当前位置:首页 » 石油矿藏 » 石油碱性氮是什么意思
扩展阅读
雨花柴油机油什么价格 2025-07-28 17:45:34
浓缩料成本怎么算 2025-07-28 17:44:47

石油碱性氮是什么意思

发布时间: 2022-06-17 14:06:50

⑴ 高酸值油藏成因分析

一、生物降解作用前后石油酸组成特征

不同原油的石油酸组成特征,不同生源、不同生物降解程度的石油酸组成差异很大,本节针对典型生物降解原油对比分析生物降解前后化合物类型、缩合度分布及碳数分布等组成差异。

选择辽河盆地原油为研究对象,分析生物降解前后石油酸组成特征。图4-17为四个原油的饱和烃色谱、O2类化合物和N1类化合物组成分布图,从饱和烃的总离子流色谱图可以看出欢16两个原油保存相对完好,受生物降解作用较小,而欢20为降解原油。生物标志物组成信息表明,欢20原油存在一定混源特征,虽然存在姥鲛烷和植烷,但其降解程度较高。未降解原油中Z=0的O2类化合物,即脂肪酸类化合物相对丰度较高,一般为基峰。图中欢16O2类化合物分布图中显示四环(Z=-8)和五环(Z=-10)类化合物相对丰度较高,这是辽河油田未降解原油的一个生要特征,色谱—质谱分析表明这部分化合物主要为断藿烷和藿烷类化合和形成的羧酸;降解后脂肪酸相对含量大幅度下降,环烷酸相对含量增加,一环(Z=-2)和二环(Z=-4)环烷酸成为丰度最高的化合物类型。N1类化合物在生物降解前后化合物缩合度分布变化不如O2类明显,但仍可以清晰地观察到高缩合度化合物相对丰度增加的特征。

图4-18和图4-19分别为欢16和欢20原油O2类和N1类化合物的碳数分布图。从图中可以更加清楚地看到生物降解前后化合物组成及分布的巨大差异,O2类化合物缩合度变化明显,但碳数分布范围变化不大,而N1类化合的除了表现出高缩合度化合物相对含量增加的特征,更为明显的是化合物碳数分布范围存在很大差异,苯并咔唑和二苯并咔唑类化合物在降解后的原油中具有更高的丰度优势,但其碳数分布范围相对较窄,说明生物降解过程中高缩合度非碱性氮化物烷基侧链受到攻击,而含氮母核难以降解。

