㈠ 廢水中含有石油烴,cod測定時會有影響嗎
*
一、水中總油濃度高會影響COD值。分解油需要氧。
二、化學需氧量(COD或CODcr)是指在一定握拿嚴格的條件下,水中的還原性物質在外加的強氧化劑的作用下,被氧化分解時所消耗氧化劑的數量,以氧的mg/L表示。化學需氧量反映了水中受還原性物質污染的程度,這些物質包括有機物、亞硝酸鹽、亞鐵鹽、硫化物等,但一般水及廢水中無機段腔搭還原性物質的數量相對不大,而被有機物污染是很普遍的,因此,COD可作為有機物質圓配相對含量的一項綜合性指標。
㈡ 原油含水如何測定
在油田上,通常把原油和油田水混合液體叫做含水原油。
原油中水分進入,主要有以下三種途徑。
第一種,油層中原始原油本身就含有水。
第二種,為了保持油層壓力,向油層內注入的水。
第三種,原油在貯存和運輸中受氣溫的變化,石油容器罐內交替排出氣體或吸入空氣,由於空氣的不斷吸入,水蒸氣不斷進入,使原油中的水分子增加。
油樣中的水有四種存在方式:包括游離水、懸浮水、乳化水和溶解水。其中,游離水是指用傾斜方法就能分離出來的水;懸浮水是指以微小的顆滴散碎在原油中成機械混合的水;乳化水是指油和水均勻地乳化在一起後的液體;溶解水是指根據水在原油中溶解的能力而溶解在原油里的水,其數值甚小。
目前油田原油含水測定的主要方法有兩種,即蒸餾法和離心法。
(1)蒸餾法。
蒸餾法是指稱取一定量油樣與無水溶劑汽油混合加熱,蒸餾出水分,記下水分的體積,按以下公式計算獲取原油含水數值,以百分數表示。
(2)離心法。
離心法是根據原油與水是兩種互不相溶的液體,其密度大小不同,在加入破乳劑後,油中的乳化水分離出來,利用離心機高速旋轉產生的離心力,密度大的水沉積在離心管的底部,實現油水分離,經讀水液位刻度,計算出原油含水數值。
蒸餾法測定原油含水的特點是省電、操作簡便、脫水效率高,但輕質油損失較多,影響原油分析質量。離心法測定原油含水的特點是速度快、批量大、安全系數高,但化驗精確度不夠高,特別是外輸油的含水化驗必須用蒸餾法。
㈢ 地下水石油類能檢出嗎
能。地下水石油類採用紫外分光光度法測定地下水中的石油類物質,萃取液經過帆枯無水硫酸鈉脫水是能檢出的。地下水石油烴搜轎簡污染對人類健康和生態環境具有很大危害,苯系化合物(BTEX)是石油烴污染世褲中的重要組成成分之一。
㈣ 非鹵代烴類 (含石油烴) (non-halogenated hydrocarbons)的測定
氣相色譜法
方法提要
地下水和地表水樣品一般結合吹掃捕集、共沸蒸餾、真空蒸餾、分液漏斗液-液萃取、連續液-液分配提取或其他適當的富集方法 (如固相萃取法等) 富集後導入 GC/FID測定,以獲得適當的定量限。
柴油范圍有機物 (DROs) 可以用適當的溶劑萃取法處理。
汽油范圍有機物 (GROs) 可以通過吹掃捕集、自動頂空、真空蒸餾或別的適當技術導入 GC/FID。
可以使用填充柱或毛細管柱分析和檢測單獨的非鹵代烴化合物,通過改變色譜條件以達到適當的分離特性。
熔融石英毛細管柱用於分析石油烴類。
方法用於檢測各種揮發性和半揮發性非鹵代烴有機化合物,可定量檢測的化合物見表82.55。
表82.55 可檢測化合物
續表
注:b為用此技術有足夠的響應;d為通過共沸蒸餾法濃縮;ht為僅在80℃使用此方法凈化分析物;
I為該技術不適用於這種分析物;pp為低的凈化效率,導致高的EQLs;NA為不可用。
