控制 反應物和生成物的位置, 在鑄件表面形成復合塗層, 它可使 SHS 材料合成與 緻密化、 鑄件的成形與表面塗層的制備同時完成。潘復生[6]等人將 SHS 技術和 鑄滲工藝相結合,制備了顆粒增強的鐵基復合材料塗層。在這種工藝中, SHS 過程使基體產生一定數量的增強顆粒, 而隨後的熔鑄過程則利用高溫金屬液的 流動,對 SHS 過程中易產生的孔隙進行充填,因此兩個過程的綜合作用下獲得 較為緻密的復合材料。 3.4.4 反應噴射沉積技術 ( RSD) 反應噴射沉積工藝 ( Reactive Spray Deposition) 生成陶瓷顆粒的反應有氣 -液反應、 液-液反應、 固-液反應和加鹽反應等多種類型。它綜合了快速凝固 及粉末冶金的優點, 並克服了噴射共沉積工藝中存在的如顆粒與基體接近機械結 合、 增強相體積分數不能太高等缺點, 成為目前金屬基復合材料研究的重要方 向之一。 反應噴射沉積工藝過程為:金屬液被霧化前噴入高活性的固體顆粒發生液固 反應, 導致噴入的顆粒在霧化過程中溶解並與基體中的一種或多種元素反應形成 穩定的彌散相, 控制噴霧的冷卻速率以及隨後坯件的冷卻速率可以控制彌散相的 尺寸。楊濱等人[5]採用液相接觸反應合成技術進行反應合成,然後再進行後續的 霧化噴射沉積成形步驟, 成功地開發出了一種熔鑄-原位反應噴射沉積成形顆粒 增強金屬基復合材料制備新技術。制備出 TiC/Al- 20Si- 5Fe 復合材料。 3.5 疊層復合法 疊層復合法是先將不同金屬板用擴散結合方法復合,然後採用離子濺射或分 子束外延方法交替地將不同金屬或金屬與陶瓷薄層疊合在一起構成金屬基復合 材料。這種復合材料性能很好, 但工藝復雜難以實用化。目前這種材料的應用 尚不廣泛,過去主要少量應用或試用於航空、 航天及其它軍用設備上, 現在正 努力向民用方向轉移, 特別是在汽車工業上有很好的發展前景。 4.結束語 [3] 目前, 我國金屬基復合材料的研究、 制備技術與國外先進水平仍有較大 的差距, 許多問題還有待進一步解決,如基礎性研究落後、制備技術及工藝的 工業化應用能力差、 製品質量不穩定、 價格高等。 隨著現代高科技的迅猛發展, 金屬基復合材料已經並將繼續大量取代傳統材料, 在各個領域發揮更重要的積 極作用。 為此, 我們應大力加強復合材料理論、 制備技術和應用的研究, 加 快科研成果轉化生產應用的進程。 參考文獻〕 〔 參考文獻〕 1995, 〔 1〕 程秀蘭, 潘復生.金屬復合材料的反應合成技術 〔 J〕 .材料導報, (5):61- 66. 〔 2 〕 吳人潔.金屬基復合材料的現狀與展望 〔 J〕 .金屬學報, 1997, 33(1):78- 82. 〔 3〕 湯愛濤, 汪凌雲, 潘復生.金屬基復合材料固/液反應制備技術的研究 進展 〔 J〕 .重慶大學學報, 2004, 27 ( 11) : 151- 156. 〔 4〕 陳子勇, 陳玉勇, 安閣英.金屬基復合材料的熔體直接反應合成工藝 〔 J〕 .材料導報, 1997, 11(2):62- 63. 〔 5〕 楊濱, 王鋒, 黃贊軍, 等.噴射沉積成形顆粒增強金屬基復合材料制 備技術的發展 〔 J〕 .材料導報, 2001, 15(3):4- 6. 〔 6〕 潘復生, 張靜, 陳萬志, 丁培道.SHS-鑄滲法制備鐵基復合材料塗層 〔 J〕 .材料研究學報, 1997, (11):165- 166. 〔 7 〕 BRESLIN M C,RINCNALDA J. A1umina/aluminum co- coHtinu-ous ceramic composite (c4) materials Prouced by solid/1iquid disPlacement reactions:Processing kinetics and cicrostructures 〔 J〕 .Ceram.Eng.Sci.Proc., 1994, 15(7- 8):104. 〔 8〕 於春田.纖維增強金屬的製法及特徵 〔 J〕 .鑄造, 1995, (7):36- 39. 〔 9〕 魯雲, 馬鳴圖, 潘復生.先進復合材料 〔 M〕 .北京:機械工業出版 社, 2003. ( 編輯 黃 荻)

㈥ 什麼是支撐輥,工作輥,水冷輥!請給予定義!謝謝!急!