图4-29 O2类化合物在原油、石油酸和脱酸油中的组成及碳数分布

⑵ 什么叫抽余油

是销售企业吗?是的话就是指油轮、油罐车卸油之后剩下的在舱内不能卸出来那部分油品。

⑶ 全自动电位滴定仪的应用

ZDJ-3D ZDJ-2DZDJ-1DZDJ-100ZDJ-400系列电位滴定仪
医药行业
电位滴定法测定医药中间体3,3′-二氨基二苯砜含量
电位滴定法测定农药中间体双甘膦含量
电位滴定法测定盐酸左旋咪唑
电位滴定法测定卵磷脂络合碘中碘含量
电位滴定法测定中药材猫爪草中总游离酸的含量
电位滴定法测定盐酸雷诺嗪中盐酸雷诺嗪含量的非水滴定法
两点电位滴定法电位滴定法测定硝酸舍他康唑
电位滴定法测定五味子中总游离有机酸
电位滴定法测定氯化钠注射液含量
电位滴定法测定更昔洛韦含量
电位滴定法测定复方氯丙那林鱼腥草素钠片中鱼腥草素钠的含量
电位滴定法测定乳酸环丙沙星
电位滴定法测定依达拉奉含量
电位滴定法测定安乃近片的含量
电位滴定法测定奥沙普秦及其片剂的含量
电位滴定法测定肝胃气痛片中碳酸氢钠含量
电位滴定法测定盐酸雷尼替丁含量
电位滴定法测定西罗莫司口服溶液剂的过氧化值
电位滴定法测定止咳糖浆中氯化铵含量
电位滴定法测定依达拉奉含量
电位滴定法测定维生素B1注射液的含量
电位滴定法测定盐酸曲马多及片剂的含量
电位滴定法测定苯磺酸左旋氨氯地平的含量
电位滴定法测定半胱氨酸和胱氨酸含量
电位滴定法测定姜胆咳喘片的氯化铵含量
电位滴定法测定复方板蓝根冲剂中总有机酸的含量
电位滴定法测定阿德福韦酯原料药含量
电位滴定法测定氨酚伪麻片中盐酸伪麻黄碱的含量
电位滴定法测定半夏药材中总有机酸的含量
电位滴定法测定唑来瞵酸含量
电位滴定法测定克林霉素磷酸酯氯化钠注射液中氯化钠含量
电位滴定法测定盐酸雷尼替丁的含量
电位滴定法测定磺酰氯类物质的含量
电位滴定法测定牛磺酸颗粒含量
电位滴定法测定依达拉奉原料药的含量
电位滴定法测定盐酸氟桂利嗪的含量
电位滴定法测定蜘蛛香药材中总缬草素含量
电位滴定法测定氨酪照片的含量
电位滴定法测定加味四妙丸中有机酸含量
食品行业
电位滴定法测定石柑子总有机酸含量
电位滴定法测定水中氯离子含量
电位滴定法测定蜂蜜及其制品的酸度
电位滴定法测定双苯氟嗪的含量
电位滴定法测定食品中过氧化氢
电位滴定法测定饮用水中硝酸盐氮
电位滴定法测定水中的SO4^2-的应用
电位滴定法测定菠萝、柑橘果汁的总酸及果汁酸度
电位滴定法测定鸡精中谷氨酸钠的含量
电位滴定法测定柠檬酸钠含量
电位滴定法测定碘盐中碘含量
连续电位滴定法测定水中卤素离子
电位滴定法测定味精中谷氨酸钠
电位滴定法测定葡萄酒中游离SO2、总SO2
电位滴定法测定米糠中维生素B1含量
电位滴定法测定酱油中总酸和氨基酸态氮
电位滴定法测定荔枝中维生素C
电位滴定法测定溶液中三聚氰胺的含量
位滴定法测定奶粉中微量锌
电位滴定法测定深色蔬菜和水果中的维生素C
快速电位滴定法测定钾盐中的钾含量
电位滴定法测定咖啡因的含量,咖啡因中砷
电位滴定法测定调味品中总酸和氨基酸态氮
电位滴定法测定水中总硬度
电位滴定法测定高钙食品中钙
位滴定法测定大蒜中大蒜辣素含量
电位滴定法测定乳与乳制品中酸度
石油化工冶炼行业
电位滴定法测定化肥硫酸铵试样中游离酸含量
电位滴定法测定原油中的硫醚硫
电位滴定法测定PET微波水解产物中端羧基含量
电位滴定法测定馏分燃料中的硫醇硫
电位滴定法测定油田水中的Ca^2+、Mg^2+含量
电位滴定法测定原油酸值
电位滴定法测定石油产品SAN混合液中叔十二碳硫醇(TDM)的含量
电位滴定法测定甲苯电合成产物中的苯甲醛和苯甲酸
电位滴定法测定炼油工业污水中的氯离子
电位滴定法测定渣油中碱性氮含量
电位滴定法测定铁矿中水溶性氯化物
连续电位滴定法测定尿素溶液中的氨和二氧化碳
电位滴定法测定树形大分子聚酰胺-胺(PAMAM)
电位滴定法测定铂重整催化剂中氯含量
电位滴定法测定合金钢中的锰含量
电位滴定法测定对氨基苯甲酸正丁酯的含量
电位滴定法测定高钙稠油脱钙污水中的钙含量
电位滴定法测定显影液中溴离子浓度
电位滴定法测定轻柴油碘值
电位滴定法测定氰尿酸的含量
电位滴定法测定工业用三壬基苯亚磷酸酯(TNPP)的酸值
络合滴定法电位滴定法测定朱砂中硫化汞含量
电电位滴定法测定壳聚糖的脱乙酰度
电位滴定法测定铁矿石中水溶性氯化物含量
电位滴定法测定烯烃含量
电位滴定法测定异氰酸根含量
电位滴定法测定单宁胺甲基化产物中的甲醛含量
电位滴定法测定二茂铁接枝丁羟羟基含量
电位滴定法测定5-氨基咪唑-4-甲酰胺盐酸盐
电电位滴定法测定氢氧化镁中镁离子质量分数
电位滴定法测定纤维级聚酯切片中羧基值
电位滴定法测定间羟基苯甲醛合成中残留间甲酚的含量
电位滴定法测定进出口化肥中氯离子
电位滴定法测定电合成产物苯甲醛和苯甲酸
环保电镀材料行业
电位滴定法测定三聚磷酸钠的溶解度
电位滴定法测定海水碳酸盐碱度值
电位滴定法测定炸药标准物质RDX和HMX的含量
电位滴定法测定钒电池电解液中不同价态的钒
电位滴定法测定液体推进剂偏二甲肼
电位滴定法测定直发膏(剂)中氢氧化物
电位滴定法测定染料亚甲基蓝的含量
电位滴定法测定显影液中的米吐尔和对苯二酚的含量
电位滴定法测定了工业气体和废水中硫化物含量
电位滴定法测定化学镀镍液中次磷酸钠含量