本法可用於分析石油烴,包括汽油類有機物(GROs)和柴油類有機物(DROs)。GROs指C6~C10范圍鏈烴,沸程范圍大概為60~170℃;DROs指C10~C28范圍鏈烴,沸程范圍大概為170~430℃。由於蒸發和生物降解等環境行為,特有的燃料種類或者多種燃料中的某種燃料的識別是很復雜的,有時需用其他更適合的方法識別GROs和DROs。
本法也可作為易揮發和半揮發有機物的篩選工具,獲得半定量的數據,以防止用GC-MS定量分析時過負荷。可用自動化頂空法進樣,如果已用溶劑提取法處理試樣,則可採用直接進樣,在這種情況下可以使用單點校正法。
儀器和裝置
氣相色譜儀 檢測器-火焰離子化檢測器 (FID)
吹掃捕集導入裝置。
推薦氣相色譜柱:
1) 8ft × 0.1in ID 不銹鋼或玻璃柱,填充表面有 1% sp-1000 的 Carbopack-B 60 /80目,或相當規格。
2) 6ft × 0.1in ID 不銹鋼或玻璃柱,填充表面有正辛烷的 Porasil-C 100 /120 目 (帶有化學結合相的多孔硅膠珠) ,或相當規格。
3) 30m × 0.53mm ID 熔融石英的毛細管柱,結合有 DB-Wax (或相當物質) ,膜厚 1μm。
4) 30m × 0.53mm ID 熔融石英的毛細管柱,化學結合 5% 聚甲基硅氧烷 (DB-5,SPB-5,RTx,或相當物質) ,膜厚 1.5μm。
毛細管柱是用來分析石油烴的,也可使用確認特性數據 (如色譜分離和 MDLs) 的其他色譜柱 (如 0.25~0.32mm ID 毛細管色譜柱) 。
粗徑毛細管柱前應當接 1/4in 的進樣口並且有針對於此柱子使用的特殊鈍化襯墊設計。
5mL Luer-lok 玻璃注射器。
5mL 氣密的、有針對於易揮發分析物關閉閥的注射器。
微型注射器 如 10μL 和 25μL 且帶有 0.006in ID 的針 (Hamilton 702N 或相當規格)和 100μL 注射器。
試劑
試劑水 該方法中所有提到的水均指無有機物水。
甲醇 農殘級。
石油或柴油 工業燃料 (燃料中低沸點的成分很快蒸發) 。
烷烴標准物質 包括一系列相應的正構烷烴類化合物,用來確立它們的保留時間(如用 C10~ C32作柴油的標准) 。
標准儲備溶液 由純的標准物質制備或者是購買有保證的溶液。當甲醇為目標分析物或在樣品前處理階段使用共沸蒸餾法時,標准溶液均不可用甲醇配製。標准溶液必須每隔6 個月重配一次,或發現問題時重配。
標准中間溶液 可以是單標或所有組分的混合物,用作進一步配製校準系列溶液或監控標准溶液。為防止易揮發組分的損失,應當存放在有最小液面上空的容器內並經常檢測其降解和蒸發情況。
校準系列溶液 最少配製 5 個濃度水平的校準溶液系列,用標准中間溶液配製,可用水配製 (吹掃捕集法或直接進樣) 或用二氯甲烷配製 (溶劑進樣) 。其中一個校準溶液的濃度應當等於或低於定量限,其餘標樣的濃度應當與真實樣品的預計濃度范圍符合或者應當在氣相色譜規定的工作范圍。每一個標樣都應當包含用這個方法檢測的所有分析物。易揮發的有機物標樣用純水配製。
配製精密度高的標准水溶液的注意事項:
不要將超過 20μL 的甲醇為溶劑的標樣注入 100mL 水中。
使用25μL Hamilton 702N 微量注射器或與之相當規格的注射器,如取甲醇為溶劑的標准時,針的幾何形狀的變化將會影響移入水中標樣體積的可重現性。
要快速地將初級標樣注入已填充溶劑的容量瓶中,注射後盡可能快地將針頭移開。
混合稀釋的標樣時僅需上下顛倒容量瓶 3 次。
吸取容量瓶大肚部分的標准溶液 (不要用任何瓶頸處的溶液) 。
當需要稀釋易揮發的有機物標樣時,不要用移液管稀釋標樣或轉移樣品和含水標樣。
