㈠ 大数据专业都需要学习哪些软件啊
大数据处理分析能力在21世纪至关重要。使用正确的大数据工具是企业提高自身优势、战胜竞争对手的必要条件。下面让我们来了解一下最常用的30种大数据工具,紧跟大数据发展脚步。
第一部分、数据提取工具
Octoparse是一种简单直观的网络爬虫,可以从网站上直接提取数据,不需要编写代码。无论你是初学者、大数据专家、还是企业管理层,都能通过其企业级的服务满足需求。为了方便操作,Octoparse还添加了涵盖30多个网站的“任务模板 (Task Templates)”,操作简单易上手。用户无需任务配置即可提取数据。随着你对Octoparse的操作更加熟悉,你还可以使用其“向导模式 (Wizard Mode)”来构建爬虫。除此之外,大数据专家们可以使用“高级模式 (Advanced Mode)”在数分钟内提取企业批量数据。你还可以设置“自动云提取 (Scheled Cloud Extraction)”,以便实时获取动态数据,保持跟踪记录。
02
Content Graber
Content Graber是比较进阶的网络爬网软件,具有可用于开发、测试和生产服务器的编程操作环境。用户可以使用C#或VB.NET调试或编写脚本来构建爬虫。Content Graber还允许你在爬虫的基础上添加第三方扩展软件。凭借全面的功能,Content Grabber对于具有基本技术知识的用户来说功能极其强大。
Import.io是基于网页的数据提取工具。Import.io于2016年首次启动,现已将其业务模式从B2C转变为B2B。2019年,Import.io并购了Connotate,成为了一个网络数据集成平台 (Web Data Integration Platform)。凭借广泛的网络数据服务,Import.io成为了商业分析的绝佳选择。
Parsehub是基于网页的数据爬虫。它可以使用AJax,JavaScript等等从网站上提取动态的的数据。Parsehub提供为期一周的免费试用,供用户体验其功能。
Mozenda是网络数据抓取软件,提供企业级数据抓取服务。它既可以从云端也可以从内部软件中提取可伸缩的数据。
第二部分、开源数据工具
01Knime
KNIME是一个分析平台,可以帮助你分析企业数据,发现潜在的趋势价值,在市场中发挥更大潜能。KNIME提供Eclipse平台以及其他用于数据挖掘和机器学习的外部扩展。KNIME为数据分析师提供了2,000多个模块。
02OpenRefine(过去的Google Refine)是处理杂乱数据的强有力工具,可用于清理、转换、链接数据集。借助其分组功能,用户可以轻松地对数据进行规范化。
03R-Programming
R大家都不陌生,是用于统计计算和绘制图形的免费软件编程语言和软件环境。R语言在数据挖掘中很流行,常用于开发统计软件和数据分析。近年来,由于其使用方便、功能强大,得到了很大普及。
04RapidMiner
与KNIME相似,RapidMiner通过可视化程序进行操作,能够进行分析、建模等等操作。它通过开源平台、机器学习和模型部署来提高数据分析效率。统一的数据科学平台可加快从数据准备到实施的数据分析流程,极大地提高了效率。
第三部分、数据可视化工具
01
Datawrapper
Microsoft PowerBI既提供本地服务又提供云服务。它最初是作为Excel附加组件引入的,后来因其强大的功能而广受欢迎。截至目前,它已被视为数据分析领域的领头羊,并且可以提供数据可视化和商业智能功能,使用户能够以较低的成本轻松创建美观的报告或BI仪表板。
02
Solver
Solver专用于企业绩效管理 (CPM) 数据可视化。其BI360软件既可用于云端又可用于本地部署,该软件侧重于财务报告、预算、仪表板和数据仓库的四个关键分析领域。
03
Qlik
Qlik是一种自助式数据分析和可视化工具。可视化的仪表板可帮助公司有效地“理解”其业务绩效。
04
Tableau Public
Tableau是一种交互式数据可视化工具。与大多数需要脚本的可视化工具不同,Tableau可帮助新手克服最初的困难并动手实践。拖放功能使数据分析变得简单。除此之外,Tableau还提供了入门工具包和丰富的培训资源来帮助用户创建报告。
05
Google Fusion Tables
Fusion Table是Google提供的数据管理平台。你可以使用它来收集,可视化和共享数据。Fusion Table与电子表格类似,但功能更强大、更专业。你可以通过添加CSV,KML和电子表格中的数据集与同事进行协作。你还可以发布数据作品并将其嵌入到其他网络媒体资源中。