⑷ 沈本贤的论着

1. Investigation on the compatibility and incompatibility of vacuum resie with catalytic cracking bottom oil。Yanfei, Wang; Jian, Cheng; Shengsheng, Jian; Benxian, Shen Source: Energy and Fuels, v 17, n 2, March/April, 2003, p 344-347
2. Desulfurization of FCC gasoline by solvent extraction and photooxidation. Ibrahim, Aladin; Xian, Shen Ben; Wei, Zhou Source: Petroleum Science and Technology, v 21, n 9-10, September/October, 2003, p 1555-1573.
3. Desulfurization of FCC gas oil by solvent extraction, photooxidation, and oxidizing agents. Ibrahim, Aladin; Xian, Shen Ben; Wei, Zhou Source: Petroleum Science and Technology, v 22, n 3-4, March/April, 2004, p 287-301.
4.石油焦制备碳质吸附剂的研究, 孙利 沈本贤,华东理工大学学报:自然科学版.2004,30(1):15-18
5.甲酸/双氧水体系氧化脱除焦化蜡油中的含硫化合物, 凌昊 沈本贤 陈巨星 高玉延 陈新忠, 华东理工大学学报:2003,29(5): 456-459
6.甲酸络合萃取脱除焦化蜡油中碱性氮化合物的研究. 凌昊 沈本贤 高玉延 陈新忠. 石油炼制与化工.2003,34(8): 28-31
7.提高H2O2/甲酸体系选择性氧化抽提脱硫效率的研究. 凌昊 沈本贤 高玉延 夏波. 华东理工大学学报:自然科学版.2003,29(4): 351-354
8二甲硫基甲苯二胺的合成与表征. 王延飞 沈本贤. 应用化学.2003,20(10): 1018-1020
9.辽河特稠油降粘研究. 吴本芳 沈本贤 杨允明. 油气储运.2003,22(6): 27-32
10.脱沥青油的催化裂化性质研究. 王延飞,程健,沈本贤. 燃料化学学报. 2003,31(5):500-503
11.辽河超稠油乳化降粘研究. 吴本芳,沈本贤,杨允明,王评. 油田化学.2003,20(4): 377-379
12 Study on the microemulsion behavior of the oxidized paraffin wax Petroleum Science and Technology, v 20, n 9-10, October/November, 2002, p 973-981
13 TLC/FID group compositional analytical method of micro-amounts of asphalts and its application Fuel Science & Technology International, v 12, n 5, May, 1994
14 Study on the structure of heavy oils Petroleum Science and Technology, v 15, n 7-8, Aug-Sep, 1997, p 595-610
15 Kinetics of mesophase transformation of coal tar pitch Fuel Processing Technology, v 55, n 2, May, 1998, p 153-160

