A. 石油污染的防治治理
海洋石油污染絕大部分來自人類活動,其中以船舶運輸、海上油氣開采,以及沿岸工業排污為主,由於石油產地與消費地分布不均,因此,世界年產石油的一半以上是通過油船在海上運輸的,這就給佔地球表面71%的海洋帶來了油污染的威脅,特別是油輪相撞、海洋油田泄漏等突發性石油污染,更是給人類造成難以估量的損失。
1991年的海灣戰爭造成的輸油管溢油,使200多萬只海鷗喪生,許多魚類和其它動植物也在劫難逃,一些珍貴的魚種已經滅絕,美麗豐饒的波斯灣變成了一片死海,海洋石油污染對海洋生態系統的破壞是難以挽回的。
海上溢油不僅破壞海洋環境,而且還存在發生火災的危險,因此,一旦出現溢油事故,一方面要盡可能縮小污染區域,另一方面要迅速消除和回收海面上的浮油,處理溢油的一般方法,是用圍油柵將浮油圍住後,一邊用浮油回收器進行回收,一邊噴灑消油劑,使源油盡快形成能消散於水中的小油粒。
多達幾十萬噸的溢油,一旦進入海洋將形成大片油膜,這層油膜將大氣與海水隔開,減弱了海面的風浪,妨礙空氣中的氧溶解到海水中,使水中的氧減少,同時有相當部分的原油,將被海洋微生物消化分解成無機物,或者由海水中的氧進行氧化分解,這樣,海水中的氧被大量消耗,使魚類和其它生物難以生存。 20世紀80年代以前.治理石油烴污染土壤還僅限於物理和化學方法,即熱處理和化學浸出法。熱處理法是通過焚燒或煅燒,可凈化土壤中大部分有機污染物。但同時亦破壞土壤結構和組分,且價格昂貴而很難實施。化學浸出和水洗也可以獲得較好的除油效果。但所用的化學試劑的二次污染問題限制了其應用。早在20世紀70年代。為了解決輸油管線和儲油罐發生故障漏油和溢油時土壤被石油污染的問題,美國埃索研究和工程公司就已經開始尋找清潔的生物解決方法,並且其實驗室研究找到一種有效的「細菌播種法,開了生物修復石油污染土壤先河。上世紀80年代以來,污染土壤的生物修復技術越來越引起人們的關注.生物修復技術也取得了很大進步,正在逐漸成熟。
而今,世界各國都開始採用生物的方法來修復石油污染,處於世界領先水平的有俄羅斯、丹麥、美國和德國的生物技術,北京大學環境學院作為國內先驅,已於上世紀90年代開始研究,其合作企業南洋東華生物公司已有成功的修復技術應用於世。生物修復是利用生物的生命代謝活動減少土壤環境中有毒有害物的濃度,使污染土壤恢復到健康狀態的過程。
國外微生物石油降解技術的應用,經過國內多家科研機構的研究證明,不如本土菌效果優越。而北京大學作為石油污染修復的先驅,其「BDB系列生物降解菌」已經開始在中國各大油田乃至世界他國油田發揮著功效。
據相關人士介紹:原位處理方法是將受污染土壤在原地處理。處理期間.土壤基本不被攪動,最常見的就地處理方式是土壤的水飽和區進行生物降解。土壤修復分基本為三個階段:BDB-n生物修復階段、BDB-a生物修復階段、植物修復階段。
(1)原位生物修復技術
石油污染水體修復直接採用BDB-a生物降解菌修復,在污染區建池、防滲處理,階段性定量投入BDB-a生物降解菌,污染水體被修復後COD、BOD等指標均得到控制,無論排海、回注最終達標准
污染土壤經過南洋東華公司BDB菌處理過程中,所有多環芳烴的降解都很明顯。但是,修復過程中,對於環境的溫度較敏感。所以我們建議您在氣溫大於10℃的月份進行,且建議維持時間超過60天。
(2)異位生物修復技術
異位生物修復主要包括現場處理法、預制床法、堆制處理法、生物反應器和厭氧生物處理法;但是目前治理技術不斷提高,由北京大學環境學院黃教授團隊研究的生物修復技術尚處於世界領先水平,我們建議採用北京大學設計的場地生物反應發生器結合本土降解菌BDB修復。
a.現場處理法
近年來國外石油烴污染生物處理的研究很多,其中土壤耕作處理是現場處理土壤污染常用的方法。被污染的廢物施在土壤上。通過施肥、灌溉和加石灰等管理措施,保持氧氣、水分和pH的最合適值,並進行耕作以改善土壤的通氣狀況,確保在污染廢物和下面土層中污染物的降解。降解過程所用的微生物多為土著微生物。但是要提高效果還需要引入馴化的微生物。
b.預制床法
現場處理中土壤耕作處理最大的缺陷是污染物可能從處理區遷移。預制床的設計可以使污染物的遷移量減至最小,因為它具有濾液收集和控制排放系統。預制床的底面為滲透性低的物質,如高密度的聚乙烯或粘土。將污染土壤轉移到預制床上,通過施肥、灌溉,調節pH,有時還加入微生物和表面活性劑,使其最適合污染物的降解。與同一區域的原位處理技術相比,預制床處理對三環和三環以上的多環芳烴的降解率明顯提高。
c.堆制處理法
土壤的堆制處理就是將受污染的土壤從污染地區挖掘起來,防止污染物向地下水或更大的地域擴散.運輸到一個經過處理的地點(布置防止滲漏底,通風管道等)堆放,形成上升的斜坡,並進行生物處理。堆製法是生物修復技術中的一種新型替代技術。堆制處理過程對污染土壤中的多環芳烴降解,多環芳烴的降解隨著苯環數的增加而降低。當多環芳烴的初始濃度提高約50倍時,除熒、蒽外,其他多環芳烴的降解隨著污染濃度的提高而降低。
d.厭氧生物修復法
修復受石油烴污染土壤的研究已開發了生物堆層、堆肥及土壤泥漿反應器等好氧修復工藝,但分離獲得某些降解菌時。一些降解菌伴有產生高生態風險的產物。最近的研究表明以厭氧還原脫氯為特徵的厭氧微生物修復技術有很大的潛力。
e.生物反應器法
生物反應器法是將污染土壤置於一專門的反應器中處理。生物反應器一般建在現場或特定的處理區。通常為卧鼓形和升降機形,有間隙式和連續式兩種。因為反應器可使土壤與微生物及其他添加物如營養鹽,表面活性劑等徹底混合,能很好的控制降解條件,因而處理速度快,效果好。生物反應器處理的過程為:先挖出土壤與水混合為泥漿,然後轉入反應器。為了提高降解速率,常在反應器先前處理的土壤中分離出已被馴化的微生物,並將其加入到准備處理的土壤中.
