当前位置:首页 » 石油矿藏 » mpd在石油行业是什么意思
扩展阅读
13元的快餐成本多少钱 2025-07-12 11:33:03
工具栏如何取消重叠 2025-07-12 11:32:11

mpd在石油行业是什么意思

发布时间: 2023-03-05 12:57:53

① 石油钻井和井下作业那个好些

充气控压钻井过程压力影响因素分析摘要:常规钻井技术钻遇复杂地层时,钻井液安全密度窗口窄,钻井液性能可能发生剧变,压差卡钻、粘附卡钻、喷漏同层、上漏下喷和井壁垮塌等复杂问题经常发生,甚至导致钻井作业无法正常进行,增加诸多非钻井作业时间,使钻井周期和费用大幅度上升;充气控压钻井(MPD)作为一种新的钻井技术,能够降低甚至避免诸类钻井问题,结合环空多相流水力学模型,综合分析了钻井液排量、注气量、机械钻速、井口回压和井身结构等因素对MPD环空压力的影响,实现MPD环空及井底压力保持在一定的范围内准确、快速可调,从而提高钻井效率,降低作业成本。在不久的将来,控压钻井将会是一种更安全、更快、更有效的钻井技术。关键词:控压钻井;排量;压力;注气量;地层压力伴随着油气层的长期开采,国内外主力油气田大多进入开发的中后期,不同程度地面临地层压力衰竭与下降,因此造成地层坍塌密度降低,且与地层压力梯度接近,钻井过程中呈现出窄压力、甚至负压钻井液密度窗口,并由此产生漏喷同层、井壁垮塌等一系列钻井问题[1-3]。同时随着裸眼井段的增加,井底温度和压力也随之发生改变;且有多套压力体系的复杂裸眼井段,从而使钻井液性能发生剧变,卡、漏、喷及井壁垮塌等复杂问题进一步加剧,甚至导致钻井作业无法正常进行;面临这种复杂的地层,采用常规钻井装置和方法很难满足当前钻井作业需要[4-6]。因此,在今后的油气勘探中,如何在诸类储层钻进将成为国内外各大油气田增产上储的主要手段。然而,充气控压钻井—MPD(Managed PressureDrilling)作为一种新的钻井技术,使用稍高于地层压力梯度的钻井液,地面通过混合器向钻井液上水管线中适当充气,利用欠平衡设备和技术,能够方便快速调节环空钻井液当量循环密度,使井底压力保持在一定范围之内,降低或避免上述钻井问题,减少非生产作业时间。但钻井过程中,钻井液排量、注气量及井口回压等工程参数与地层压力及环空安全携岩尤为重要;文中重点考虑地层产出气与注入气在环空形成的气液两相流,利用水力学的严格推理与计算,保证了井筒环空井口的安全携岩且精确控制井底压力,对进一步深化和完善充气控压钻井的理论研究及现场应用具有重要的现实意义。1控压钻井的使用现状与基本概念Status quo and basic concept of managedpressuredrillingMPD技术在陆上钻井使用已有相当长的时间,其应用了较为先进的欠平衡设备及方法使钻井液从立管到出口形成一个闭合、承压的循环系统,实现钻井优化的一种工艺[5,7]。其意图是方便、快速调整环空和井底压力等参数,随意控制钻井作业过程中地层流体有控制地进入井筒环空,而不是通过调整钻井液密度来改变井底的压力。目前美国75%的井使用这种闭环、承压的控压钻井技术进行作业。国内陆地控压钻井技术已经在塔里木油田公司的奥陶系和南堡油田第三系地层陆续展开,避免了邻井钻井过程中发生的井下复杂情况,已取得较好的效果。控压钻井使用欠平衡的设备,就其循环系统本身来讲,属于闭环、承压的钻井液循环系统;能够满足方便、快捷地调整井底及环空压力,从而使用最短的时间来处理和满足钻井工程上的需要,使整个钻井过程中井底压力近乎保持恒定;国际钻井承包商协会(IADC)对控压钻井—MPD作了如下的定义:MPD是一种经过改进的钻井程序,可以较精确地控制整个环空井筒的压力剖面;其目的是要确定井底压力,进而来控制环空的压力剖面[5,6,8,9]。其主要技术特点是:与常规开式压力控制体系不同,MPD依靠闭合、承压的钻井液循环体系,可以更精确地控制整个环空压力剖面,使得地层流体有控制地进入环空。这种循环体系需要通过环空钻井液水力学的精确计算和模拟;主要参数包括:钻井液性能、钻井液密度、钻井液泵排量、充气量、机械钻速、岩屑类型及尺寸、岩屑与气体迟到时间,井身结构与钻具组合等。从而合理地预测、解释实施控压钻井过程中整个环空压力剖面及相应的控制压力措施。2影响井底压力的主要参数分析Effects of main parameters for bottom holepressure2.1环空两相流模型选择Modelselectionof twophaseflowinannularspace根据前人研究成果,综合分析气液两相流模型主要有以下3种:均