⑸ 蜡烛是由什么化学元素组成!

现在蜡烛的主要原料是石蜡,石蜡是从石油的含蜡馏分经冷榨或溶剂脱蜡而制得的 蜡烛
,是几种高级烷烃的混合物,主要是正二十二烷(C22H46)和正二十八烷(C28H58),含碳元素约85%,含氢元素约14%。添加的辅料有白油,硬脂酸,聚乙烯,香精等,其中的硬脂酸(C17H35COOH)主要用以提高软度,具体添加要视生产什么种类的蜡烛而定。 蜡烛燃烧时,正二十二烷和硬脂酸燃烧的产物都是二氧化碳和水。反应的化学方程式为2C22H46 + 67O2→44CO2 + 46H2O和C17H35COOH + 26O2→18CO2 + 18H2O。蜡烛被点燃时最初燃烧的火焰较小,逐渐变大,火焰分为三层(外焰、内焰、焰心)。焰心主要为蜡烛蒸气,温度最低,内焰石蜡燃烧不充分,温度比焰心高,因有部分碳粒,火焰最明亮,外焰与空气充分接触,燃烧充分,温度最高,因此,当把一根火柴梗迅速平放入火焰中,约1秒钟后取出,火柴梗接触外焰部分首先变黑

⑹ 石油中碱性氮指什么

碱性氮是以氨基的形式存在的,包括仲胺和伯胺。
硫醇硫就是把醇羟基里面的氧换为硫,这样的基团叫硫醇,里面的硫叫硫醇硫。

⑺ 请问石蜡有什么作用- -

主要成分:由C,H,O三种,化学式 CnH2n+2(n、2n+2是角标); 主要由C12—Cl8的正构烃组成,含有少量芳香烃及碱性氮,化学式一般写为CxHy,主要用途: 洗涤剂原料、化妆品、日用品稀释剂、溶剂等

⑻ 负离子电喷雾-傅立叶变换离子回旋共振质谱研究石油中酸性化合物

刘 鹏1,2,3 黎茂稳1,2

(1.中国石化油气成藏重点实验室,江苏 无锡 214151;2.中国石化

石油勘探开发研究院无锡石油地质研究所,江苏 无锡 214151;

3.浙江大学 地球科学系,浙江 杭州 310027)

摘 要 采用负离子电喷雾-傅立叶变换离子回旋共振质谱(ESI FT-ICR MS)分析了加拿大油砂沥青、加拿大原油和我国冀东原油中的酸性杂原子化合物组成,以研究不同类型石油样品中石油酸组成的分布特征。研究结果表明,加拿大油砂沥青中主要以DBE(Double band equivalence)为2~4的O2类化合物为主,对应1~3环的环烷酸;加拿大原油中O2类主要以1~2环环烷酸为主,还含有一定量的脂肪酸;我国冀东原油含有丰富的石油酸类型,其中既含有丰富的脂肪酸,也含有大量的1~3环的环烷酸,还在其中鉴定出丰富的C30—C35的甾烷酸和藿烷酸。