06
Infogram
Infogram提供了超过35种交互式图表和500多种地图,帮助你进行数据可视化。多种多样的图表(包括柱形图,条形图,饼形图和文字云等等)一定会使你的听众印象深刻。
第四部分、情感分析工具
01
HubSpot’s ServiceHub
HubSpot具有客户反馈工具,可以收集客户反馈和评论,然后使用自然语言处理 (NLP) 分析数据以确定积极意图或消极意图,最终通过仪表板上的图形和图表将结果可视化。你还可以将HubSpot’s ServiceHub连接到CRM系统,将调查结果与特定联系人联系起来。这样,你可以识别不满意的客户,改善服务,以增加客户保留率。
02
Semantria
Semantria是一款从各种社交媒体收集帖子、推文和评论的工具。Semantria使用自然语言处理来解析文本并分析客户的态度。通过Semantria,公司可以了解客户对于产品或服务的感受,并提出更好的方案来改善产品或服务。
03
Trackur
Trackur的社交媒体监控工具可跟踪提到某一用户的不同来源。它会浏览大量网页,包括视频、博客、论坛和图像,以搜索相关消息。用户可以利用这一功能维护公司声誉,或是了解客户对品牌和产品的评价。
04
SAS Sentiment Analysis
SAS Sentiment Analysis是一款功能全面的软件。网页文本分析中最具挑战性的部分是拼写错误。SAS可以轻松校对并进行聚类分析。通过基于规则的自然语言处理,SAS可以有效地对消息进行分级和分类。
05
Hootsuit Insight
Hootsuit Insight可以分析评论、帖子、论坛、新闻站点以及超过50种语言的上千万种其他来源。除此之外,它还可以按性别和位置对数据进行分类,使用户可以制定针对特定群体的战略营销计划。你还可以访问实时数据并检查在线对话。
第五部分、数据库
01
Oracle
毫无疑问,Oracle是开源数据库中的佼佼者,功能丰富,支持不同平台的集成,是企业的最佳选择。并且,Oracle可以在AWS中轻松设置,是关系型数据库的可靠选择。除此之外,Oracle集成信用卡等私人数据的高安全性是其他软件难以匹敌的。
02
PostgreSQL
PostgreSQL超越了Oracle、MySQL和Microsoft SQL Server,成为第四大最受欢迎的数据库。凭借其坚如磐石的稳定性,它可以处理大量数据。
03
Airtable
Airtable是基于云端的数据库软件,善于捕获和显示数据表中的信息。Airtable提供一系列入门模板,例如:潜在客户管理、错误跟踪和申请人跟踪等,使用户可以轻松进行操作。
04
MariaDB
MariaDB是一个免费的开源数据库,用于数据存储、插入、修改和检索。此外,Maria提供强大的社区支持,用户可以在这里分享信息和知识。
05
Improvado
Improvado是一种供营销人员使用自动化仪表板和报告将所有数据实时地显示在一个地方的工具。作为营销和分析领导者,如果你希望在一个地方查看所有营销平台收集的数据,那么Inprovado对你再合适不过了。你可以选择在Improvado仪表板中查看数据,也可以将其通过管道传输到你选择的数据仓库或可视化工具中,例如Tableau、Looker、Excel等。品牌,代理商和大学往往都喜欢使用Improvado,以大大节省人工报告时间和营销花费。
㈡ 数据科学是什么
数据科学:"处理数据的科学,一旦数据与其代表事物的关系被建立起来,将为其他领域与科学提供借鉴"。
研究内容
1、基础理论研究。科学的基础是观察和逻辑推理,同样要研究数据自然界中观察方法,要研究数据推理的理论和方法,包括:数据的存在性、数据测度、时间、数据代数、数据相似性与簇论、数据分类与数据网络全书等。
2、实验和逻辑推理方法研究。需要建立数据科学的实验方法,需要建立许多科学假说和理论体系,并通过这些实验方法和理论体系开展数据自然界的探索研究,从而认识数据的各种类型、状态、属性及变化形式和变化规律,揭示自然界和人类行为现象和规律。
3、领域数据学研究。将数据学的理论和方法应用于许多领域,从而形成专门领域的数据学,例如:脑数据学、行为数据学、生物数据学、气象数据学、金融数据学、地理数据学等等。
