⑴ 采油中的“酸化”是什么
酸化是强化采油(EOR)的一种措施。酸化施工使用诸如水泥车、泵车一类的施工车辆,将酸性水溶液(如,盐酸、氢氟酸、有机酸)注入地层。注入的酸液会溶解地层岩石或胶结物,从而增加地层渗透率,使油气的产出、驱替水注入更加方便。在酸化施工中,为了提高酸化效果,可以采用聚合物稠化酸注入、有机缓速酸注入、变粘酸酸化、粘弹性表面活性剂酸化等新工艺。
⑵ 石油分馏可得到什么干馏呢
石油是没有干馏的。
石油分馏产物多属脂肪烃,有天然气、石油醚、汽油、煤油、柴油、石蜡、沥青,主要用在燃料和有机溶剂方面,C24以上的馏分还可用于机械润滑。
石油脑经脱醇酸化反应后,可作为汽油及航空燃料油使用,轻石油脑可经媒组反应产生高辛烷质的汽油或石油化学原料,如苯、甲苯、二甲苯等,也可经裂解反应产生乙烯、丙烯、丁烯、戊烷、芳香烃及碳烟,或经由加氢裂解反应,生产汽油及液化石油气。
(2)石油的酸化反应是什么扩展阅读:
一、分馏种类
1、常压分馏
工业中用来得到石油气、汽油、煤油和柴油的方法。
2、减压分馏
工业中用来得到润滑油、石蜡等相对分子质量较大的烷烃。
二、产物介绍
石油产品包含粗石油、轻油、煤油及重油等。
粗石油为分馏温度较低、分子较小的成分,可做为燃料及汽油,如液化天然气(主要成份为甲烷,含少量乙烷、丙烷、丁烷、乙烯)或液化石油气(主要成份为丙烷、丁烷、丙烯、乙烯)等,也可作为溶剂,如己烷等。
轻油又称为石脑油,是沸点高于汽油而低于煤油的分馏混合物,可分为轻石脑油及重石脑油。石脑油经脱醇酸化反应后,可作为汽油及航空燃料油使用,轻石脑油可经媒组反应产生高辛烷质的汽油或石油化学原料,如苯、甲苯、二甲苯等,也可经裂解反应产生乙烯、丙烯、丁烯、戊烷、芳香烃及碳烟,或经由加氢裂解反应,生产汽油及液化石油气。
重油一般指燃料油或燃料油与柴油混合而成的中间油料。直接产品可概分为渔船用油及锅炉用燃油两种。加工处理后则可生产润滑油、柏油、石油焦、汽油、液化石油气及丙烯等产品。
⑶ 问一道关于石油方面的题,有关酸化的。
注入的时候用较高的压力,关井后,酸向内继续反应,溶蚀产生了大量空间,压力就自然下降了。很快说明反应很充分。升高不可能,不产生气体。即使用石灰岩产生了二氧化碳,也会在巨大的压力下溶进流体中。
⑷ 盐酸与原油(石油)碰到一起会出现什么反应
盐酸 常温 与 原油(石油) 应该是不反应的,不会生成H2
因为石油主要成分是C,H 化合物,以及少量的硫,氮等
但是容器为铁桶,稀盐酸会与铁发生反应生成H2
Fe+2HCl=FeCl2+H2↑
希望对你有帮助
⑸ 石油能提炼出哪些东西出来,提炼的过程是什么
石油产品包含粗石油、轻油、煤油及重油等。粗石油为分馏温度较低、分子较小的成分,可做为燃料及汽油,如液化天然气(主要成份为甲烷,含少量乙烷、丙烷、丁烷、乙烯)或液化石油气(主要成份为丙烷、丁烷、丙烯、乙烯)等,也可作为溶剂,如己烷等。轻油又称为石脑油,是沸点高于汽油而低于煤油的分馏混合物,可分为轻石脑油及重石脑油。石脑油经脱醇酸化反应后,可作为汽油及航空燃料油使用,轻石脑油可经媒组反应产生高辛烷质的汽油或石油化学原料,如苯、甲苯、二甲苯等,也可经裂解反应产生乙烯、丙烯、丁烯、戊烷、芳香烃及碳烟,或经由加氢裂解反应,生产汽油及液化石油气。重油一般指燃料油或燃料油与柴油混合而成的中间油料。直接产品可概分为渔船用油及锅炉用燃油两种。加工处理后则可生产润滑油、柏油、石油焦、汽油、液化石油气及丙烯等产品。