(3)植物修復技術
目前,對土壤有機污染的生物修復研究較多,但是,多集中在微生物作用上。事實上,植物對污染物的去除起著直接和間接的重要作用。植物生物修復是利用植物體內對某些污染物的積累、植物代謝過程對某些污染物的轉化和礦化,植物根圈與根莖的共生關系增加微生物的活性的特點。加速土壤污染物降解速度的過程。
植物修復的方式包括植物提取、植物降解和植物穩定化三種。植物提取是指利用植物吸收積累污染物,待收獲後才進行處理。收獲可以進行熱處理,微生物處理和化學處理。植物降解是利用植物及相關微生物區系將污染物轉化為無毒物質。植物穩定化是指植物在同土壤的共同作用下.將污染物固定,以減少其對生物與環境的危害。植物根際使土壤環境發生變化,起到了改善和調節作用,從而有利於污染物的降解。因此通過選擇適當植物和調控土壤條件等手段.可以實現污染土壤的快速修復。
植物生物修復是一項利用太陽能動力的處理系統.具有處理費用低,減少場地破壞等優點而受到普遍重視。據美國實踐,種植管理的費用在每公頃200~1000美元之間.即每年每立方米的處理費為0.02~1.00美元.比物理化學處理的費用低幾個數量級。 水體石油污染和土壤治理不同,水具有流動性,不及時處理會使污染范圍以很快的速度不斷擴大。因此.水體石油污染首先是控制污染然後再對污染水進行處理。
而對收集上來的污水以及石油工廠排出來的石油污水採用生物處理法。生物處理法也稱生化處理法。生物處理法是處理廢水中應用最久、最廣和相當有效的一種方法。它是利用自然界存在的各種微生物,將廢水中有機物進行降解,達到廢水凈化的目的。
而各地江河、海洋、湖泊,為避免生物入侵帶來潛在危害,研究中建議採用本土微生物修復。同時,本土微生物的地域性優勢表現明顯。在中國,北京大學環境學院保存著百餘種中國各大油田的樣本菌株,可以為中國區域石油海上污染做出貢獻。
(1)海洋、江河、湖泊水體治理 對海洋、江河、湖泊石油污染治理,目前僅限於化學破乳、氧化處理方法進行分解處理和機械物理的方法進行凈化吸附。清除海洋、江河、湖泊石油污染是非常困難的。防止油水合二為一的唯一選擇是噴灑清除劑,因為只有化學葯劑才能使原油加速分解,形成能消散於水中的微小球狀物。清除水面石油污染還有一些物理方法,如用抽吸機吸油,用水柵和撤沫器刮油,用油纜阻擋石油擴散。英國有一位農場主發明了一種用機編禾草排治理石油污染的方法,不僅能防止石油在海中擴散,而且能吸收比自身質量多15倍的石油,可防止油輪流出的石油污染水岸,禾草中又以大麥秸稈治污最為有效。1992年,一艘油輪在舍德蘭群島附近失事後,在海上放置了22千米長的禾草排,從而保護了海濱浴場和漁場不致遭受污染。而俄羅斯莫斯科精細化工科學院的教授奧列格.喬姆金研製出了用農作物廢料清除石油污染的全新方法。演示實驗中,喬姆金在一盆水中擠了幾滴重油,水盆中頓時漂起了一層薄薄的油花。緊接著喬姆金向水盆中撒人了一小撮稻米殼,幾分鍾後水盆中的油跡開始減少,二小時後水盆中的油跡完全消失了。
(2)地下水體治理
對地下水石油污染治理,採用水動力學方法,通過抽水井或注水井控制流場,可以防止石油和石油化工產品污染的進一步擴大,同時對抽取出來的受污染的地下水進行處理。
近年來。臭氧氧化技術對石油污染的地下水處理取得了很大進展。經臭氧氧化反應後,水體中有機物種類增加,經過一定時間接觸氧化反應後,苯系物和稠環芳烴類在水中的相對含量有較大幅度下降,但酯、醛、酮類和烷烴類在水中的相對含量卻大幅上升。一般認為,水中芳香烴物質危害性較大,多具有較大的毒性和致癌性,而烷烴、酯類和其他低分子物質的危害性小得多。由上我們可以看出.臭氧氧化法是把危害性大的污染物轉化為危害小的污染物.污染水體沒有得到根本治理,因此臭氧氧化法與吹脫、活性炭吸附、生物氧化等處理方法配合使用,才能得到良好的處理效果。 然而,對當今的空氣狀態,大家有目共矚,石油工業對空氣的污染,危害已經相當明顯。到目前為止,對於石油產品對空氣污染還沒有一種很好的治理方法,局限於採用控制油氣排放等措施,如制定汽車尾氣排放標准等.而具體的污染治理方法還有待於人類進行探討和研究。
石油對空氣的污染僅限於其所含的具有揮發性的物質以及輕質石油產品了,而不像對於土壤和水體,石油中的粘稠膠體可以在這兩者中成片成塊的形成時間很長的污染。雖然如此,石油產品對空氣的污染是非常嚴重的,對空氣相對於水體更具有流動和擴散性,治理更加困難。
B. 石油污染怎麼辦
治理方法
(一)土壤石油污染治理
2O世紀8O年代以前.治理石油烴污染土壤還僅限於物理和化學方法,即熱處理和化學浸出法。熱處理法是通過焚燒或煅燒,可凈化土壤中大部分有機污染物。但同時亦破壞土壤結構和組分,且價格昂貴而很難實施。化學浸出和水洗也可以獲得較好的除油效果。但所用的化學試劑的二次污染問題限制了其應用。早在2O世紀7O年代。為了解決輸油管線和儲油罐發生故障漏油和溢油時土壤被石油污染的問題,美國埃索研究和工程公司就已經開始尋找清潔的生物解決方法,並且其實驗室研究找到一種有效的「細菌播種法 ,開了生物修復石油污染土壤先河。上世紀8O年代以來,污染土壤的生物修復技術越來越引起人們的關注.生物修復技術也取得了很大進步,正在逐漸成熟。
生物修復是利用生物的生命代謝活動減少土壤環境中有毒有害物的濃度,使污染土壤恢復到健康狀態的過程。目前,治理石油烴類污染土壤的生物修復技術主要有兩類:一類是微生物修復技術,按修復的地點又可分為原位生物修復和異位生物修復;另一類是植物修復法。
1.微生物修復技術
(1)原位生物修復技術
原位處理方法是將受污染土壤在原地處理。處理期間.土壤基本不被攪動,最常見的就地處理方式是土壤的水飽和區進行生物降解。除了要加人營養鹽,氧源(多為H202)外:還需引入微生物以提高生物降解的能力。有時,在污染區挖一組井.並直接注入適當的溶液,這樣就可以把水中的微生物引入到土壤中。地下水經過一些處理後,可以恢復和再循環使用,在地下水循環使用前,還可以/JnA+壤改良劑。
污染土壤經過處理,所有多環芳烴的降解都很明顯,但是.三環和多環芳烴的降解率一般明顯低於60%。因為就地處理對溫度較敏感。所以只能在氣溫大於8℃的月份進行。在一定的時間內。原位處理不可能有效地去除大多數多環芳烴,而且這種方法因受溫度和土壤類型的影響而具有一定的局限性。
(2)異位生物修復技術
異位生物修復主要包括現場處理法、預制床法、堆制處理法、生物反應器和厭氧生物處理法。
a.現場處理法
近年來國外石油烴污染生物處理的研究很多,其中土壤耕作處理是現場處理土壤污染常用的方法。被污染的廢物施在土壤上。通過施肥、灌溉和加石灰等管理措施,保持氧氣、水分和pH的最合適值,並進行耕作以改善土壤的通氣狀況,確保在污染廢物和下面土層中污染物的降解。降解過程所用的微生物多為土著微生物。但是要提高效果還需要引入馴化的微生物。
b.預制床法
現場處理中土壤耕作處理最大的缺陷是污染物可能從處理區遷移。預制床的設計可以使污染物的遷移量減至最小,因為它具有濾液收集和控制排放系統。預制床的底面為滲透性低的物質,如高密度的聚乙烯或粘土。將污染土壤轉移到預制床上,通過施肥、灌溉,調節pH,有時還加入微生物和表面活性劑,使其最適合污染物的降解。與同一區域的原位處理技術相比,預制床處理對三環和三環以上的多環芳烴的降解率明顯提高。
c.堆制處理法
土壤的堆制處理就是將受污染的土壤從污染地區挖掘起來,防止污染物向地下水或更大的地域擴散.運輸到一個經過處理的地點(布置防止滲漏底,通風管道等)堆放,形成上升的斜坡,並進行生物處理。堆製法是生物修復技術中的一種新型替代技術。堆制處理過程對污染土壤中的多環芳烴降解,多環芳烴的降解隨著苯環數的增加而降低。當多環芳烴的初始濃度提高約5O倍時,除熒、蒽外,其他多環芳烴的降解隨著污染濃度的提高而降低。
d.生物反應器法
生物反應器法是將污染土壤置於一專門的反應器中處理。生物反應器一般建在現場或特定的處理區。通常為卧鼓形和升降機形,有間隙式和連續式兩種。因為反應器可使土壤與微生物及其他添加物如營養鹽,表面活性劑等徹底混合,能很好的控制降解條件,因而處理速度快,效果好。生物反應器處理的過程為:先挖出土壤與水混合為泥漿,然後轉入反應器。為了提高降解速率,常在反應器先前處理的土壤中分離出已被馴化的微生物,並將其加入到准備處理的土壤中.