4、数据资源的开发利用方法和技术研究。数据资源是重要的现代战略资源,其重要程度将越来越凸显,在本世纪有可能超过石油、煤炭、矿产,成为最重要的人类资源之一。这是因为人类的社会、政治和经济都将依赖于数据资源,而石油、煤炭、矿产等资源的勘探、开采、运输、加工、产品销售等等无一不是依赖数据资源的,离开了数据资源,这些工作都将无法开展。
㈢ 《数据科学入门》pdf下载在线阅读,求百度网盘云资源
《数据科学入门》([美] Joel Grus)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/13UnWxb2ecRvrgdSqFpXI5A
书名:数据科学入门
作者:[美] Joel Grus
译者:高蓉
豆瓣评分:7.0
出版社:人民邮电出版社
出版年份:2016-3
页数:304
内容简介:
数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。
作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。
通过阅读本书,你可以:
学到一堂Python速成课;
学习线性代数、统计和概率论的基本方法,了解它们是怎样应用在数据科学中的;
掌握如何收集、探索、清理、转换和操作数据;
深入理解机器学习的基础;
运用k-近邻、朴素贝叶斯、线性回归和逻辑回归、决策树、神经网络和聚类等各种数据模型;
探索推荐系统、自然语言处理、网络分析、MapRece和数据库。
作者简介:
Joel Grus
是Google的一位软件工程师,曾于数家创业公司担任数据科学家。目前住在西雅图,专注于数据科学工作并乐此不疲。偶尔在joelgrus.com发表博客,长期活跃于Twitter @joelgrus。
㈣ 《数据科学入门》pdf下载在线阅读全文,求百度网盘云资源
《数据科学入门》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1s-MFDcy02kyK-MZLiZhQIA
简介:作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。
通过阅读本书,你可以:
学到一堂Python速成课;
学习线性代数、统计和概率论的基本方法,了解它们是怎样应用在数据科学中的;掌握如何收集、探索、清理、转换和操作数据;深入理解机器学习的基础;
运用k-近邻、朴素贝叶斯、线性回归和逻辑回归、决策树、神经网络和聚类等各种数据模型;探索推荐系统、自然语言处理、网络分析、MapRece和数据库。
㈤ 什么是数据科学
数据科学,英文为Data Science,简称DS,从广义上来说,数据科学顾名思义,和数据有关的科学研究都是数据科学。
维基网络对 DS 的解释是这样的:“ In general terms , Data Science is the extraction of knowledge from data , which is a continuation of the field data mining and predictive analytics , also known as knowledge discovery and data mining .”具体来说,数据科学是指通过挖掘数据、处理数据、分析数据,从而获取数据中潜在的信息和技术。
数据科学家的工作:借助统计编程,设计、开发和运用算法来支持商业决策制定工具,管理海量数据, 创建可视化以帮助理解。
㈥ 《精通数据科学:从线性回归到深度学习》pdf下载在线阅读全文,求百度网盘云资源
《精通数据科学:从线性回归到深度学习》(唐亘)电子书网盘下载免费在线阅读
链接: https://pan..com/s/1cQ6f79HuCy5Spcrx81DsiQ
书名:精通数据科学:从线性回归到深度学习
作者:唐亘
豆瓣评分:7.2
出版社:人民邮电出版社
出版年份:2018-5-8
页数:432
内容简介:
数据科学是一门内涵很广的学科,它涉及到统计分析、机器学习以及计算机科学三方面的知识和技能。本书深入浅出、全面系统地介绍了这门学科的内容。
本书分为13章,最初的3章主要介绍数据科学想要解决的问题、常用的IT工具Python以及这门学科所涉及的数学基础。第4-7章主要讨论数据模型,主要包含三方面的内容:一是统计中最经典的线性回归和逻辑回归模型;二是计算机估算模型参数的随机梯度下降法,这是模型工程实现的基础;三是来自计量经济学的启示,主要涉及特征提取的方法以及模型的稳定性。接下来的8-10章主要讨论算法模型,也就是机器学习领域比较经典的模型。这三章依次讨论了监督式学习、生成式模型以及非监督式学习。目前数据科学最前沿的两个领域分别是大数据和人工智能。本书的第11章将介绍大数据中很重要的分布式机器学习,而本书的最后两章将讨论人工智能领域的神经网络和深度学习。