提炼:
常压分馏
工业中用来得到石油气、汽油、煤油和柴油的方法。
减压分馏
工业中用来得到润滑油、石蜡等相对分子质量较大的烷烃。
石油的催化及裂解
工业中用来得到轻质油和气态烯烃。
⑹ 请问在石油行业里酸化压裂,生产测井解释,以及机械采油 是什么
1、酸化一般是指在碳酸盐岩地层,通过向地层中注入酸液,改善地层中裂缝的连通性,使石油更容易流入井筒;压裂是采用特殊设备将压裂砂、压裂液的混合液用高压压入地层,使地层孔隙扩张,并利用砂砾支撑压开的孔隙,使石油更容易流入井筒。酸化压裂是将两种工艺合并,即压裂混合液中有酸液、有砂砾。
2、生产测井解释是对生产井测井后所得的测井曲线进行解释分析,获得地层产液量、油水比、分层产量等数据,一般可以根据解释结果对产水层封堵以增加产油量。或对产油层采取压裂等措施增加产量。
3、机械采油就是用抽油机、深潜泵之类的机械进行采油啦。
以上是根据工作经验编写,供参考。
⑺ 海相油气储层酸化及酸压技术原理
3.6.1.1 酸化工艺简介
酸化是以酸作为工作液对油气(水)层进行增产(注)措施的总称。是通过井眼向地层注入一种或几种酸液(或酸性混合液)以溶解地层中的矿物质,从而恢复或增加井筒附近的渗透率,从而使油气井增产(或注水井增注)的一种工艺措施。
酸化作为一种增产措施始于1895年。目前,酸化技术成功地应用于常规油气层增产改造,并可以对高温深井、低压低渗油井、高含硫井、高孔低渗储层及复杂结构井等进行有效作业,在油气田的勘探开发中起着重要作用。
(1)酸化工艺分类
酸化按不同工艺可分为:酸洗、基质酸化及压裂酸化(李颖川,2002)。
1)酸洗:酸洗是清除井筒中的酸溶性结垢或疏通射孔孔眼的工艺。它是将少量酸定点注入预定井段,溶解井壁结垢物或射孔眼堵塞物。也可通过正反循环使酸不断沿井壁和孔眼流动,以此增大活性酸到井壁面的传递速度,加速溶解过程。
2)基质酸化:基质酸化是在低于岩石破裂压力下将酸注入储层中,使酸基本沿径向渗入储层,溶解孔隙空间内的颗粒及堵塞物,从而消除井筒附近储层污染,恢复和提高储层渗透率,达到恢复油气井产能和增产的目的。
3)压裂酸化:压裂酸化(酸压)是将酸液在高于储层破裂压力或天然裂缝的闭合压力下挤入储层,从而形成裂缝。酸液会与裂缝壁面岩石发生反应,由于酸液非均匀的刻蚀缝壁,会形成沟槽状或凹凸不平的刻蚀裂缝,施工结束裂缝不能完全闭合,从而形成具有一定几何尺寸和导流能力的裂缝,达到改善油气井的渗流状况而增产的目的,该工艺一般只用于碳酸盐岩油气层。
(2)增产原理
1)基质酸化增产原理。基质酸化增产作用主要表现在:
A.酸液挤入孔隙或天然裂缝与其发生反应,溶蚀孔壁或裂缝壁面,增大孔径或扩大裂缝,提高储层的渗流能力。
B.溶蚀孔道或天然裂缝中的堵塞物质,破坏泥浆、水泥及岩石碎屑等堵塞物的结构,疏通流动通道,解除堵塞物对储层的污染。
2)压裂酸化增产原理。压裂酸化是碳酸盐岩储层增产措施中应用最广的工艺。压裂酸化的增产原理主要表现在:
A.消除井壁附近的储层污染。
B.压裂酸化溶蚀裂缝增大油气沿井内渗流的渗流面积,改善油气的流动方式,增大井附近油气层的渗流能力。