e.厭氧生物修復法
修復受石油烴污染土壤的研究已開發了生物堆層、堆肥及土壤泥漿反應器等好氧修復工藝,但分離獲得某些降解菌時。一些降解菌伴有產生高生態風險的產物。最近的研究表明以厭氧還原脫氯為特徵的厭氧微生物修復技術有很大的潛力。
(2)植物修復技術
目前,對土壤有機污染的生物修復研究較多,但是,多集中在微生物作用上。事實上,植物對污染物的去除起著直接和間接的重要作用。植物生物修復是利用植物體內對某些污染物的積累、植物代謝過程對某些污染物的轉化和礦化,植物根圈與根莖的共生關系增加微生物的活性的特點。加速土壤污染物降解速度的過程。
植物修復的方式包括植物提取、植物降解和植物穩定化三種。植物提取是指利用植物吸收積累污染物,待收獲後才進行處理。收獲可以進行熱處理,微生物處理和化學處理。植物降解是利用植物及相關微生物區系將污染物轉化為無毒物質。植物穩定化是指植物在同土壤的共同作用下.將污染物固定,以減少其對生物與環境的危害。植物根際使土壤環境發生變化,起到了改善和調節作用,從而有利於污染物的降解。因此通過選擇適當植物和調控土壤條件等手段.可以實現污染土壤的快速修復。
植物生物修復是一項利用太陽能動力的處理系統.具有處理費用低,減少場地破壞等優點而受到普遍重視。據美國實踐,種植管理的費用在每公頃200~1000美元之間.即每年每立方米的處理費為0.02~1.00美元.比物理化學處理的費用低幾個數量級。
(二)水體石油污染治理
水體石油污染和土壤治理不同,水具有流動性,不及時處理會使污染范圍以很快的速度不斷擴大。因此.水體石油污染首先是控制污染然後再對污染水進行處理。
(1)海洋、江河、湖泊水體治理
水體石油污染治理對海洋、江河、湖泊石油污染治理,目前僅限於化學破乳、氧化處理方法進行分解處理和機械物理的方法進行凈化吸附。清除海洋、江河、湖泊石油污染是非常困難的。防止油水合二為一的唯一選擇是噴灑清除劑,因為只有化學葯劑才能使原油加速分解,形成能消散於水中的微小球狀物。清除水面石油污染還有一些物理方法,如用抽吸機吸油,用水柵和撤沫器刮油,用油纜阻擋石油擴散。英國有一位農場主發明了一種用機編禾草排治理石油污染的方法,不僅能防止石油在海中擴散,而且能吸收比自身質量多15倍的石油,可防止油輪流出的石油污染水岸,禾草中又以大麥秸稈治污最為有效。1992年,一艘油輪在舍德蘭群島附近失事後,在海上放置了22千米長的禾草排,從而保護了海濱浴場和漁場不致遭受污染。而俄羅斯莫斯科精細化工科學院的教授奧列格.喬姆金研製出了用農作物廢料清除石油污染的全新方法。演示實驗中,喬姆金在一盆水中擠了幾滴重油,水盆中頓時漂起了一層薄薄的油花。緊接著喬姆金向水盆中撒人了一小撮稻米殼,幾分鍾後水盆中的油跡開始減少,二小時後水盆中的油跡完全消失了。
而對收集上來的污水以及石油工廠排出來的石油污水採用生物處理法。生物處理法也稱生化處理法。生物處理法是處理廢水中應用最久、最廣和相當有效的一種方法。它是利用自然界存在的各種微生物,將廢水中有機物進行降解,達到廢水凈化的目的。
(2)地下水體治理
對地下水石油污染治理,採用水動力學方法,通過抽水井或注水井控制流場,可以防止石油和石油化工產品污染的進一步擴大,同時對抽取出來的受污染的地下水進行處理。
近年來。臭氧氧化技術對石油污染的地下水處理取得了很大進展。經臭氧氧化反應後,水體中有機物種類增加,經過一定時間接觸氧化反應後,苯系物和稠環芳烴類在水中的相對含量有較大幅度下降,但酯、醛、酮類和烷烴類在水中的相對含量卻大幅上升。一般認為,水中芳香烴物質危害性較大,多具有較大的毒性和致癌性,而烷烴、酯類和其他低分子物質的危害性小得多。由上我們可以看出.臭氧氧化法是把危害性大的污染物轉化為危害小的污染物.污染水體沒有得到根本治理,因此臭氧氧化法與吹脫、活性炭吸附、生物氧化等處理方法配合使用,才能得到良好的處理效果。
(三)空氣石油污染治理
石油對空氣的污染僅限於其所含的具有揮發性的物質以及輕質石油產品了,而不像對於土壤和水體,石油中的粘稠膠體可以在這兩者中成片成塊的形成時間很長的污染。雖然如此,石油產品對空氣的污染是非常嚴重的,對空氣相對於水體更具有流動和擴散性,治理更加困難。到目前為止,對於石油產品對空氣污染還沒有一種很好的治理方法,局限於採用控制油氣排放等措施,如制定汽車尾氣排放標准等.而具體的污染治理方法還有待於人類進行探討和研究。
C. 石油會在什麼時候耗盡
現在全世界究竟有多少石油儲藏量?已經探明的大概為1萬1500億桶。雖然這比前兩年的估計數字增長了10%, 但以目前的開采速度計算,地球上的石油儲量只夠滿足全世界石油消費需要41年。
世界石油儲藏量主要分布在中東、拉美、歐洲、非洲、亞洲與北美。按儲量大小計算,前10個國家為沙烏地阿拉伯、伊拉克、科威特、阿聯酋、伊朗、委內瑞拉、俄羅斯與中亞國家、墨西哥、美國與中國。其中沙烏地阿拉伯的探明儲量最大,佔世界總儲量的25%,可以開采90年以上。伊拉克、科威特、阿聯酋等國則可分別開采100年以上,美國按目前的產量計算只能開采10年。
據美國能源部門估計,今後20年內,世界石油還能供求平衡,但20年後就要面臨缺油的局面。雖然中東仍是世界最大的供應者,波斯灣仍將供應全球石油的一半或三分之二,但是沙特已經有幾十年沒有發現新油田,很多舊油井已經灌水。
目前世界還沒有油荒,跨國石油公司正在西非、俄國與其他地方尋找新的油源。但從長遠看,世界越來越接近油源枯竭的日子。這一天可能在一兩代人的時間內到來。
D. 如何開發底水油藏
海上油氣開發 海上油氣開發與陸地上的沒有很大的不同,只是建造採油平台的工程耗資要大得多,因而對油氣田范圍的評價工作要更加慎重。要進行風險分析,准確選定平台位置和建設規模。避免由於對地下油藏認識不清或推斷錯誤,造成損失。60年代開始,海上石油開發有了極大的發展。海上油田的採油量已達到世界總採油量的20%左右。形成了整套的海上開采和集輸的專用設備和技術。平台的建設已經可以抗風、浪、冰流及地震等各種災害,油、氣田開採的水深已經超過200米。
當今世界上還有不少地區尚未勘探或充分勘探,深部地層及海洋深水部分的油氣勘探剛剛開始不久,還會發現更多的油氣藏,已開發的油氣藏中應用提高石油採收率技術可以開采出的原油數量也是相當大的;這些都預示著油、氣開採的科學技術將會有更大的發展。
石油是深埋在地下的流體礦物。最初人們把自然界產生的油狀液體礦物稱石油,把可燃氣體稱天然氣,把固態可燃油質礦物稱瀝青。隨著對這些礦物研究的深入,認識到它們在組成上均屬烴類化合物,在成因上互有聯系,因此把它們統稱為石油。1983年9月第11次世界石油大會提出,石油是包括自然界中存在的氣態、液態和固態烴類化合物以及少量雜質組成的復雜混合物。所以石油開采也包括了天然氣開采。
石油在國民經濟中的作用 石油是重要能源,同煤相比,具有能量密度大(等重的石油燃燒熱比標准煤高50%)、運輸儲存方便、燃燒後對大氣的污染程度較小等優點。從石油中提煉的燃料油是運輸工具、電站鍋爐、冶金工業和建築材料工業各種窯爐的主要燃料。以石油為原料的液化氣和管道煤氣是城市居民生活應用的優質燃料。飛機、坦克、艦艇、火箭以及其他航天器,也消耗大量石油燃料。因此,許多國家都把石油列為戰略物資。
20世紀70年代以來,在世界能源消費的構成中,石油已超過煤而躍居首位。1979年佔45%,預計到21世紀初,這種情況不會有大的改變。石油製品還廣泛地用作各種機械的潤滑劑。瀝青是公路和建築的重要材料。石油化工產品廣泛地用於農業、輕工業、紡織工業以及醫葯衛生等部門,如合成纖維、塑料、合成橡膠製品,已成為人們的生活必需品。
1982年世界石油產量為26.44億噸,天然氣為15829億立方米。1973年以來,三次石油漲價和1982年的石油落價,都引起世界經濟較大的波動(見世界石油工業)。
油氣聚集和驅動方式 油氣在地殼中生成後,呈分散狀態存在於生油氣層中,經過運移進入儲集層,在具有良好保存條件的地質圈閉內聚集,形成油氣藏。在一個地質構造內可以有若干個油氣藏,組合成油氣田。
儲層 貯存油氣並能允許油氣流在其中通過的有儲集空間的岩層。儲層中的空間,有岩石碎屑間的孔隙,岩石裂縫中的裂隙,溶蝕作用形成的洞隙。孔隙一般與沉積作用有關,裂隙多半與構造形變有關,洞隙往往與古岩溶有關。空隙的大小、分布和連通情況,影響油氣的流動,決定著油氣開採的特徵(見石油開發地質)。
油氣驅動方式 在開採石油的過程中,油氣從儲層流入井底,又從井底上升到井口的驅動方式。主要有:①水驅油藏,周圍水體有地表水流補給而形成的靜水壓頭;②彈性水驅,周圍封閉性水體和儲層岩石的彈性膨脹作用;③溶解氣驅,壓力降低使溶解在油中的氣體逸出時所起的膨脹作用;④氣頂驅,存在氣頂時,氣頂氣隨壓力降低而發生的膨脹作用;⑤重力驅,重力排油作用。當以上天然能量充足時,油氣可以噴出井口;能量不足時,則需採取人工舉升措施,把油流驅出地面(見自噴採油法,人工舉升採油法)。