关键词 石油 环烷酸 高分辨质谱 酸性化合物 电喷雾-傅立叶变换离子回旋共振质谱

Molecular Characterization of Acidic Compounds in Crude Oil

by Negative Electrospray Ionization Fourier Transform Ion

Cyclotron Resonance Mass Spectrometry

LIU Peng1,2,3,LI Maowen1,2

(1.Key Laboratory of Petroleum Accumulation Mechanisms,SINOPEC,

Wuxi 214151,China;2.Wuxi Research Institute of Petroleum Geology,

SINOPEC,Wuxi 214151 ,China;3.Department of Earth Science,

Zhejiang University,Hangzhou 31 0027,China)

基金项目:中国博士后科学基金项目 “原油中大分子极性化合物高分辨质谱分析及地球化学应用”(2012M520550)资助。

Abstract Oil sand bitumen,crude oil of Canada and crude oil of Jidong,China were characterized by negative-ion electrospray ionization(ESI)and Fourier transform ion cyclotron resonance mass spectrometry(FT- ICR MS).The results indicated that the most abundant O2 class species in oil sand bitumen of Canada were centered at DBE values of 2~4.These were likely 1~3 cyclic-rings naphthenic acids,respectively.The most abundant O2 class species in crude oil of Canada were 1~2 cyclic-rings naphthenic acids,as well a s soe fatty acids(DBE= 1).crude oil of Jidong,China contain abundant O2 class species,in which the fatty acids(DBE =1), 1~3 cyclicrings naphthenic acids and C30—C35 hopanoid acid and steroid acid were all identified.

Key words crude oil;naphthenic acids;high resolution mass spectrometry;acidic compounds;electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS)

随着全球高酸值原油产量的快速增长,石油酸组成研究已经成为近期石油化学研究的热点之一。石油酸组成分析对高酸值油藏的形成与分布研究具有重要的指导意义,受到油气勘探地球化学家的广泛关注。石油酸的分子量分布范围很宽,组成差异较大,直接分析原油中的石油酸组成十分困难。分析前往往需要进行样品预处理,然后再进行仪器分析。利用传统分析仪器,人们已在石油酸组成研究方面取得了很多成果[1~4]。但是,各种预处理步骤固有的特性导致分析结果存在很大局限性,人们始终无法在分子层次上整体了解石油酸组成的全貌。

近年来,基于傅立叶变换离子回旋共振质谱(FT-ICR MS)提出了 “石油组学”[5~7]的概念,即从分子层次上研究石油化学组成及其物理性质与化学转化性能之间的关系。FT-ICR MS具有超高的分辨率和质量准确度,可以精确确定由C、H、O、N、S及它们主要同位素所组成的各种元素组合[8]。同时,FT-ICR MS可与多种软电离技术联用来分析复杂的石油样品混合物。特别是FT-ICR MS与电喷雾电离源(ESI)联用,能有效地分析石油中的极性杂原子化合物组成研究[9,10]。ESI电离源可以在烃类存在的条件下选择性地电离石油中的极性杂原子化合物,如分别在正离子和负离子模式下,选择性地电离石油中的微量的碱性(主要是碱性氮化合物)和酸性(主要是石油酸)化合物,中性氮化合物(含吡咯氮化物)通常出现在负离子质谱图上,但是其电离选择性相对较差[11]。本文以3个不同来源的原油为例,展示负离子ESI FT-ICR MS在原油中酸性化合物分子组成研究中的应用前景。

1 实验部分

1.1 样品制备

研究样品包括西加拿大盆地下白垩统的一个油砂沥青样品和一个原油样品及一个我国冀东油田产层为第三系沙河街组的原油样品,分别取大约10mg原油溶于1mL甲苯中,再取其中20μL样品溶液溶于1mL甲苯:甲醇(1:1(V:V))混合溶液中,向所得溶液中加入15μL 28%氨水,轻轻振荡使其混合均匀,然后进行负离子ESI FT-ICR MS分析。