本书通俗易懂,而且理论和实践相结合,可作为数据科学家和数据工程师的学习用书,也适合对数学科学有强烈兴趣的初学者使用。同时也可作为高等院校计算机、数学及相关专业的师生用书和培训学校的教材。
作者简介:
唐亘,数据科学家,专注于机器学习和大数据,热爱并积极参与Apache Spark、scikit-learn等开源项目。作为讲师和技术顾问,为多家机构(包括惠普、华为、复旦大学等)提供百余场技术培训。
此前的工作和研究集中于经济和量化金融,曾参与经济合作与发展组织(OECD)的研究项目并发表论文,并担任英国知名在线出版社Packt的技术审稿人。
曾获得复旦大学的数学和计算机双学士学位;巴黎综合理工的金融硕士学位;法国国立统计与经济管理学校的数据科学硕士学位。
㈦ 数据科学有哪些学习内容
数据科学根据其侧重点不同其实又分为三大类,即:数据分析、数据挖掘和大数据。
数据分析主要偏重业务,即利用一些数据分析和统计工具,如Excel、Spass、SAS、SQL等,进行数据分析和展现,以辅助公司的某项业务决策。
数据挖掘比数据分析更侧重于建模能力一些,一般是给定一些数据和某个问题,让你运用某些机器学习算法从中建立出模型,再通过这个模型去对某些东西进行预测。所以,机器学习算法可以说是数据挖掘中的核心。
大数据目前一般指Hadoop和Spark这些大数据框架,实际上偏重于一些平台架构类的东西。
注意,我们这里的数据科学主要围绕数据挖掘为主,辅助以一些数据分析技术。
㈧ 大数据专业主要课程有哪些
大数据专业主要课程多种多样,属于交叉学科。
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
就业前景:
作为人口大国和制造大国,我国数据产生能力巨大,大数据资源极为丰富。随着数字中国建设的推进,各行业的数据资源采集、应用能力不断提升,将会导致更快更多的数据积累。
预计到2021年底,我国数据总量预计将占全球数据总量的21%,将成为名列前茅的数据资源大国和全球数据中心。
㈨ 九个成为数据科学家的必备技能
九个成为数据科学家的必备技能
Works详细列举了从雇主角度看来,数据科学家加强自身市场竞争力所必备的9个数据科学技能。
过去一年中人们对数据科学的兴趣骤然增长。Nate Silver这个名字已经家喻户晓,所有公司都在寻找独角兽,很多不同学科的专业人才都开始关注这份薪水丰厚的职业,并将其当作自己可能的职业选择。
在Burtch Works开展招聘工作时,我们与很多想要在数据科学这一成长性领域有所发展的分析学专家探讨过,对具体的实施方案提出了疑问。我从招聘者的角度列出了在数据科学方面对成功十分关键,并且是招聘经理首先考虑的一些技术类与非技术类技能。
各公司在技能与工具的价值评判上都不尽相同,因此这个列表绝对谈不上详尽,不过在这些领域有过经验的人会在数据科学上占有更大的优势。
技术技能:分析学
1、教育——数据科学家受教育程度都很高,其中88%至少拥有硕士学位,46%有博士学位。虽然有一些名人特例,不过通常来说成为一名数据科学家需要扎实的教育背景,才能掌握所需的深度知识。最常见的研究领域包括数学与统计学(32%),其次是计算机科学(19%)以及工程学(16%)。
2、SAS软件与/或R语言——对其中至少一种分析工具有深入的了解,一般对数据科学来说R语言更好一些。
技术能力:计算机科学
3、都是公司在招聘数据科学类角色时最常提出的语言要求。
4、Hadoop平台——尽管不是总有这个需求,不过在很多情况下掌握它的人优势更大。熟悉Hive或Pig也是很有利的卖点。熟悉类似Amazon S3这样的云工具也会很有优势。
5、SQL数据库/编程——尽管NoSQL和Hadoop已经成为了数据科学很大的组成部分之一,招聘者还是希望能够找到可以编写与执行SQL复杂查询的候选人。
6、非结构化数据——数据科学家能够处理非结构化数据这一点非常重要,无论这些数据是来自社交媒体、视频源或者音频的。
非技术类技能
7、求知欲——毫无疑问最近到处都能看到这个词,尤其是在与数据科学家关联时。Frank Lo在几个月前的博文中描述了这个词的含义,并且讨论了其他必须的“软技能”。
8、商业智慧——想要成为数据科学家,需要充分了解自己工作的行业,并且知道公司想要解决的商业问题是哪些。能够根据数据科学分辨出解决哪些问题对公司来说更为重要,并且能够找出利用数据的新办法,这些是非常关键的。