石油開採的特點 與一般的固體礦藏相比,有三個顯著特點:①開採的對象在整個開採的過程中不斷地流動,油藏情況不斷地變化,一切措施必須針對這種情況來進行,因此,油氣田開採的整個過程是一個不斷了解、不斷改進的過程;②開采者在一般情況下不與礦體直接接觸。油氣的開采,對油氣藏中情況的了解以及對油氣藏施加影響進行各種措施,都要通過專門的測井來進行;③油氣藏的某些特點必須在生產過程中,甚至必須在井數較多後才能認識到,因此,在一段時間內勘探和開采階段常常互相交織在一起(見油氣田開發規劃和設計)。
要開發好油氣藏,必須對它進行全面了解,要鑽一定數量的探邊井,配合地球物理勘探資料來確定油氣藏的各種邊界(油水邊界、油氣邊界、分割斷層、尖滅線等);要鑽一定數量的評價井來了解油氣層的性質(一般都要取岩心),包括油氣層厚度變化,儲層物理性質,油藏流體及其性質,油藏的溫度、壓力的分布等特點,進行綜合研究,以得出對於油氣藏的比較全面的認識。在油氣藏研究中不能只研究油氣藏本身,而要同時研究與之相鄰的含水層及二者的連通關系(見油藏物理)。
在開采過程中還需要通過生產井、注入井和觀察井對油氣藏進行開采、觀察和控制。油、氣的流動有三個互相聯接的過程:①油、氣從油層中流入井底;②從井底上升到井口;③從井口流入集油站,經過分離脫水處理後,流入輸油氣總站,轉輸出礦區(見油藏工程)。
石油開采技術
測井工程 在井筒中應用地球物理方法,把鑽過的岩層和油氣藏中的原始狀況和發生變化的信息,特別是油、氣、水在油藏中分布情況及其變化的信息,通過電纜傳到地面,據以綜合判斷,確定應採取的技術措施(見工程測井,生產測井,飽和度測井)。
鑽井工程 在油氣田開發中,有著十分重要的地位,在建設一個油氣田中,鑽井工程往往要佔總投資的50%以上。一個油氣田的開發,往往要打幾百口甚至幾千口或更多的井。對用於開采、觀察和控制等不同目的的井(如生產井、注入井、觀察井以及專為檢查水洗油效果的檢查井等)有不同的技術要求。應保證鑽出的井對油氣層的污染最少,固井質量高,能經受開采幾十年中的各種井下作業的影響。改進鑽井技術和管理,提高鑽井速度,是降低鑽井成本的關鍵(見鑽井方法,鑽井工藝,完井)。
採油工程 是把油、氣在油井中從井底舉升到井口的整個過程的工藝技術。油氣的上升可以依靠地層的能量自噴,也可以依靠抽油泵、氣舉等人工增補的能量舉出。各種有效的修井措施,能排除油井經常出現的結蠟、出水、出砂等故障,保證油井正常生產。水力壓裂或酸化等增產措施,能提高因油層滲透率太低,或因鑽井技術措施不當污染、損害油氣層而降低的產能。對注入井來說,則是提高注入能力(見採油方法,采氣工藝,分層開采技術,油氣井增產工藝)。
油氣集輸工程 是在油田上建設完整的油氣收集、分離、處理、計量和儲存、輸送的工藝技術。使井中采出的油、氣、水等混合流體,在礦場進行分離和初步處理,獲得盡可能多的油、氣產品。水可回注或加以利用,以防止污染環境。減少無效損耗(見油田油氣集輸)。
石油開采中各學科和工程技術之間的關系見圖。
石油開采
石油開采技術的發展 石油和天然氣的大規模開采和應用,是近百年的事。美國和俄國在19世紀50年代開始了他們各自的近代油、氣開采工業。其他國家稍晚一些。石油開采技術的發展與數學、力學、地質學、物理學、機械工程、電子學等學科發展有密切聯系。大致可分三個階段:
初期階段 從19世紀末到20世紀30年代。隨著內燃機的出現,對油料提出了迫切的要求。這個階段技術上的主要標志是以利用天然能量開采為主。石油的採收率平均只有15~20%,鑽井深度不大,觀察油藏的手段只有簡單的溫度計、壓力計等。
第二階段 從30年代末到50年代末,以建立油田開發的理論體系為標志。主要內容是:①形成了作為鑽井工程理論基礎的岩石力學;②基本確立了油藏物理和滲流力學體系,普遍採用人工增補油藏能量的注水開采技術。在蘇聯廣泛採用了早期注水保持地層壓力的技術,使石油的最終採收率從30年代的15~20%,提高到30%以上,發展了以電測方法為中心的測井技術和鑽4500米以上的超深井的鑽井技術。在礦場集輸工藝中廣泛地應用了以油氣相平衡理論為基礎的石油穩定技術。基本建立了與油氣田開發和開采有關的應用科學和工程技術體系。
第三階段 從60年代開始,以電子計算機和現代科學技術廣泛用於油、氣田開發為標志,開發技術迅速發展。主要方面有:①建立的各種油層的沉積相模型,提高了預測儲油砂體的非均質性及其連續性的能力,從而能更經濟有效地布置井位和開發工作;②把現代物理中的核技術應用到測井中,形成放射性測井技術,與原有的電測技術, 加上新的生產測井系列,可以用來直接測定油藏中油、氣、水的分布情況,在不同開發階段能採取更為有效的措施;③對油氣藏內部在採油氣過程中起作用的表面現象及在多孔介質中的多相滲流的規律等,有了更深刻的理解,並根據物理模型和數學模型對這些現象由定性進入定量解釋(見油藏數值模擬),試驗和開發了除注水以外提高石油採收率的新技術;④以噴射鑽井和平衡鑽井為基礎的優化鑽井技術迅速發展。鑽井速度有很大的提高。可以打各種特殊類型的井,包括叢式井,定向井,甚至水平井,加上優質泥漿,使鑽井過程中油層的污染降到最低限度;⑤大型酸化壓裂技術的應用使很多過去沒有經濟價值的油、氣藏,特別是緻密氣藏,可以投入開發,大大增加了天然資源的利用程度。對油井的出砂、結蠟和高含水所造成的困難,在很大程度上得到了解決(見稠油開采,油井防蠟和清蠟,油井防砂和清砂,水油比控制);⑥向油層注蒸汽,熱采技術的應用已經使很多稠油油藏投入開發;⑦油、氣分離技術和氣體處理技術的自動化和電子監控,使礦場油、氣集輸中的損耗降到很低,並能提供質量更高的產品。
靠油藏本身或用人工補給的能量把石油從井底舉升到地面的方法。19世紀50年代末出現了專門開採石油的油井。早期油井很淺,用吊桶汲取。後來井深增加,採油方法逐漸復雜,分為自噴採油法和人工舉升採油法兩類,後者有氣舉採油法和泵抽採油法(又稱深井泵採油法)兩種。
自噴採油法: 當油藏壓力高於井內流體柱的壓力,油藏中的石油通過油管和採油樹自行舉升至井外的採油方法。石油中大量的伴生天然氣能降低井內流體的比重,降低流體柱壓力,使油井更易自噴。油層壓力和氣油比(中國石油礦場習稱油氣比)是油井自噴能力的兩個主要指標。
油、氣同時在井內沿油管向上流動,其能量主要消耗於重力和摩擦力。在一定的油層壓力和油氣比的條件下,每口井中的油管尺寸和深度不變時,有一個充分利用能量的最優流速范圍,即最優日產量范圍。必須選用合理的油管尺寸,調節井口節流器(常稱油嘴)的大小,使自噴井的產量與油層的供油能力相匹配,以保證自噴井在最優產量范圍內生產。
為使井口密封並便於修井和更換損壞的部件,自噴井井口裝有專門的採油裝置,稱採油樹(見彩圖)。自噴井的井身結構見圖。自噴井管理方便,生產能力高,耗費小,是一種比較理想的採油方法。很多油田都採取早期注水、注氣(見注水開采)保持油藏壓力的措施,延長油井的自噴期。
人工舉升採油法: 人為地向油井井底增補能量,將油藏中的石油舉升至井口的方法。隨著采出石油總量的不斷增加,油層壓力日益降低;注水開發的油田,油井產水百分比逐漸增大,使流體的比重增加,這兩種情況都使油井自噴能力逐步減弱。為提高產量,需採取人工舉升法採油(又稱機械採油),是油田開採的主要方式,特別在油田開發後期,有泵抽採油法和氣舉採油法兩種。
氣舉採油法: 將天然氣從套管環隙或油管中注入井內,降低井中流體的比重,使井內流體柱的壓力低於已降低了的油層壓力,從而把流體從油管或套管環隙中導出井外。有連續氣舉和間歇氣舉兩類。多數情況下,採用從套管環隙注氣、油管出油的方式。氣舉採油要求有比較充足的天然氣源;不能用空氣,以免爆炸。氣舉的啟動壓力和工作壓力差別較大。在井下常需安裝特製的氣舉閥以降低啟動壓力,使壓縮機在較低壓力下工作,提高其效率,結構和工作原理見圖。在油管外的液面被壓到氣舉閥以下時,氣從A孔進入油管,使管內液體與氣混合,噴出至地面。管內壓力下降到一定程度時,油管內外壓差使該閥關閉。管外液面可繼續下降。油井較深時,可裝幾個氣舉閥,把液面降至油管鞋,使啟動壓力大為降低。
氣舉採油法:
氣舉井中產出的油、氣經分離後,氣體集中到礦場壓縮機站,經過壓縮送回井口。對於某些低產油井,可使用間歇氣舉法以節約氣量,有時還循環使用活塞氣舉法。