② 石油钻井和井下作业那个好些

充气控压钻井过程压力影响因素分析摘要:常规钻井技术钻遇复杂地层时,钻井液安全密度窗口窄,钻井液性能可能发生剧变,压差卡钻、粘附卡钻、喷漏同层、上漏下喷和井壁垮塌等复杂问题经常发生,甚至导致钻井作业无法正常进行,增加诸多非钻井作业时间,使钻井周期和费用大幅度上升;充气控压钻井(MPD)作为一种新的钻井技术,能够降低甚至避免诸类钻井问题,结合环空多相流水力学模型,综合分析了钻井液排量、注气量、机械钻速、井口回压和井身结构等因素对MPD环空压力的影响,实现MPD环空及井底压力保持在一定的范围内准确、快速可调,从而提高钻井效率,降低作业成本。在不久的将来,控压钻井将会是一种更安全、更快、更有效的钻井技术。关键词:控压钻井;排量;压力;注气量;地层压力伴随着油气层的长期开采,国内外主力油气田大多进入开发的中后期,不同程度地面临地层压力衰竭与下降,因此造成地层坍塌密度降低,且与地层压力梯度接近,钻井过程中呈现出窄压力、甚至负压钻井液密度窗口,并由此产生漏喷同层、井壁垮塌等一系列钻井问题[1-3]。同时随着裸眼井段的增加,井底温度和压力也随之发生改变;且有多套压力体系的复杂裸眼井段,从而使钻井液性能发生剧变,卡、漏、喷及井壁垮塌等复杂问题进一步加剧,甚至导致钻井作业无法正常进行;面临这种复杂的地层,采用常规钻井装置和方法很难满足当前钻井作业需要[4-6]。因此,在今后的油气勘探中,如何在诸类储层钻进将成为国内外各大油气田增产上储的主要手段。然而,充气控压钻井—MPD(Managed PressureDrilling)作为一种新的钻井技术,使用稍高于地层压力梯度的钻井液,地面通过混合器向钻井液上水管线中适当充气,利用欠平衡设备和技术,能够方便快速调节环空钻井液当量循环密度,使井底压力保持在一定范围之内,降低或避免上述钻井问题,减少非生产作业时间。但钻井过程中,钻井液排量、注气量及井口回压等工程参数与地层压力及环空安全携岩尤为重要;文中重点考虑地层产出气与注入气在环空形成的气液两相流,利用水力学的严格推理与计算,保证了井筒环空井口的安全携岩且精确控制井底压力,对进一步深化和完善充气控压钻井的理论研究及现场应用具有重要的现实意义。1控压钻井的使用现状与基本概念Status quo and basic concept of managedpressuredrillingMPD技术在陆上钻井使用已有相当长的时间,其应用了较为先进的欠平衡设备及方法使钻井液从立管到出口形成一个闭合、承压的循环系统,实现钻井优化的一种工艺[5,7]。其意图是方便、快速调整环空和井底压力等参数,随意控制钻井作业过程中地层流体有控制地进入井筒环空,而不是通过调整钻井液密度来改变井底的压力。目前美国75%的井使用这种闭环、承压的控压钻井技术进行作业。国内陆地控压钻井技术已经在塔里木油田公司的奥陶系和南堡油田第三系地层陆续展开,避免了邻井钻井过程中发生的井下复杂情况,已取得较好的效果。控压钻井使用欠平衡的设备,就其循环系统本身来讲,属于闭环、承压的钻井液循环系统;能够满足方便、快捷地调整井底及环空压力,从而使用最短的时间来处理和满足钻井工程上的需要,使整个钻井过程中井底压力近乎保持恒定;国际钻井承包商协会(IADC)对控压钻井—MPD作了如下的定义:MPD是一种经过改进的钻井程序,可以较精确地控制整个环空井筒的压力剖面;其目的是要确定井底压力,进而来控制环空的压力剖面[5,6,8,9]。其主要技术特点是:与常规开式压力控制体系不同,MPD依靠闭合、承压的钻井液循环体系,可以更精确地控制整个环空压力剖面,使得地层流体有控制地进入环空。这种循环体系需要通过环空钻井液水力学的精确计算和模拟;主要参数包括:钻井液性能、钻井液密度、钻井液泵排量、充气量、机械钻速、岩屑类型及尺寸、岩屑与气体迟到时间,井身结构与钻具组合等。从而合理地预测、解释实施控压钻井过程中整个环空压力剖面及相应的控制压力措施。2影响井底压力的主要参数分析Effects of main parameters for bottom holepressure2.1环空两相流模型选择Modelselectionof twophaseflowinannularspace根据前人研究成果,综合分析气液两相流模型主要有以下3种:均