9、通用技能——寻找优秀数据科学家的公司想要的是这样的人材:能够清楚顺畅地将自己的技术发现转化为非技术团队(比如市场部或者销售部)能够使用的内容。数据科学家必须能得出可用以决策的量化insight,同时了解非技术团队的需求,可以恰当地进行沟通以传达数据。想要了解定量专家在沟通技巧方面的更多信息,请参见我们近期的调查。
一般接下来的问题都是:“怎样能够获得这些技能呢?”网上有很多资源,不过笔者不希望让读者产生这样的错觉——成为数据科学家非常简单,上几节MOOCs就够了。除非你有扎实的定量经验,否则成为数据科学家之路还是颇有挑战的——但也并非不可能。
不过只要你确实对数据有兴趣、有激情,并打算将生命投入到相关的学习上,那么就不要让经验背景成为你追求数据科学生涯的阻碍。下面是我们觉得有用的一些资源:
1、高等学位——为了满足目前的需求,如雨后春笋般出现了更多的数据科学专业的项目,不过数学、统计学与计算机科学专业的项目也有很多。
2、MOOCs——Coursera、Udacity还有codeacademy都是不错的入门方式。
3、证书——KDnuggets编写了一个很长的列表清单。
4、Bootcamps——想要了解这种方式与学历项目或MOOCs的对比情况。
5、Kaggle——Kaggle上有数据科学竞赛,可以进行演练,用杂乱的真实世界数据来磨练技巧,解决真实的商业问题。雇主对Kaggle排名很重视,该排名可以被看作是相关的、经过亲身实践的项目工作。
6、LinkedIn小组——加入相关的小组,与数据科学社区的其他成员互动。
7、数据科学中心与KDnuggets——数据科学中心与KDnuggets都是保持与数据科学行业趋势前沿同步的优秀资源。8、Burtch Works研究:关于数据科学家的薪金,如果想要了解更多信息与当前数据科学家人数统计的话,请下载我们的数据科学家薪金研究报告。
㈩ 想学习数据分析,有哪些书籍或资料参考学习
入门数据分析类
师父领进门,修行在个人。下面这两本书是入门数据分析必看的书籍,也是检验自己是否真的喜欢数据分析。
从0到1:《深入浅出数据分析》
为什么是它?借用一位读者的评价“我家的猫都喜欢这本书!”
01 内容简介
以类似“章回小说”的活泼形式,生动地向读者展现优秀的数据分析人员应知应会的技术;正文以后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。
02 推荐理由
书名已经很好地表现出了这本书的优点——“深入浅出”。忘记烦恼,这本书与现实世界紧密互动,让你不再只有枯燥的理论,并且将知识图形化,复杂的概念简单化。
经典小黄书:《谁说菜鸟不会数据分析》
是本很好的书,但看过之后,这本书就真一文不值了。
01 内容简介
很多人看到数据分析就望而却步,担心门槛高,无法迈入数据分析的门槛。《谁说菜鸟不会数据分析》努力将数据分析写成像小说一样通俗易懂,使读者可以在无形之中学会数据分析,按照数据分析工作的完整流程来讲解。
02 推荐理由
数据分析的入门极品,但真的很入门,优缺兼有。对于入门理解来说是绝佳选择,对之后的修炼还是不够的。建议之前全都是自己瞎摸瞎撞搞数据分析的同学进行阅读,颇有醍醐灌顶之感。
分析工具类
与数据分析相关的工具非常之多,我们常用的有Excel、PPT、SQL等。如果您想精通他们,直接在哔哩哔哩搜索聚数云海,即可找到相关优质课程。
1.Excel
大家常说的Excel,但是不要以为你很会Excel!Excel是所有职场人必备的办公软件。Excel功能非常强大,在数据量不是很大的情况下,基本上都能用Excel实现数据分析。推荐如下书籍:
《Excel高效办公数据处理与分析》
01 内容简介
根据现代企业决策和管理工作的主要特点,从实际应用出发,介绍了Excel强大的数据处理与分析功能在企业决策和管理工作中的具体应用。
02 推荐理由
本书同时提供了大量需要你做的实例,学而不练是不存在的!
《别怕,Excel函数其实很简单》
01 内容简介
《别怕,Excel 函数其实很简单》用浅显易懂的图文、生动形象的比喻以及大量实际工作中的经典案例,介绍了Excel最常用的一部分函数的计算原理和应用技巧,还介绍了数据的科学管理方法,以避免从数据源头就产生问题。
02 推荐理由
适合希望提高办公效率的职场人士,特别是经常需要处理分析大量数据并制作统计报表的相关人员,以及相关专业的高校师生阅读,小白需谨慎!