氣舉法有較高的生產能力。井下裝置簡單,沒有運動部件,井下設備使用壽命長,管理方便。雖然壓縮機建站和敷設地面管線的一次投資高,但總的投資和管理費用與抽油機、電動潛油泵或水力活塞泵比較是最低的。氣舉法應用時間較短,一般為15~30%左右;單位產量能耗較高,又需要大量天然氣;只適用於有天然氣氣源和具備以上條件的地區內有一定油層壓力的高產油井和定向井,當油層壓力降到某一最低值時,便不宜採用;效率較低。
泵抽採油法: 人工舉升採油法的一種(見人工舉升採油法)。在油井中下入抽油泵,把油藏中產出的液體泵送到地面的方法,簡稱抽油法。此法所用的抽油泵按動力傳動方式分為有桿和無桿兩類。
有桿泵 是最常用的單缸單作用抽油泵(圖1),其排油量取決於泵徑和泵的沖程、沖數。有桿泵分桿式泵、管式泵兩類。一套完整的有桿泵機組包括抽油機、抽油桿柱和抽油泵(圖2)。
泵抽採油法 泵抽採油法
抽油機主要是把動力機(一般是電動機)的圓周運動轉變為往復直線運動,帶動抽油桿和泵,抽油機有游梁式和無游梁式兩種。前者使用最普遍,中國一些礦場使用的鏈條抽油機屬後一種(見彩圖)。抽油桿柱是連接抽油機和抽油泵的長桿柱,長逾千米,因交變載荷所引起的振動和彈性變形,使抽油桿懸點的沖程和泵的柱塞沖程有較大差別。抽油泵的直徑和沖程、沖數要根據每口油井的生產特徵,進行設計計算來優選。在泵的入口處安裝氣體分離裝置——氣錨,或者增加泵的下入深度,以降低流體中的含氣量對抽油泵充滿程度(即體積效率)的影響。
泵抽採油法
有桿泵是一個自重系統,抽油桿的截面增加時,其載荷也隨著增大。各種材質製成的抽油桿的下入深度,都是有極限的,要增加泵的下入深度,主要須改變抽油桿的材質、熱處理工藝和級次。根據抽油桿的彈性和地層流體的特徵,在選擇工作制度時,要選用沖程、沖數的有利組合。有桿泵的工作深度在國外已超過 3000m,抽油機的載荷已超過25t,泵的排量與井深有關,有些淺井日排量可以高達400m3,一般中深井可達200m3,但抽油井的產量主要根據油層的生產能力。有桿抽油機泵組的主要優點是結構簡單,維修管理方便,在中深井中泵的效率為50%左右,適用於中、低產量的井。目前世界上有85%以上的油井用機械採油法生產,其中絕大部分用有桿泵。
無桿泵 適用於大產量的中深井或深井和斜井。在工業上應用的是電動潛油泵、水力活塞泵和水力噴射泵。
電動潛油泵 是一套多級離心泵和電動機直接連接的機泵組。由動力電纜把電送給井下的電機以驅動離心泵,把井中的流體泵送到地面,由於機泵組是在套管內使用,機泵的直徑受到限制,所以採取細長的形狀(圖3)。為防止井下流體(特別是水)進入電樞使電機失效,需採取特殊的密封裝置,並在泵和電動機的連接部位加裝保護器。泵的排量受井眼尺寸的限制,揚程決定於泵的級數,二者都取決於電動機的功率。電動潛油泵適用於中、高產液量,含氣和砂較少的稀油或含水原油的油井。一般日排量為100~1000m3、揚程在2000m以內時,效率較高,可用於斜井。建井較簡單,管理方便,免修期較長,泵效率在60%左右;但不適用於高含氣的井和帶腐蝕性流體的井,下井後泵的排量不能調節,機泵組成本較高,起下作業和檢修都比較復雜。
泵抽採油法
水力活塞泵 利用地面泵注入液體驅動井下液壓馬達帶動井下泵,把井下的液體泵出地面。水力活塞泵的工作原理與有桿泵相似,只是往復運動用液壓馬達和換向閥來實現(圖 4)。水力活塞泵的井下泵有單作用和雙作用兩種,地面泵都用高壓柱塞泵。流程有兩種:①開式流程。單管結構,以低粘度原油為動力液,既能減少管道摩擦阻力,又可降低抽出油的粘度,並與采出液混在一起采出地面。②閉式流程。用輕油或水為動力液,用水時要增添潤滑劑和防腐劑,自行循環不與產出的液體相混,工作過程中只需作少量的補充。水力活塞泵可以單井運轉,也可以建泵組集中管理,排量適應范圍寬,從每日幾十到上千立方米等,適用於深井、高揚程井、稠油井、斜井。優點是可任意調節排量,起下泵可不起油管,操作和管理方便。泵效率可達85%以上。缺點是地面要多建一條高壓管線,動力液要處理,增加了建井和管理成本。
泵抽採油法
水力射流泵 帶有噴嘴和擴散器的抽油泵(圖5)。水力射流泵沒有運動零件,結構簡單,成本低,管理方便,但效率低,不高於30~35%,造成的生產壓差太小,只適用於高壓高產井。一般僅在水力活塞泵的前期即油井的壓力較高、排量較大時使用;當壓力降低、排量減少時,改用水力活塞泵。
參考資料:http://www.hoodong.com/wiki/%E7%9F%B3%E6%B2%B9%E5%BC%80%E9%87%87
E. 石油地區屬於重度污染區還是一般污染區
這至少看什麼叫重污染?有無污染源?
比如:石油中的有機難降解物,混入水源,那就是重污染。
還比如:有一個裝滿原油的油罐,罐體完好無滲漏,這時沒有污染物出來,油罐不是污染源。
如果罐體破損,油料持續滲漏,那它就成了污染源
同理,石油蘊藏區,原油在含油層里,沒有跑到地下水層和土壤中,那基本可視為安全區。
如果由於地震、打井等原因,破壞了含油層,油跑出來了,那污染就出現了,如果滲透范圍大時間長,那很難不算作重污染區。
對於煉油、煤化工企業,治污設備不開,或者缺乏監管、企業貪圖眼前利益、污物隨意排放,那污染狀況可能很嚴重,對環境影響會很多年無法消除。
F. 油氣聚集區水體的石油污染
5.1.1區內水體的基本情況
黃河是黃河三角洲地區最主要的地表河流,黃河自利津縣南宋鄉進入東營市區至入海口約188km,平均年徑流量317億m3,年內分布極不均勻,汛期(7~10月)徑流量佔全年的63%,達199億m3。非汛期內徑流量只有118億m3,枯水期常常出現斷流現象,並且斷流時間有逐年增加的趨勢,對該地區工農業用水和人民生活造成了一定的影響。除黃河以外,區內大小入海河流20餘條,其中主要的有15條。黃河以北有神仙溝、挑河、草橋河、潮河等沿海河流,大多自南向北流入渤海灣,河道順直,無大的支流。黃河以南有廣利河、廣蒲河、溢洪河、支脈河、小清河、淄河等,這些河流大多由西向東流入萊洲灣。這些河流多系人工開挖,用於排鹼、排澇和排污。
圖5-1石油污染源分布示意圖
黃河三角洲地區淺層地下水主要靠大氣降水補給,在形成過程中一方面受黃河側滲和下滲的影響,另一方面受海洋潮汐頂托、淹沒作用的制約,受鹽土體和海水的影響形成近代黃河三角洲高礦化度地下水的主要特徵。因此區內大部分地區(小清河以北)為鹹淡水重疊區及全鹹水區,基本不適於飲用。水化學類型比較復雜,主要為重碳酸氯化物-鈉鎂型、重碳酸氯化物-鈉鈣鎂型、氯化物硫酸鹽-鈉鎂型、氯化物-鈉鈣鎂型和氯化物-鈉型水,礦化度大於2g/L,多數大於5g/L,沿海地區分布有大於50g/L的鹵水。區內主要的全淡水區分布於小清河以南山前地帶,面積420km2,約占東營市面積的5%。水化學類型以重碳酸型水為主,礦化度0.5~1.5g/L,pH值在7.0~8.5之間,是生活、農業用水的良好水源。有關區內地下水更為詳細的情況見前一章節的水文地質條件部分。
為解決東營地區用水問題,調節黃河枯水季節水資源短缺而修建的各種類型水庫10餘座。其中大型水庫一座,庫容量1.14億m3;中型水庫6座,庫容量1.6億m3;小型水庫11餘座,蓄水總量可達3.02億m3,基本上滿足東營市目前的用水需求。
根據黃河三角洲地表水分布的基本格局,全局(勝利石油管理局)所排工業廢水主要分四路,最終排入渤海。孤島地區廢水經神仙溝排入渤海灣;河口地區廢水經挑河排入渤海灣;東營地區廢水經廣利河排入萊洲灣。孤島採油廠和樁西採油廠屬濱海灘塗油田,工業廢水主要經過各排澇站提升泵,直接排入萊洲灣和渤海灣。因此受納油田污水的河流主要有挑河、神仙溝、支脈河、廣利河、溢洪河,此外還有武家大溝、廣蒲河兩條比較小的河段。
以下為納污各河流域的概況(見表5-2)。
1.挑河流域概況
挑河主要位於東營市河口區境內,從利津縣的集賢、神廟自南而北由新刁口入渤海灣,全長32.6km,流域面積504km2。1974年開挖,形成以排澇、防洪和排污為主要功能的河流。匯入挑河的污水主要為河口採油廠的採油廢水、生活污水和地方工業企業廢水及生活廢水。
2.神仙溝流域概況
神仙溝位於東營市河口區孤島油區境內,最初是承擔黃河分流行水,自1979年黃河由清溝入海後,神仙溝不再承擔黃河水的分流入海責任,其下游功能完全變為排污河道。全河長54km,流域面積250km2,流域內的主要廢水污染源是孤島、樁西採油廠的採油廢水、生活廢水以及地方工業廢水及生活廢水。
3.支脈河流域概況
支脈河源於山東高青縣,流域面積1338km2,全河長112.5km,流經東營區和廣饒縣交界處進入萊洲灣,該河功能主要用於排澇。受納石油化工開發總公司、純梁首站、王家崗聯合站及勝利發電廠等工業廢水及生活污水。
4.廣利河流域概況
廣利河發源於墾利縣勝坨鄉王營,全長47.8km,流域面積844km2,最大排澇能力148m3/s。廣利河流域內匯入的主要污水為西城區的生活污水、東辛採油廠、現河採油廠、動力機械廠、勝利採油廠的工業廢水及地方工業企業廢水。