C.沟通远离井筒的高渗透带、储层深部裂缝系统及油气区。
无论是在近井污染带内形成通道,或改变储层中的流型都可获得增产效果。小酸量处理可消除井筒污染,恢复油气井天然产量,大规模深部酸压处理可使油气井大幅度增产。
3.6.1.2 酸岩反应动力学原理
(1)酸与碳酸盐岩的化学反应
在酸压过程中,主要化学反应是盐酸与石灰岩以及白云岩间的反应。
(2)基质酸化中的蚓孔效应及控制
1)基质酸化中的酸蚀蚓孔。基质酸化施工时,酸液按径向流入目的层,形成的酸蚀蚓孔也沿井筒发散分布,2000年Fred研究表明,不同注酸条件下将产生不同的酸蚀形态。低排量下产生均匀溶蚀对酸化施工没有效果,而高排量下形成的高度分枝结构将浪费大量酸液且不能产生高导流能力的大孔径酸蚀蚓孔,只有在合适的注酸条件下才会形成理想的酸蚀主蚓孔。
2)基质酸化中蚓孔效应的控制。对于碳酸盐岩基质酸化而言,主要的目标是有效促进酸岩反应形成单一主蚓孔。从而实现少酸量、深穿透。可以在室内实验基础上优化注酸条件组合,设计最优的施工排量,选择合适酸液类型、酸液浓度和注酸方式。对于温度较高的碳酸盐岩地层着重应考虑缓速和降滤失。
图3-171 蚓孔铸体模型
(3)酸压中的蚓孔效应及控制
1)酸压中的蚓孔效应。酸压中由于形成酸蚀蚓孔,酸液滤失表现为裂缝壁面向基质的滤失和酸蚀蚓孔引起的滤失。在两者的共同作用下产生大量不稳定的酸液滤失,从而使得酸液的有效穿透举例大大减小。酸蚀蚓孔滤失是主控因素,它不仅是在原有的微裂缝和原生孔洞的基础上进一步增大主干蚓孔的孔隙空间,同时还包括向蚓孔岩石壁面的对流而产生次生蚓孔和多分支小蚓孔。然而,酸液滤失量主要受酸液的黏度和酸蚀蚓孔扩展速度的影响,其中酸液的黏度又受到微裂缝和蚓孔中温度以及剪切效应的影响。
2)酸压中蚓孔效应的控制。酸压中施工排量较高、施工压力较大,因此蚓孔的形成是不可避免的,且蚓孔的扩展比基质酸化加剧。同时为了取得较长的裂缝和沟通远井地带的油气,必须提高排量。这样使得蚓孔的控制更为复杂。国内外主要从液体体系和施工工艺两个方面来控制酸压中的蚓孔效应,采用非常规液体体系代替常规酸液体系。如缓速酸、稠化酸等,主要机理是通过降低酸岩反应速率来降低蚓孔的扩展速度,从而增加酸蚀有效作用距离。同时也采用多级交替注入和闭合裂缝酸化等工艺来降低蚓孔效应的影响。
3.6.1.5 酸化施工设计
(1)选井选层
酸化处理效果虽然与施工工艺、施工参数有一定的关系,但是起决定作用的还是地质因素。选井选层的总目的是改造中低渗层、提高产能;对于勘探而言,还可以起到正确认识和评价油气层的作用。
为了取得较好的增产效果和提高措施的成功率,选井选层方面应该遵循以下一些原则:①应优先选油气显示好,而试油效果差的层。如果不能投产的原因是泥浆堵塞,应进行解堵酸化;堵塞严重者可考虑进行中小型酸压;②邻近井产量高而本井的产量低或无产量的井应该优选;③井低产的原因如果为井底附近缝洞不发育,可以进行大中型酸压,特别应该选择高产井旁边的低产井进行酸压;④对于油水(气)边界的井,或存在气水夹层的井应该慎重对待,可进行常规酸化,不宜进行酸压;⑤对于有多产层的井而言,一般应首先要处理低渗透层。
(2)酸化施工设计