軋輥
軋輥(roll)

軋機上使受軋制的金屬發生塑性變形的部件。軋輥的形狀、尺寸和材質須與軋機和軋制產品相適應。圖1指出軋輥的基本形狀和各部分名稱。輥身是軋輥的工作部分;輥頸是與軸承接觸的部分;用接頭與傳動裝置相聯接。

發展簡史

軋輥的品種和製造工藝隨冶金技術的進步和軋鋼設備的演變而不斷發展。中世紀軋制軟的有色金屬時使用強度低的灰鑄鐵軋輥。18世紀中葉英國掌握了軋制鋼板用的冷硬鑄鐵軋輥的生產技術。19世紀下半葉歐洲煉鋼技術的進步要求軋制更大噸位的鋼錠,無論是灰鑄鐵或冷硬鑄鐵軋輥的強度均已不能滿足要求。含碳量為0.4%~0.6%普通鑄鋼軋輥相應誕生。重型鍛壓設備的出現更使這種成分的鍛造軋輥的強韌性得到進一步提高。20世紀初期合金元素的使用和熱處理的引入顯著改善鑄鋼和鍛鋼熱軋輥和冷軋輥的耐磨性和強韌性。熱軋板帶用的鑄鐵軋輥中加入鉬後改善了軋材的表面質量。沖洗法復合澆注(見鑄鐵軋輥)明顯提高了鑄造軋輥的芯部強度。軋輥中大量使用合金元素是在第二次世界大戰以後,這是軋鋼設備朝著大型化、連續化、高速化、自動化發展以及軋材強度提高、變形抗力加大後對軋輥性能提出更高要求的結果。這段時期中先後出現了半鋼軋輥以及球墨鑄鐵軋輥。20世紀60年代以後又研製成功了粉末碳化鎢軋輥。70年代初期在日本和歐洲廣泛推廣的軋輥的離心鑄造技術、差溫熱處理技術等使板帶軋輥的綜合性能顯著改善。復合高鉻鑄鐵軋輥也成功地用於熱帶軋機上。同期,鍛造白口鐵和半鋼軋輥在日本得到應用。80年代歐洲又推出高鉻鋼軋輥及超深淬硬層的冷軋輥以及用於小型型鋼及線材精軋的特殊合金鑄鐵軋輥。當代軋鋼技術的發展促使更高性能軋輥的開發研製。採用離心鑄造法和新的復合方法如連續澆注復合法(CPC法)、噴射沉積法(Osprey法)、電渣焊法以及熱等靜壓法生產的芯部為強韌性好的鍛鋼或球墨鑄鐵、外層為高速鋼系列的復合軋輥以及金屬陶瓷軋輥已分別在歐洲、日本新一代型材、線材、帶鋼軋機上得到應用。

中國從20世紀30年代開始成批生產鑄造軋輥,但品種極少。50年代末在河北邢台建立起中國第一個專業軋輥廠。1958年鞍山鋼鐵公司在國際上首次試制並使用了1050初軋用大型球墨鑄鐵軋輥。60年代相繼製造成功冷軋工作輥和大型鍛鋼軋輥。70年代末太原鋼鐵公司和北京鋼鐵研究總院共同試製成功爐卷軋機和熱連軋寬頻鋼機組用的離心鑄造鑄鐵軋輥,邢台冶金機械軋輥股份有限公司試製成功熱寬頻鋼軋機用半鋼工作輥和冷軋寬頻鋼軋機用工作輥。80年代中國又陸續研製成功大型鍛鋼支承輥、鍛造半鋼和鍛造白口鑄鐵軋輥、粉末碳化鎢輥環、高鉻鑄鐵軋輥等新品種。到90年代,中國軋輥生產已基本滿足國內需要並有部分出口,但品種有待增加,質量尚須提高。