1.2 ESI FT-ICR MS分析

仪器:美国Bruker公司Apex-Ultra型FT-ICR MS,磁场强度为9.4 T。ESI电离源,负离子模式。

FT-ICR MS主要仪器参数:进样速度180μL/h,极化电压4000V,毛细管入口电压4500V,毛细管出口电压-320V,离子源六极杆累积时间0.01s,离子源六极杆直流电压2.4V,射频电压300Vp-p;四极杆Q1m/z 300,射频400Vp-p;碰撞池氩气流量0.3L·s-1,碰撞能量-1.5V,贮集时间0.2s,激发衰减11.75dB,采集质量范围200~900Da,采样点数4M,扫描谱图叠加64次以提高信噪比。

1.3 数据处理

所有分析数据均采用自编软件对质谱数据进行处理,数据处理方法见文献[12]。简言之,即将所有信噪比大于6的质谱峰导出到Excel表中,将质谱仪器所测并经内部校正后的IUPAC质量数(IUPAC Mass)通过下式转换为Kendrick质量数(Kendrick Mass)[13]

Kendrick质量数=IUPAC质量数×(14/14.01565)

转换后的Kendrick质量数与其最接近的整数质量的差值定义为质量偏差(Kendrick Mass Defect,KMD)[14]。Kendrick质量数的实质是将CH2的相对分子质量14.01565定义为整数质量单位,即14.00000,这样转换后的质量表中所有相差14的整数质量单位所对应的化合物即具有相同的母体结构单元,但具有不同的亚甲基数,也就是取代基不同的同类型化合物具有相同的KMD数值。通过KMD值大小可以快速鉴定同类型化合物;通过分子量计算程序计算出各个化合物分子中C、H、S、N、O等原子的组合方式,得到各质谱峰对应的分子式(CcHhSsNnOo,c、h、s、n、o分别为分子中碳、氢、硫、氮、氧的原子个数),最终能得到样品中所有类型化合物的分子组成信息及其对应的等效双键数(Double band equivalence,DBE):

油气成藏理论与勘探开发技术(五)

式中:c、h、n分别为分子中碳、氢、氮原子个数。

2 结果与讨论

加拿大油砂沥青、原油及我国冀东原油的负离子ESI FT-ICR MS质谱图如图1所示。其中,加拿大油砂沥青和原油具有相似的分子量分布,在m/z250~600之间,其质量重心在m/z 400附近;我国冀东原油具有较高的分子量分布,在m/z 300~750之间,其质量重心在m/z 480附近。

图1 3个不同样品的负离子ESI FT-ICR MS谱图

图2为图1中两个相邻质量单位m/z 419~420处的局部放大图,从中可以看出,这3种石油样品在详细分子组成上存在很大差异。在3个样品的高分辨率质谱图中,奇数质量单位(m/z 419)均以O2类的质谱峰(8号峰)具有最高的相对丰度;在偶数质量单位(m/z 420),均能检测到O2类的同位素质谱峰(18号峰),此外在加拿大原油样品中N1类化合物(12号峰)也具有很高的相对丰度。在m/z 420处质量分辨率达到400000以上(m/△m50%@m/z 420 >400000,△m50%定义为质谱峰高一半处的峰宽),显示了FT -ICRMS具有超高的分辨率。在此分辨率条件下,能得到样品中酸性化合物的精确分子量,基于此能准确地对质谱峰进行定性,得到样品中酸性化合物的分子组成。以加拿大原油高分辨率质谱数据在m/z 419 ~420处所鉴定出的质谱峰为例,其定性结果见表1,共鉴定出18个质谱峰(其中9个为同位素峰),并且均能在质量精度为1×10-6以内准确确定其分子组成。

图2 图1中m/z 419.1~420.6的局部放大图(18个质谱峰的定性结果见表1)