5.溢洪河流域概況
溢洪河起源於墾利縣崔家莊子,全長47.9km,流域面積2130km2,最大排澇能力110m3/s。流域內匯入的主要污水為勝利採油廠、東辛採油廠及鑽井集團公司的生產、生活廢水和地方工業企業生活廢水。
表5-2勝利石油管理局主要納污河流及排污企業
5.1.2主要的污染部門及排污種類
由前面區內的經濟概述部分介紹可以看出:區內經濟的主體是石油經濟,對水體的影響也主要是石油企業的工業廢水排放。
企業工業廢水排放的具體情況如下:
1.主要工業污染行業
石油開采過程中,以採油產生的廢水最多。採油與煉化兩大部門構成了主要污染部門。採油部門等標污染負荷比為74.85%,是第一工業廢水污染行業。煉化部門僅次於採油部門,等標污染負荷比為17.36%,是第二工業廢水污染行業。兩者等標污染負荷累計百分比為92.21%。油水井作業過程中,也可產生廢水,由於一般都進干線,實行無污染作業,所以僅有少量廢水排入井場土池中。1993年全局作業部門等標污染負荷比僅為0.24%,是工業廢水污染最小的部門(圖5-2,圖5-3,表5-3)。
圖5-2主要工業污染部門
圖5-3各類廢水排放達標率
表5-3主要工業污染部門評價表
2.石油行業主要的污染企業
全局工業廢水主要污染企業有5個,其中4個是採油廠。現河採油廠等標污染負荷比為41.59%,是第一工業廢水污染企業。其餘按等標污染負荷比為大小順序依次是:石油化工開發總公司、東辛採油廠、孤島採油廠和孤東採油廠,其等標污染負荷比依次是17.36%、12.89%、10.24%和6.63%。以上5個單位的等標污染負荷累加比達88.71%,是主要的工業廢水污染企業。
3.主要污染物排放種類
表5-4列出11項污染物的等標污染負荷,從表中可以看出,揮發酚等標污染負荷比最高,為51.63%,是第一污染物。石油類等標污染負荷比為32.78%,是第二污染物,化學需氧量等標污染負荷比為12.99%,是第三位污染物。三者等標污染負荷累加負荷比達到97.40%,是主要污染物。懸浮物、硫化物、氰化物、銅、鉛、汞、鋅和六價鉻八項污染物相對污染較輕,等標污染負荷比總和僅為2.6%。廢水中主要污染物種類比例如圖5-4。
表5-4石油企業工業廢水主要污染物評價表
① 含Cu、Pb、Hg、CN-、Zn和Cr6+六項污染物。
圖5-4廢水中主要污染物種類
5.1.3地表水體的納污狀況
區內的挑河、神仙溝、支脈河、廣利河、溢洪河、小清河、渤海灣7個主要水系的11條河流是主要的納污水系(圖5-5),共接納全局19個主要排污口外排工業廢水1075.36萬t,佔全局工業廢水外排總量的69.96%。接納污染物4456.23t,佔全局工業廢水中污染物總量的53.59%。其中含化學需氧量3065.09t,石油類545.84t、懸浮物820.95t、揮發酚17.45t、硫化物2.17t,分別佔全局工業廢水中同種污染物總量的67.16%、94.80%、26.03%、96.20%和76.95%。
在上述7個主要的納污水系當中,支脈河、廣利河、小清河水系和渤海灣又是其中最主要的納污水體,1993年,接納來自19個主要排污口的工業廢水941.47萬t,占納污水體接納工業廢水總量的87.55%。接納污染物3662t,占納污水體接納工業廢水污染物總量的82.18%。支脈河水系接納工業廢水量最大,為549.9萬t,接納污染物1769.66t,其中含化學需氧量1238.22t、石油類153.89t、懸浮物366.78t、揮發酚10.3t、硫化物0.88t,是第一大納污水體。各納污水體接納工業廢水污染物狀況詳見表5-2。
5.1.4區內水體環境質量狀況評價
1.地表河流
(1)黃河
區內最主要的地表河流黃河水質較好,根據東營市環境保護監測站多年的監測結果,除了黃河特有的懸浮物含量較高外,絕大多數化學元素均在國家地面水環境質量標准(GB3838-88)三類水范圍以內,另有COD和石油類含量超過五類水質標准。說明黃河入海處的水質雖好,能夠滿足飲用水源的要求,但已經受到石油等有機物的輕微污染。
黃河綜合污染指數為2.97(見表5-5)。
表5-5黃河綜合污染指數評價表
結論:黃河水質尚好,能滿足飲用水源需要,但已經受到石油等有機物的輕微污染,今後應引起高度重視。
(2)廣利河
廣利河的所有監測斷面化學需氧有機指標在枯、平、豐三個水期都超標,最大超標倍數為4.096倍。所有監測斷面的氨氮在枯水期全部超標,最大超標倍數2.67倍。BOD5和總磷只在枯水期的個別斷面超標,超標倍數分別為0.814和0.48倍。石油類除了豐水期各斷面沒有超標現象外,其餘兩個水期的個別斷面上有超標現象,最大超標倍數為8.21倍。
圖5-5地表水系污染程度示意圖
另據1999年度對廣利河水質監測結果最新資料,廣利河小趙家斷面CODcr、揮發酚2項指標超標,超標率分別為100%、33.3%;廣利河沙營斷面CODcr、CODmn、DO、BOD5、揮發酚、油等6項指標超標,超標率分別為100%、83.3%、66.7%、100%、66.7%、83.3%;廣利河廣利港斷面CODcr、CODmn、BOD5、揮發酚、油、氯化物、pH值等7項指標超標,超標率分別為100%、100%、100%、66.7%、83.3%、100%、33.3%。從三個斷面的超標情況可以看出,上游小趙家斷面超標項目少,而中、下游沙營、廣利港斷面則超標項目較多,這主要是由於西城工業廢水和生活廢水的排入造成的。廣利河三個斷面水質均劣於V類水。小趙家沙營、廣利港斷面的綜合污染指數分別為7.52、27.07、15.78。
結論:廣利河水質有機污染已經相當嚴重,不及時治理有加重趨勢。造成廣利河水質有機污染嚴重的主要污染源是西城區的大量生活污水、東辛採油廠的採油廢水以及沿岸地方企業廢水。
(3)支脈河
支脈河水質CODcr所有監測斷面在枯平豐三個水期都超標,最大超標倍數為3.36倍。BOD5在平水期有兩個斷面超標,超標倍數分別為2.835倍和1.438倍;石油類在枯水期的廣利蝦場南一個斷面超標,超標倍數為1.51倍。
1999年度王營斷面的最新資料:超標指標有CODcr、CODmn、DO、BOD5、揮發酚、油,超標率分別為100%、75%、50%、50%、25%、75%。綜合污染指數為12.1。已達到嚴重污染。
結論:支脈河已達到嚴重污染,污染項目增多,造成污染的原因是污染主要來自上游高青、博興縣的工業、生活污水及王家崗聯合站純梁首站等所排入的工業廢水及地方企業所排入的各類廢水。
(4)小清河
根據1999年度對小清河石村、三岔斷面的監測結果可知:小清河石村斷面有7項指標超標,其中CODcr、CODmn、BOD5、揮發酚等4項指標超標率為100%,其他3項指標超標率分別為DO83.3%、汞83.3%、石油類16.7%;小清河三岔斷面有6項指標超標,其中Cl-、CODcr、CODmn等三項指標超標率為100%,其他3項指標超標率分別為BOD583.3%、揮發酚33.3%、石油類16.7%;石村和三岔斷面的污染指數分別為36.2和35.9。
結論:小清河水質各監測斷面均劣於V類水,已失去水體功能。
(5)廣蒲河
廣蒲河水質1999年以前超標因子為化學需氧量、氨氮、砷。
1999年度廣蒲河東王路斷面超標指標為CODcr、CODmn、DO、BOD5、油,超標率分別為100%、75%、75%、50%。綜合污染指數為24.3。
結論:廣蒲河已達到嚴重污染。污染的原因主要是石化總公司、總機械廠、勝利發電廠所排工業廢水及六戶鎮工業廢水及生活污水。
(6)淄河
淄河發源於淄博市臨淄區,流經廣饒縣境內,在三岔河口上游匯入小清河。1999年度對淄河西水、小營兩個斷面的檢測結果表明,淄河西水斷面CODcr、CODmn、BOD5、揮發酚、鉛、油、DO等7項指標超標,超標率分別為100%、100%、100%、80%、20%、40%、100%;淄河小營斷面DO、CODcr、CODmn、BOD5、揮發酚、油等6項指標超標,超標率分別為25%、100%、100%、50%、25%、25%。
結論:水質均劣於Ⅴ類。淄河西水、小營兩個斷面的綜合污染指數分別為143.1和16.1,達到極嚴重污染程度,已失去水體功能。主要接納臨淄區工業、生活廢水。
(7)溢洪河
溢洪河所有監測斷面的化學需氧量在枯、平、豐三個水期都超標,最大超標倍數5.215倍。氨氮在枯豐兩個水期個別斷面超標。溶解氧在豐水期的個別斷面上超標,超標倍數1.26倍。石油類只有豐水期的個別斷面超標,超標倍數為0.79倍。