基本尺寸參數

有軋輥輥身直徑D,輥身長度L,輥頸直徑d和輥頸長度l。帶軋槽的初軋軋輥和型鋼軋輥的直徑可根據最大咬入角α(或壓下量△h與輥徑之比△h/D)、軋制力和軋輥強度等要求來確定。輥身長度L上,主要取決於孔型配置、軋輥抗彎強度和鋼度。板帶軋機軋輥輥身長度L和所軋板帶的最大寬度有關。二輥板帶軋機軋輥的直徑D根據軋制力、軋材尺寸、軋輥強度等因素選定,四輥或多輥軋機工作輥的直徑則取決於成品尺寸和精度、輥頸和軸頭強度等因素。而支承輥直徑主要取決於剛度和強度要求。

軋輥的分類

軋輥有不同的分類方法。按輥身形狀分為圓柱形和非圓柱形,前者主要用於板材、帶材、型材和線材生產,後者主要用於管材生產。按是否接觸軋件分為工作軋輥和支承輥。直接接觸軋件的軋輥稱工作軋輥;為增加工作軋輥的剛度和強度而置於工作軋輥背面或側面又不直接接觸軋件的軋輥稱支承輥。按使用機架分為初軋輥、粗軋輥、中間軋輥和精軋輥。按軋材的品種分為板帶軋輥、軌梁軋輥、線材軋輥和管材軋輥等。還可按軋制時軋件的狀態分為熱軋輥和冷軋輥。

軋輥的工作條件

軋機部件中軋輥的工作條件最為復雜。軋輥在製造和使用前的准備工序中會產生殘余應力和熱應力。使用時又進一步受到了各種周期應力的作用,包括有彎曲、扭轉、剪力、接觸應力和熱應力等。這些應力沿輥身的分布是不均勻的、不斷變化的,其原因不僅有設計因素,還有軋輥在使用中磨損、溫度和輥形的不斷變化。此外,軋制條件經常會出現異常情況。軋輥在使用後冷卻不當,也會受到熱應力的損害。所以軋輥除磨損外,還經常出現裂紋、斷裂、剝落、壓痕等各種局部損傷和表面損傷。一個好的軋輥,其強度、耐磨性和其他各種性能指標間應有較優的匹配。這樣,不僅在正常軋制條件下持久耐用,又能在出現某些異常軋制情況時損傷較小。所以在製造軋輥時要嚴格控制軋輥的冶金質量或輔以外部措施以增強軋輥的承載能力。合理的輥形、孔型、變形制度和軋制條件也能減小軋輥工作負荷,避免局部高峰應力,延長軋輥壽命。軋輥消耗量決定於三個因素:①軋機、軋材和軋制條件,以及軋輥的合理選擇;②軋輥材料及其製造質量;③軋輥的使用和維護制度。

軋輥的選用

小型20輥軋機的工作軋輥重僅100克左右,而寬厚板軋機的支承輥重量已超過200噸。選用軋輥時首先根據軋機對軋輥的基本強度要求,選定安全承載的主體材料(各種級別的鑄鐵、鑄鋼或鍛鋼等),然後考慮軋輥使用時所應有的耐磨性。由於軋輥的磨損機理很復雜,包括機械應力作用、軋制時的熱作用、冷卻作用、潤滑介質的化學作用以及其他作用,目前還沒有一項綜合評定軋輥抗磨性的統一指標。由於硬度易於測量,並在一定條件下可以反映耐磨性,所以一般就用徑向硬度曲線來近似地表述軋輥的耐磨指標。

通常對粗軋輥以強度、抗熱裂為主要要求;而精軋輥速度較高,軋制最終產品要有一定的表面質量,對它以硬度、耐磨等為主要要求。此外,對軋輥還有一些特殊要求,如壓下量大時,要求軋輥有較強的咬入能力,較耐沖擊;軋制薄規格產品時,則對軋輥的剛性、組織性能均勻性、加工精度以及表面光潔度等要求較嚴;軋制復雜斷面的型鋼時,還要考慮輥身工作層的切削加工性能等。