③ 求翻译,石油类英语

IADC Well Classification System for Underbalanced Operations and Managed Pressure Drilling
IADC (世界钻井承包商协会)对欠平衡作业与控制压力钻井的油井分类体系
The purpose of the IADC Well Classification System is to describe the overall risk, application category and fluid system used in underbalanced operations (UBO) and managed pressure drilling (MPD). Wells are classified according to:
IADC 油井分类体系的目的是描述用于欠平衡作业与控制压力钻井(MPD)的整体风险、应用范畴以及钻井液系统。油井按照如下分类:
. Risk Level (0 to 5)
. Application Category (A, B or C)
. Fluid System (1 to 5).
. 风险等级(0 - 5)
. 应用范畴(A、B 或 C)
. 钻井液系统(1 - 5)
This classification system provides a framework for defining minimum equipment
requirements, specialized proceres, and safety management practices. For further
information refer to the IADC UBO HSE Planning Guidelines and other related documents.
本分类体系描述了确定最小设备用量、制定作业程序,以及安全管理实践所要求的基本框架。若有更详尽的要求,请参照 IADC UBO HSE 规划指南,与其他相关文件。
Risk Levels
风险等级描述
Generally, risk increases with operational complexity and potential well proctivity. The
examples provided are for guidance only.
总的来说,风险随作业复杂系数与潜在油井生产力而提高,下面例举仅仅作为指南。
Level 0 – Performance enhancement only; no hydrocarbon containing zones.
0 等级 - 仅用于强化作业,不含烃(碳氢化合物)区域
. Air drilling for ROP enhancement
. 空气钻井,适用于ROP 强化作业
Level 1 – Well incapable of natural flow to surface. Well is inherently stable and is a low level risk from a well control point of view.
1 等级 - 油井无天然流量至地面。油井基本稳定,根据井控估计,有低产风险
. Sub-normally pressured oil wells
. 低压作业油井
Level 2 – Well is capable of natural flow to surface, but can be controlled using conventional well kill methods. Catastrophic equipment failure may have limited consequences.
2 等级 - 油井有天然流量至地面,但需要用常规压井作业才能得以控制。严重的设备的不足引起的故障可能限作业程序。
. Abnormally-pressured water zones
. 非正常压力水区域
. Low flow rate oil or gas wells
. 低流量油气井
. Depleted gas wells
. 贫瘠气井
Level 3 – Geothermal and non-hydrocarbon bearing formations. Maximum anticipated shut-in pressure (MASP) is less than UBO/MPD equipment pressure rating.
3 等级 - 低热与无碳氢化合物地层。最大预期关闭压力(MASP)小于UBO/MPD设备的额定容量
. Includes geothermal wells with H2S present
. 包括低热井,伴生H2S
Level 4 – Hydrocarbon bearing formation. Maximum anticipated shut-in pressure is less than UBO/MPD equipment operating pressure rating. Catastrophic equipment failure will likely have immediate serious consequences.
等级 4 - 碳氢化合物地层。最大预期关闭压力小于UBO/MPD设备的作业压力额定容量。严重的设备的不足引起的故障很有可能导致严重顺坏作业程序。
. High pressure and/or high flow potential reservoir
. 高压和/或高流量的潜在油藏
. Sour oil and gas wells
. 含硫油气井
. Offshore environments
. 海洋环境
. Simultaneous drilling and proction operations
. 钻井与生产同步进行