基于质谱峰的精确分子量进行定性,并将鉴定出的化合物按照杂原子类型进行归类,加拿大油砂沥青和原油及我国冀东原油中不同杂原子类型化合物的相对丰度见图3,图中不同的色块代表不同DBE数值,在相同样品及同一类杂原子化合物中,色块的高度代表其对应DBE值的化合物类型的相对丰度。可以看出,这3类石油样品中的杂原子类型也具有很大差异。加拿大油砂沥青及原油含有较为复杂的杂原子类型,其中油砂沥青中O2类占有绝对优势的相对丰度,O2S1次之,N1类很低,此外还含有少量的O3、O1、N1O1、O1S1及N1S1。加拿大油砂沥青中O2类丰度很高,这可能与其经过较强的生物降解有关,含有较高的O2S1类及少量的O1S1及N1S1类说明加拿大油砂沥青硫含量较高,这与之前的分析结果一致。在加拿大原油中,N1类化合物具有最高的相对丰度,其次是O2类和O1类化合物,与加拿大油砂沥青相比,加拿大原油的生物降解程度应该较弱。我国冀东原油含有5类主要的杂原子类型,其中O2类化合物具有最高的相对丰度,其次是N1、O1、N1O1和N1S1

表1 图2中质量数m/z 419.1~420.6处质谱峰定性结果

本文重点分析了3种石油样品中的O2类杂原子化合物,其负离子ESI FT-ICR MS质谱图中O2类的DBE值及碳数分布图见图4。加拿大油砂沥青中O2类的DBE分布在1~14之间,碳数分布在15~45之间,其中DBE主要分布在2~4,碳数分布在C18—C35之间,说明其中的O2类化合物主要以1~3环的环烷酸为主,DBE=1的O2类相对丰度很低说明其中的脂肪酸含量非常低。加拿大原油样品中O2类的DBE分布也在1~14之间,碳数分布在12~45之间,其中DBE主要分布在1~3,碳数分布在C18—C35之间,说明其中的O2类化合物主要为1~2环的环烷酸为主,DBE=1的O2类含量较高,说明加拿大原油中含有一定量的脂肪酸。Kim等[15]曾采用脂肪酸与1~3环环烷酸相对含量的比值来衡量生物降解程度,该数值越低,其生物降解程度越高,由此可以看出加拿大油砂沥青的生物降解程度应该较原油的生物降解程度要高。我国冀东原油中O2类的DBE分布在1~13之间,碳数分布在14~56之间,其中含量较多的O2类化合物主要分布在两个范围:一个DBE分布在1~4,碳数分布在C24—C45之间,其分别对应脂肪酸和1~3环环烷酸;另一个DBE分布范围在5~6,碳数分布在C30—C40之间,4环、5环环烷酸由C29到C30相对丰度突然增高,在C30-C35附近出现最高值,说明冀东原油中甾烷酸和藿烷酸含量丰富,这一现象在研究辽河原油酸性化合物组成时也曾被发现[16]。Jones等[17]指出高丰度藿烷酸与原油的生物降解程度有关,Kim等[15]认为藿烷酸在降解初期增加,而在进一步生物降解过程中藿烷酸也受到攻击。遗憾的是本实验所研究样品并没有非常直接的相关性,不能从油气地球化学角度进行更深层次的分析,但是通过该分析技术已经可以得到石油样品中含有丰富地球化学信息的石油酸分子组成,这预示着FT-ICR MS将为油气地球化学研究提供重要的技术支持。

图3 3个石油样品中负离子ESI FT-ICR MS谱图中杂原子类型的相对丰度分布

图4 3个石油样品负离子ESI FT-ICR MS质谱图中O2的DBE值及碳数分布图

3 结论

1)加拿大油砂沥青、原油及我国冀东原油的负离子ESI FT-ICR MS质谱图中,均检测出大量的石油酸分子(O2类),其中加拿大油砂沥青和我国冀东原油中O2类具有最高的相对丰度,加拿大原油中O2类的相对丰度仅低于N1类化合物。