選用軋輥時,對軋輥的有些性能要求往往是彼此對立的,軋輥購置費和維護費用又很昂貴,所以應充分權衡技術和經濟上的利弊,決定用鑄的還是鍛的,合金的還是非合金的,單一材料的還是復合材料的。

軋輥種類

軋輥品種很多,主要有以下幾類:①鑄鐵軋輥。一般按製造工藝分類:工作層因金屬型的激冷作用呈白口組織(基體+碳化物)的軋輥稱冷硬鑄鐵軋輥;用上述方法,但適當提高鐵水碳當量而得到麻口組織(基體+碳化物+石墨)的軋輥稱無限冷硬鑄鐵軋輥。「無限」—詞源於英文「indefinite」,原意為「不明確」,指激冷層在斷口上無明確界限,被誤譯為「無限」,現已沿用成習。採用襯砂金屬型並繼續提高碳當量可得粗麻口組織的軋輥,稱半冷硬鑄鐵軋輥。所有上述品種的組織中凡石墨呈球狀的,稱球墨鑄鐵軋輥;復合澆鑄的軋輥加「復合」一詞。②鑄鋼軋輥。一般按含碳量分類:含碳極高(1.4~2.4%)的過共析鋼軋輥,俗稱半鋼軋輥,高碳的半鋼軋輥實際已伸入鑄鐵領域;高碳過共析鋼軋輥還有一類為石墨鋼軋輥,其石墨是通過孕育和熱處理獲得的。③鍛鋼軋輥。一般按用途分類。④其他,除採用特殊加工工藝的以外,都直接以材質稱呼。如用電渣重熔鑄造坯料鍛壓的軋輥稱為電渣重熔鍛壓軋輥。

對大部分軋輥的芯部和工作表層有不同的性能要求。用單一材料難於滿足要求時,內外層可分別用兩種材料來製造。復合工藝可採用機械組合、復合鑄造及其他復層技術。修復軋輥常用堆焊技術。

㈦ B4C晶體熔點低於單質c哪個更高

B4C晶體熔點低於單質c哪個更高?1、同晶體類型物質的熔沸點的判斷:一般是原子晶體>離子晶體>分子晶體。金屬晶體根據金屬種類不同熔沸點也不同(同種金屬的熔沸點相同)金屬(少數除外)>分子。
2、原子晶體中原子半徑小的,鍵長短,鍵能大,熔點高。
3、離子晶體中,陰陽離子的電荷數越多,離子半徑越小,離子間作用就越強,熔點就越高。金屬晶體中金屬原子的價電子數越多,原子半徑越小,金屬陽離子與自由電子靜電作用越強,金屬鍵越強,熔點越高,一般來說,金屬越活潑,熔點越低。分子晶體中分子間作用力越大,熔點越高,具有氫鍵的,熔點反常地高。
(7)噴射沉積法為什麼成本高擴展閱讀:
物質的熔點,即在一定壓力下,純物質的固態和液態呈平衡時的溫度,也就是說在該壓力和熔點溫度下,純物質呈固態的化學勢和呈液態的化學勢相等,而對於分散度極大的純物質固態體系(納米體系)來說,表面部分不能忽視,其化學勢則不僅是溫度和壓力的函數,而且還與固體顆粒的粒徑有關,屬於熱力學一級相變過程。
熔點是固體將其物態由固態轉變(熔化)為液態的溫度,縮寫為m.p.。而DNA分子的熔點一般可用Tm表示。進行相反動作(即由液態轉為固態)的溫度,稱之為凝固點。與沸點不同的是,熔點受壓力的影響很小。而大多數情況下一個物體的熔點就等於凝固點。
在有機化學領域中,對於純粹的有機化合物,一般都有固定熔點。即在一定壓力下,固-液兩相之間的變化都是非常敏銳的,初熔至全熔的溫度不超過0.5~1℃(熔點范圍或稱熔距、熔程)。但如混有雜質則其熔點下降,且熔距也較長。因此熔點測定是辨認物質本性的基本手段,也是純度測定的重要方法之一。
測定方法一般用毛細管法和微量熔點測定法。在實際應用中我們都是利用專業的測熔點儀來對一種物質進行測定。