結論:溢洪河水質也遭到嚴重的有機污染,造成有機污染嚴重的原因是由於勝利採油廠、東辛採油廠、墾利煉油廠等工業廢水及生活廢水。
(8)挑河
挑河化學需氧量在所有監測斷面的枯、平、豐三個水期都超標,超標倍數3.904倍;其他有機污染指標氨氮、溶解氧、生化需氧量在枯水期和平水期中的個別斷面超標,超標倍數分別為1.28倍、3.96倍和0.272倍。
結論:挑河已經受有機污染。造成挑河水質污染的原因主要是河口採油廠的採油、生活廢水及地方企業廢水。
(9)神仙溝
神仙溝化學需氧量在所有斷面的枯、平、豐三個水期都超標,最大超標倍數為13.72倍。其他有機污染指標:氨氮在枯水期所有斷面都超標,最大超標倍數0.56倍;總磷在枯水期有一個斷面超標,超標倍數為1.75倍,溶解氧和生化需氧量在枯、平、豐三個水期基本都超標,最大超標倍數分別為9.0和7.3倍。污染指標石油類在枯、平、豐三個水期基本都超標,最大超標倍數為1.68倍。
結論:神仙溝水質污染相當嚴重。造成神仙溝水質污染的主要污染源是軍馬造紙廠、樁西採油廠、孤島採油廠工業及生活污水。
(10)武家大溝
武家大溝有機污染指標化學需氧量在三個水期都超標,最大超標倍數為1.93倍,生化需氧量和溶解氧有一個水期超標,超標倍數分別為0.027和1.305倍。
結論:武家大溝水質污染比其他河流輕,屬有機污染類型。污染的主要原因是現河採油廠的王家崗站所排的採油廢水及附近的地方企業排放的廢水。
2.油田淺海海水
勝利油田淺海灘塗地下油藏豐富,是重點開發區之一,這個區域又是我國的傳統漁場,是渤海經濟魚蝦、貝類產卵孵化和育肥的良好場所和水產養殖基地。在石油開采過程中,石油類等污染物會對近海水造成一定影響。此外,河流污水未經處理直接排向大海,對近岸海域的水質也有較大的影響。
為了全面了解油田淺海水的質量狀況,勝利油田曾在1989年組織了《勝利油田開發建設與淺海灘塗石油勘探開發區域環境影響評價及研究》課題,對淺海海域的水質及淺海灘塗底質的污染狀況進行了全面的調查與評價。當時的海域調查范圍北起馬頰河口,南至濰河口,海域的經緯度范圍為117°58.3′~119°30.1′E,37°11.6′~38°50.6′N。淺海調查海域包括0~15m等深線水域,共設12條斷面,大面觀測站49個。49個大面觀測站中包括3個連續觀測站,對有關水質參數每隔兩小時測一次,歷時24小時連續監測。淺海調查時間在枯水期(5月)和豐水期(8月)各進行一個航次。淺海水質調查的采樣層次是水深小於10m者,只採表層,水深10~15m者,采表底兩層。評價方法採用1990年3月國家海洋局海洋環境保護研究所《中國近海水質評價方法研究報告》所推薦的方法,評價標准用海水水質標准GB3097—82中第一類海水標准。海水質量分為4個等級:A、B、C、D,A、B、C級大致相當於一類、二類、三類海水,劣於三級海水者屬於D級。除了排污口以外,任何海域不允許D級海水存在(圖5-6)。
海水水質評價結果為:
(1)單項海水水質等級
COD:超標站位1個,位於神仙溝口,超標率1.7%,僅神仙溝口潮間帶出現D級水質,並影響到附近淺水域,使其水質等級為C級到B級,其餘評價海域COD水質均為A級。
石油:超標站位7個,其中6個在潮間帶,一個在小清河附近,超標率12%。石油類在海域里造成的局部污染是明顯的,尤其突出的有兩處,一是神仙溝口潮間帶,二是旺河口與小清河口潮間帶。石油的水質等級最差的出現在神仙溝口,為D級。孤東、小清河口潮間帶均為B級。
揮發酚:揮發酚的超標站位主要在孤東和神仙溝口的潮間帶,超標站位3個,超標率11.5%。挑河口、神仙溝口、黃河口、小清河、旺河口一直到萊洲灣底部一帶沿岸區域水質均為A級。
圖5-6油田淺海海水水質分區圖
(2)綜合海水水質等級
將兩個水期的平均結果做出綜合水質等級評價,水質最差的地方是在神仙溝口的潮間帶,其主要污染物是石油和COD,尤其是石油超標較高。B級水質在靠近潮間帶的一小塊區域以及廣利河口潮間帶區域,潮下帶就基本是A級水質。調查區絕大部分區域的水質屬於A級,即一般的一類海水水質。
由於底質能很好地反映出水域環境的污染狀況和污染歷史,此次調查除了海水水質以外,對淺海灘塗的底質污染狀況也進行了相應的評價。
(3)淺海、灘塗底質狀況
通過對淺海、灘塗地質調查發現:除了孤東油田潮間帶底質超標以外,其他區域的灘塗及淺海底質均未超標。孤東油田受油污染存在灰黑色稀泥的底質寬度約100m。從污染程度上看極其嚴重,石油污染超標40倍,硫化物的污染超標2.5倍,酚和有機質的含量也是全區最高值。從污染發展的速度來看:1986年10月勝利油田對孤東油田進行環境影響評價工作時,該區域底質質量尚好,無超標項目,也未見明顯的油污染。目前狀況顯然是1986年以後油田排出的污水中的石油在灘塗的底質上迅速積累所致。
此外,通過對整個區域底質污染指數分析可以發現:灘塗的污染指數最小,淺海近岸底質的指數大於灘塗,而小於離岸較遠的淺海。顯示出底質污染指數由灘塗向深水方向遞增的條帶狀分區現象(這一點與淺海海水水質條帶分區正好相反),這一方面反映了石油等污染物入海後主要是隨細懸浮物輸移到水動力較弱的海域沉積下來的的趨勢;另一方面也是由於灘塗近岸水淺,水交換充分,氧化電位高,污染物不易形成所致。
總之,通過此次對黃河三角洲海岸帶淺海水質及底質的全面調查可以看出:1989年時海水污染主要是在孤東油田的近海,由於油田瀕臨海邊,排澇站直接將水排入海內,對海水影響較大,但污染僅限於潮間帶,特別是神仙溝口和廣利河口水質較差,除此之外大部分地區淺海水質基本上屬於一般一類海水水質。
10年以後,通過收集到的1999年度對近岸海域的水質監測資料,根據GB3097—1997標准進行評價,另外根據海域功能區的不同,分別採用Ⅲ類標准、Ⅱ類標准進行評價,其中東營港、渤海埕島石油開發區按Ⅲ類標准進行評價,其餘按Ⅱ類標准進行評價。近海海域水質狀況評價結果見表5-6。
表5-6近海海域水質狀況評價結果表
通過1989年和1999年對海水水質的評價對比,盡管評價所採用的標准有所不同,超標項目也無法進行有效對比,但總體上1989年大部分區域的淺海海水屬於一般的一類海水水質,主要污染區域孤東油田潮間帶也多為二級海水水質,而1999年調查區海水水質狀況多為三級水質,污染有所加重,污染區域也有擴大的趨勢,應引起高度重視,防止污染的進一步擴大和加重。
結論:自1986年以來,淺海海水污染有所加重,污染區域也有擴大的趨勢。
3.地下水
黃河三角洲局部地區淺層地下水污染元素含量超過家庭飲用水標准,污染嚴重的地區主要分布在排污河道沿岸、城鎮和工業集中區。此外東營市地勢偏低,受外來污水影響嚴重,據監測,東營市地下水污染主要是淺層地下水污染,以石油、揮發酚、COD為主,以廣饒縣南部淺層淡水分布區的地下水污染對人危害最大。尤其淄河沿岸地下水,局部地區肉眼可辨水顏色發黃、發黑。另外,在淺層地下水中,農葯殘留也有檢出,據1992~1995年的檢測結果,主要有樂果(檢出值0.4~12mg/dm3,)、「六六六」(檢出值0~0.18mg/dm3)、DDVP(檢出值0.3~10.5mg/dm3)、「四〇四九」(檢出值0.1~0.5mg/dm3)。人們正逐漸意識到地下水污染的危害,品嘗到了人類自己釀成的苦果,因為已經發現了可能與地下水污染或者與早期污水灌溉有關的可疑病區,肝大、癌症發病率高(圖5-7)。
圖5-7淺層地下水質量分區示意圖
(1)淄河沿岸地下水的污染
淄河是一條重度污染河流,由於兩岸淺層地下水開采強度大,因而淄河的污水對地下水有較強的補給作用,造成沿岸地下水嚴重污染,近岸地帶地下水具有異味,顏色呈黃灰色,60m以上的淺層地下水已不能飲用。
據垂直淄河布設的地下水取樣點分析資料,主要污染物為揮發酚、油,並且砷和六價鉻也有檢出,揮發酚超過飲用水標准4.5~4.7倍。地下水的污染程度隨著距淄河的距離加大而減小,污染區分布在淄河西岸梧村—皂戶李—黃丘—白兔丘一帶和東岸西朱營—楊庄—李璩—郭辛一帶的臨河地區,面積約32km2。污染區沿淄河呈條帶狀展布,寬度2~3km,污染區邊界距淄河的距離一般為1.0~1.5km。區內淺層地下水中石油類的含量一般為0.18~0.50mg/L,超過生活飲用水衛生標准,COD的含量一般為0.90~2.00mg/L,最高為8.68mg/L,超過生活飲用水衛生標准。另外,區內淺層地下水中Cr6+和Mo的檢出率較高,Cr6+的檢出率約為40%,含量一般為0.005~0.025mg/L。Mo的檢出率約為80%,含量一般為0.001~0.005mg/L(見表5-7)。
表5-7淄河沿岸地下水污染監測斷面水質分析成果表