2)加拿大油砂沥青中O2类化合物主要以1~3环环烷酸为主;加拿大原油中O2类化合物主要以1~2环环烷酸为主,还含有较高的脂肪酸类(DBE=1)化合物;我国冀东原油中O2类化合物类型非常丰富,其中既含有丰富的脂肪酸,也含有大量的1~3环的环烷酸,还在其中鉴定出丰富的C30—C35的甾烷酸和藿烷酸。

3)ESI FT-ICR MS能有效地在分子层次上得到石油中的酸性化合物分子的组成及分布特征,而这类化合物又包含有大量的地球化学信息,因此,ESI FT-ICR MS将在油气地球化学研究中提供重要的技术支持。

参考文献

[1]Li M,et al.Characterization of petroleum acids using combined FT-IR,FT-ICR-MS and GC-MS:Implications for the origin of hig h acidity oils in the Muglad Basin,Sudan[J].Organic Geochemistry,2010,41(9):959~965.

[2]汪双清,林壬子,梅博文.高升油田莲花油层主要砂体稠油中的酸性化合物[J].地球化学,2000.29(4):376~382.

[3]康晏,王万春,张道伟,等.柴达木盆地第四系脂肪酸分布特征与生气潜力的关系[J].石油与天然气地质,2005,26(6):778 ~785.

[4]Ramljak Z,Sole A,Arpino P,et al.Separation of acids from asphalts[J].Anal.Chem.,1977.49(8):1222~1225.

[5]Marshall A G and Rodgers R P.Petroleomics:The next grand challenge for chemical analysis[J].Acc.Chem.Res.,2004.37(1):53~59.

[ 6]Rodgers R P,Schaub T M,Marshall A G.Petroleomics:MS returns to its roots[J].Anal.Chem.,2005,77(1):20A~27A.

[7]Marshall A G and Rodgers R P.Petroleomics:chemistry of the underworld[J].P.Natl.Acad.Sci.U.S.A.,2008,105:18090~18095.

[8]Qian K,Rodgers R P,Hendrickson C L,et al.Reading chemical fie print:Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil[J].Energy Fuels,2001,15(2):492~498.

[9]Liu P,Shi Q,Chung K H,et al .Molecular characterization of sulfur compounds in Venezuela crude oil and its SARA fractions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J].Energy Fuels,2010,24(9):5089~5096.

[10]Shi Q,Hou D,Chung K H,et al .Characterization of Heteroatom compounds in a crude oil and its saturates,aromatics,resins,and asphaltenes(SARA)and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J].Energy Fuels,2010,24(4):2545~2553.

[11]史权,赵锁奇,徐春明,等.傅立叶变换离子回旋共振质谱仪在石油组成分析中的应用[J].质谱学报,2008,29(06):367~378.

[12]Liu P,Xu C,Shi Q,et al.Characterization of sulfide compounds in petroleum:Selective oxidation followed by positive-ion electrospray Fourier transformion cyclotron resonance mass spectrometry[J].Anal. Chem.2010,82(15):6601~6606.

[13]Kendrick E.A mass scale based on CH2 =14.0000 for high resolution mass spectrometry of organic compounds[J].Anal.Chem.,1963,35(13):2146~2154.

[14]Hughey C A,Hendrickson C L,Rodgers R P,et al.Kendrick mass defect spectrum:A compact visual analysis for ultrahigh-resolution broadband mass spectra[J].Anal.Chem.,2001,73(19):4676~4681.

[15]Kim S,Stanford L A,Rodgers R P,et al.Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry[J].Organic Geochemistry,2005,36(8):1117~1134.

[16]史权,侯读杰,陆小泉,等.负离子电喷雾-傅立叶变换离子回旋共振质谱分析辽河原油中的环烷酸[J].分析测试学报,2007,27:317~320.

[17]Jones D M,Watson J S,Meredith W,et al.Determination of naphthenic acids in crude oils using nonaqueous ion exchange solid-phase extraction[J].Anal.Chem.,2001,73(3):703~707.