2. SQL
SQL是数据分析的基础,是想要学会数据分析能力的必备技能。那这里我只给大家介绍三本书,第一本书零基础入门,第二是进阶,第三本是SQL中的字典,话不多说,我们直接上架。
《SQL基础教程》
01 推荐理由
介绍了关系数据库以及用来操作关系数据库的SQL语言的使用方法。书中通过丰富的图示、大量示例程序和详实的操作步骤说明,让读者循序渐进地掌握SQL的基础知识和使用技巧,切实提高编程能力。每章结尾设置有练习题,帮助读者检验对各章内容的理解程度。另外,本书还将重要知识点总结为“法则”,方便读者随时查阅。
本书107张图表+209段代码+88个法则,是零基础进阶人士必备!
SQL进阶:《SQL进阶教程》
01 推荐理由
本书是为志在向中级进阶的数据库工程师编写的一本SQL技能提升指南。全书可分为两部分,第一部分介绍了SQL语言不同寻常的使用技巧,带领读者从SQL常见技术,去探索新发现。旨在帮助读者提升编程水平;第二部分着重介绍关系数据库的发展史,把实践与理论结合起来,旨在帮助读者加深对关系数据库和SQL语言的理解。
本书不适合小白!适合具有半年以上SQL使用经验、已掌握SQL基础知识和技能、希望提升自己编程水平的读者阅读。
SQL辅导书籍
01 推荐理由
本书是麻省理工学院、伊利诺伊大学等众多大学的参考教材,由浅入深地讲解了SQL的内容,实例丰富,便于查阅。本书没有过多阐述数据库基础理论,而是专门针对一线软件开发人员,直接从SQL SELECT开始,讲述实际工作环境中最常用和最必需的SQL知识,实用性极强。
有一定SQL基础的人士可以将它当做一本字典使用,遇到问题可以查找相应内用。
3.Python
“人生苦短,我用Python”。Python编程语言是最容易学习,并且功能强大的语言。但是很多人声称自己精通Python,自己却写不出Pythonic的代码,对很多常用的包不是很了解。万丈高楼平地起,咱们先从Python中最最基础的开始。
《Python编程,从入门到实践》
01 推荐理由
本书最大的特点就是零基础完全不懂编程的小白也能够学习,新手想学习选它绝对错不了。知识点由浅入深循循渐进,并配有视频教程手把手教学,同时所需的软件也是免费的。本书也配有相关辅导书籍,有兴趣的话可以去看看,但是请记住,这本书是最核心的。
《利用Python进行数据分析》
01 推荐理由
不像别的编程书一样,从盘古开天辟地开始讲起。这本书是直接应用到数据分析的,所以很多在数据分析上应用不那么频繁的模块也就没有讲。
本书第二版针对Python 3.6进行了更新,并增加实际案例向你展示如何高效地解决一系列数据分析问题。你将在阅读过程中学习到新版本的pandas、NumPy、IPython和Jupyter。
4.R语言
R是用于统计分析、绘图的语言和操作环境。但是R是有一定难度的,没有基础的话请谨慎尝试!推荐书籍:
《R语言入门与实践》
01 推荐理由
本书通过三个精心挑选的例子,深入浅出地讲解如何使用R语言玩转数据。将数据科学家必需的专业技能融合其中,教会读者如何将数据存储到计算机内存中,如何在必要的时候转换内存中的数据值,如何用R编写自己的程序并将其用于数据分析和模拟运行。
案例提升类
《活用数据:驱动业务的数据分析实战》
01 推荐理由
是一本用数据来帮助企业破解业务难题的实操书,有理论、有方法、有实战案例。具有业务驱动、案例闭环、思维先导、实战还原4大特色,同时在思路上清晰连贯,在表达上深入浅出,既能帮助数据分析从业者入门和提升,也能辅助企业各业务部门和各级管理人员做量化决策。
《精益数据分析》
01 推荐理由
本书展示了如何验证自己的设想、找到真正的客户、打造能赚钱的产品,以及提升企业知名度。30多个案例分析,全球100多位知名企业家的真知灼见,为你呈现来之不易、经过实践检验的创业心得和宝贵经验,值得每位创业家和企业家一读。