1)解堵酸化设计。对于裂缝性碳酸盐岩油气层,如果近井地带存在堵塞,且堵塞范围不大时可采用解堵酸化来处理。酸液可以破坏泥浆的胶体结构,从而使泥浆变稀排出地层。一般有一定生产能力的油气层,遭受泥浆侵害后产量低或不能投产,经过小酸量处理后,产量可以成几倍或几十倍的增加。
解堵酸化设计主要要确定酸液用量及浓度、挤酸压力和排量及返排时间3个工艺参数。
A.用酸量及酸液浓度。实践表明,以微裂缝为主的产层,解堵实际挤入地层的酸量10m3以下为宜,变化范围为3~10m3。构造裂缝为主的产层,用酸量宜大一些,一般6~40m3,由于裂缝性地层缝洞发育的不均一性,按打开井段长度考虑用酸量没有意义,宜根据地层吸收能力、油(气)层裸露或射开的厚度、钻井用泥浆比重及其在地层中浸泡的时间并结合经验数字来确定。酸浓度以10%~15%为宜,如果岩性较致密可用更高的浓度,反之可以适当的降低浓度。
B.挤酸压力和排量。为了解除整个油气层段上的堵塞,必须使酸液能够均匀的进入到地层纵向各个井段,避免酸液单点突入。应控制泵压高于地层初始吸收压力,但低于地层破裂压力及管套容许压力。排量应在保证酸液均匀进入地层各井段的条件下尽快地挤入地层,以扩大处理范围,应根据地层的吸收能力而变化。
C.返排时间。为了避免残酸反应产生二次沉淀及防止残酸中不溶物质的微粒重新堵塞地层孔道,挤酸完毕后,应立即开井排液。白云岩地层反应速度较灰岩慢,可以根据具体实验情况,适当关井一段时间后开井排液。
2)压裂酸化设计(据李颖川,2002)。压裂酸化工艺很多,设计的步骤和方法大致一样。这里简单介绍酸压设计方法和步骤。
A.酸化处理设计应收集的资料。完善的酸化处理设计应收集下列数据项;井的数据、储层参数、岩石力学数据、压裂液、酸液数据、岩心分析数据及泵注数据等。
B.酸化处理设计包括的内容。酸化处理设计应包括下列内容:井的基本数据,钻井、试油、采油简史,综合分析施工目的及效果预测,主要施工参数及泵注程序,施工准备,施工步骤,施工质量要求及安全注意事项,施工后井的管理,施工劳动组织及环境保护,施工所需设备、材料及费用预算等。
根据施工目的、井及储层条件、室内岩心数据等选择适合的酸化工艺,确定酸化工作液(前置液、酸液、顶替液)的类型、配方、用量及施工压力、排量等参数。
碳酸盐岩储层的酸化处理常采用盐酸体系,主要有常规盐酸体系、稠化酸体系、泡沫酸体系、乳化酸体系、化学缓速酸体系,在设计时可根据实际情况进行选择。
酸浓度可由溶蚀试验确定。国内酸化处理盐酸浓度多介于15%~20%。酸液用量则据酸化改造的范围和力度来确定。酸液用量一般为动态裂缝体积的1.5~5倍,也可根据优化设计的要求由计算机模拟确定。
压裂酸化处理时要求施工排量大于储层的吸收能力,以保证裂缝的形成及延伸。如井身质量合格,应充分发挥设备能力,高排量注入,有利于造宽缝、长缝,也可使酸液快速向储层深部推进,提高有效作用距离。
C.酸化施工设计计算。主要包括两方面:一是施工参数确定,包括:储层最大吸入能力、破裂压力、液柱压力、摩阻计算,井口极限施工排量、井口施工泵压和入井液量等。这些参数的确定应结合室内试验研究和模拟计算。二是酸化过程的模拟计算及效果预测,主要是综合应用动态裂缝尺寸、酸液浓度分布规律及有效作用距离、酸蚀裂缝导流能力及增产倍比等进行酸化设计模拟,分析不同施工参数对酸化效果的影响,指导酸化设计,优选施工方案,减少施工盲目性。