未污染區分布在距淄河較遠的呈羔—大張—晉王一帶和大張淡—西營一帶,面積約109km2。該區距淄河較遠,淺層地下水僅受到輕微污染。該區淺層地下水中COD的含量一般為0.87~1.17mg/L,Cr6+含量一般為0.008mg/L。Mo含量一般為0.001~0.002mg/L,它們的含量均低於生活飲用水衛生標准。該區淺層地下水基本滿足人畜供水水質要求(圖5-8)。
圖5-8淄河沿岸地下水污染評價分區示意圖
區內中深層地下水基本未受污染,水質良好,僅個別村莊因開采中深層地下水造成串層污染,其污染呈點狀,污染范圍較小。這些污染點主要分布在南部淄河沿岸的楊庄、趙庄、明庄和北部的王昌屋子、常徐庄等村。南部發生串層污染的深井距淄河的距離都小於200m,它們均開鑿於20世紀80年代初,井深小於160m,其主要污染物為石油類和Cr6+,石油類的含量一般為0.44~1.06mg/L,超過生活飲用水衛生標准。Cr6+含量一般為0.01~0.02mg/L。北部中深層地下水污染也是由上部鹹水串層污染引起。
(2)小清河沿岸地下水的污染
小清河為嚴重污染河流,受小清河水影響,兩岸淺層地下水已受到較嚴重的污染,地下水檢出有機化合物58種,有31種直接來源於工業廢水和小清河水,個別取樣點苯並(A)芘和CCL4濃度已分別超過我國生活飲用水標准幾倍乃至上百倍,污染程度嚴重。淺層地下水污染本質為有機化合物的污染,已有研究成果表明,潛水含水層縱向彌散度為0.42m,小清河污染物質向潛水擴散速度1年約2.8m,現淺層地下水污染范圍已達500m左右。小清河在枯水期、平水期排泄兩岸地下水,僅在豐水期對淺層地下水有短期的補給,因此,小清河對地下水的污染,主要是通過污染物質的彌散作用。另一個污染途經則是小清河污水灌溉,據調查,小清河兩岸仍有污水灌溉區,這加劇了地下水和土壤以及糧食作物的污染。
(3)黃河三角洲平原區地下水污染現狀
小清河以北的黃河三角洲平原區是勝利油田主要石油開發區,東營市的主要工業企業也在區內,地下水亦受到不同程度的污染。以取樣點資料分析,地下水污染帶主要分布於地表污染源附近,在遠離污染源的地帶,地下水受污染程度較輕。主要污染物為油、揮發酚和重金屬鎘、鉛、六價鉻,如表5-8。
結論:區內主要是淺層地下水受到污染,主要污染物是大腸菌群、細菌總數、石油類、COD和氨氮,其中以大腸菌群、石油類和總磷最為嚴重。污染嚴重的地區主要分布在排污河道沿岸、城鎮和工業集中區,其他地區污染輕微。相比之下深層地下水受污染程度較小,超標項目主要是石油類和揮發酚。但在該區內,由於地下水的開發利用較少,對地下水的污染沒有引起足夠的重視,現在的監測工作也做得較少。
4.水庫
區內水庫的水質總體上良好,基本未受到石油開發帶來的負面影響。通過對辛安水庫、廣南水庫、孤東水庫、廣北水庫、孤北水庫、耿井水庫、民豐水庫水質的檢測結果,其pH值范圍在7.69~8.42,其最高值雖然接近8.5標准但尚未超過,基本屬於中偏鹼性水質。雖然各水庫水源來自黃河,但由於儲水時間較長,又受地表含鹽量高的影響,使各水庫水質酸鹼度增加,尤其是耿井水庫。各水庫中有機污染物都有檢出,揮發酚和氰化物檢出率不低於80%,但均低於國家地面水1類水標准。水庫水質中值得注意的是微生物污染問題,國家Ⅲ類水質標准規定,總大腸桿菌群數為1萬個/L,廣北水庫大腸菌數高達3萬個/L。這種現象明顯說明受人為影響嚴重,居民生活、放牧是造成微生物污染的主要原因,需要凈化消毒處理才能作為飲用水。
結論:區內水庫的水質總體上良好,基本未受到石油開發帶來的負面影響,水庫水質中值得注意的是微生物污染問題。
表5-8黃河三角洲平原區淺層地下水污染監測數據
G. 石油污染是怎麼造成的石油污染對人類會產生什麼危害
1978年3月16日,英國超級油輪「阿莫科·卡迪茲號」在荷蘭布列塔尼拋錨,船里22萬噸級石油傾流海洋,污染沙灘160餘千米。那麼,為何水上石油污染傷害極大呢?
石油,可提煉多種類型的然料,可作瀝青、可建香皂等日用具,它是當代日常生活至關重要的化學物質,對人們奉獻極大。可是,石油一旦泄露到地面或深海里它會給地理環境,尤其是深海產生極大污染。
海平面被石油污染,以上傷害會迅速產生。值得一提的是,它還會繼續長期性危害污染水域,比較嚴重的可持續數十年。海平面大規模的漂油,將減少表面海面太陽的接納量,進而浮游植物植物光合作用變弱、總數降低。那樣,以之為食的浮游動物總數也相對應降低,全部深海生物的多樣性被毀壞,比較嚴重危害水產業和養殖行業。此外,石油中的有害物會長期性儲留於海洋小動物身體,如人吃完這種海鮮產品,將危害人們身心健康。
由此可見,石油污染的確傷害極大。但當今一些石油輸出國因運送和存儲屢出難題,導致注入深海的石油總數大、頻次多,比如水上油氣井石油泄漏、運油船隻不幸遇難、船隻和貨輪洗艙的含油量廢水、沿海地區化工廠和輸油管線產生泄露安全事故等,都將產生大規模的深海石油污染。1991年1月產生的伊拉克戰爭,導致了迄今為止最比較嚴重的石油污染,其損害和傷害水平迄今難以估計。
H. 海水石油污染有哪些
「水火不相容」是自古已有的一句至理名言。然而在現代社會,水面上燃起熊熊大火的怪事卻接連發生。原來,這是油污浮在水面,一遇火種,便劇烈燃燒起來。
1979年6月3日~1980年3月20日間,墨西哥灣的Ixtoc-I號油井,為了處理事故,噴出泥漿之後又噴出了石油和天然氣,發生了世界上最大的一次溢油事件。石油和天然氣接觸到正在運轉的泥漿泵電動機,頃刻發生了強烈的爆炸,引起了一場熊熊大火。
早在20世紀60年代,世界上多次出現石油危機,原油價格也因原油產量大小而不斷變化。一些大國為了自身利益,不惜建造、使用大型油船,從中東地區把成噸成噸的原油運到本國儲存起來。目前,世界上60%的石油是經海上運輸的。但是,隨之而來的是,由於油輪的觸礁,碰礁,擱淺或失火,海上事故不斷發生。此外,還有油輪的壓艙水,洗艙水以及各種船舶的其他含油污水,每年湧入海洋的石油有百萬噸以上,使海上原油污染越來越嚴重。
1963年,一艘貨輪在美國西南海岸遇難,大量燃料油流入海中,使美國當地一周內幾十萬只蛤被殺死,當地養蛤業收獲量僅為常年的9%左右。1967年3月,一艘名叫「托雷·卡尼翁」號油輪在英吉利海峽觸礁,一次就有10萬噸原油流入海中,污染了140多公里的海岸及海灘。1978年3月16日,美國超級油輪「艾莫科·凱迪」號失去控制,在法國布列塔尼海岸擱淺,使大量原油泄漏,在海上形成一條18海里寬,80海里長的海上油帶,污染了法國130海里的海岸,使大量海洋生物和以海洋為生的海鳥中毒身亡。經濟損失幾千萬美元。在對海水清理過程中,僅打撈原油就有2.5萬噸。1984年12月21日,美國一艘油輪在華盛頓州西部海面航行時不慎觸礁破裂,使得艙內80多萬升石油傾瀉在海面上,現場上一層油膜,造成632隻海鳥死亡。
海灣戰爭中燃燒的油井,造成了巨大的環境污染。1991年海灣戰爭,伊拉克把科威特南部的瓦夫拉油井口炸開,原油順海岸流入波斯灣,黑色的油帶以每天24公里的速度向南漂去。到2月初,原油在波斯灣海面形成16公里寬,96公里長的油層,部分油層還燃著大火,一場海灣戰爭,估計有100多萬噸原油流入波斯灣。
海面被石油污染後,第一個受害者是海洋生物和海鳥。它們以海水為生,海水被原油污染,造成海水嚴重缺氧,同時營養成分被破壞,使生物無法生存。科學工作者指出,石油污染對海洋生態環境將產生嚴重的威脅,特別是對魚類的生殖器官造成破壞。在石油污染的環境中,魚類產下的魚卵不能孵化,即使孵化成魚苗也將很快夭折。海灣戰爭使200萬只越冬候鳥,遭遇原油污染,幾十萬只海鳥因羽毛沾上油污而死亡,在阿拉伯海岸上隨處可見烏黑的海鳥屍體。
石油污染了海水,對生活在海中的海獸危害也很大。海獸身上均有毛,它們呼吸時需浮到水面,毛被原油粘住,喪失其自身的防水性和保濕能力,妨礙其呼吸,窒息而死。
石油污染還破壞了波斯灣特有的珊瑚礁系統。波斯灣的珊瑚礁能在其他種類珊瑚礁所承受不了的高溫或低溫下生存。原油污染了海水,珊瑚蟲的生存環境得到極大的破壞,珊瑚礁也失去了光彩。
近20年來,我國海域也時常有原油污染事故發生。最大的一次是1989年8月12日黃島油庫爆炸,歷時104小時,原油損失630多噸,膠州灣130多公里的海面被污染,海產品損失達4500萬元。
現在,除了運輸原油的油輪發生泄漏污染海面外,造成污染更大的是人工開發海上石油的泄漏。如美國1969年在巴巴拉灣,由於油井壓力太大,造成地層斷裂,引發嚴重的井噴事故。每天約有100噸原油噴入海中,經過12天的緊急搶救,才停止噴油,致使附近海面覆蓋一層1~2厘米厚的油層。這次事故損失達5000萬美元。
石油對海洋的污染,影響了海洋的開發和利用,因此,目前保護和改善海洋環境、防止石油污染,已成為世界各國普遍關注的環境問題。