用於吹掃捕集分析的水溶液標准不穩定,所以 1h 之後則應當丟棄,除非將標樣注滿小瓶密閉保存才可超過 1h 使用,最多不超過 24h。水溶液標樣用作共沸蒸餾時最多可以存放 1 周,存放時將標樣置於有聚四氟乙烯 (PTFE) 螺帽的密閉瓶子中,具有最小液面上空,4℃避光保存。
內標溶液 選定一個或多個內標物,所選定的內標物和分析物在分析過程中的行為應當相似,內標物應不受基質干擾的影響。一般沒有單一內標物能滿足所有限定條件。當用共沸蒸餾方法處理樣品時,推薦使用下列內標: 2-氯代丙烯腈、六氟代 -2-丙醇和六氟代 -2-甲基 -2-丙醇。
替代物標准溶液 在處理每個試樣、標准和空白時,添加一個或兩個不受干擾的替代化合物,以此來監控分析系統的功能和方法的有效性。
樣品的採集,保存和處理
1) 揮發性有機物采樣參見 82.9.1 樣品採集、保存和制備部分。
2) 半揮發性有機物。測定半揮發性有機物用的采樣容器應用肥皂和水洗滌,然後再用甲醇 (或異丙醇) 沖洗。樣品容器應是由玻璃或聚四氟乙烯制的,並帶有聚四氟乙烯(或溶劑沖洗過的鋁箔) 襯墊的螺旋蓋。強酸性或強鹼性樣品會和鋁箔反應導致樣品被污染。不能用塑料容器或蓋來貯存樣品,因為來自塑料中的酞酸酯和其他碳氫化合物可能污染樣品。應小心填裝樣品容器,以防止所採集樣品的任何部分接觸到采樣者的手套而引起污染。不能在有尾氣存在的地方採集或貯存樣品,如果樣品與采樣器接觸 (例如,使用自動采樣器) ,用試劑水通過采樣器並用作現場空白。
分析步驟
1) 試樣導入方法。所有內標、替代物和基質添加都要在試樣導入 GC / FID 系統前添加到樣品中。
a.直接進樣。直接用注射器將試樣注射到 GC 口內。
易揮發有機物 [包含汽油范圍有機物 (GROs) ]: 將含有高濃度分析物的水樣、共沸蒸餾不清潔的低沸點有機物處理得到的含水濃縮物或有機溶劑廢棄物注射入 GC 進樣口。直接注射未濃縮的水樣有很多限制,易揮發物的毒性 (TC) 達到法定限度或濃度超過10000μg /L 時才可許採用該法檢測。如果酒精濃度 > 24% ,也可以應用直接進樣檢測水樣的可燃性。
半揮發性有機物 [包含柴油范圍有機物 (DROs) ]: 將用分液漏斗液-液萃取或連續液-液分配提取處理得到的水樣的萃取物注射入 GC 進樣口。
b.吹掃捕集。
吹掃捕集分析水樣。也可用甲醇(和其他易與水混合的溶劑)提取含油水樣中待測物,隨後用吹掃捕集法測定。通常在室溫下對水樣進行吹掃捕集。有時需要將水樣加熱吹掃以降低檢測限;然而,25mL的試樣在大多數情況下都能提供足夠的靈敏度。
c.真空蒸餾。可用於將水樣、固體樣或組織樣品中易揮發有機物導入GC/FID系統。
d.自動靜態頂空。可用於將水樣、固體樣或組織樣品中易揮發有機物導入GC/FID系統。
2)推薦色譜條件。
柱1:載氣(He)流速40mL/min。溫度程序,初始溫度45℃,保持3min,以8℃/min的速度升溫,從45℃升溫至220℃,最終溫度220℃,保持5min。
柱2:載氣(He)流速40mL/min。溫度程序,初始溫度50℃,保持3min,以6℃/min的速度升溫,從50℃升溫至170℃,保持4min。
柱3:載氣(He)流速15mL/min。溫度程序,初始溫度45℃,保持4min,以12℃/min的速度升溫,從45℃升溫至220℃,保持3min。
柱4(DROS):載氣(He)流速5~7mL/min。尾吹氣(He)流速30mL/min。進樣口溫度200℃,檢測器溫度340℃。溫度程序,初始溫度45℃,保持3min,以12℃/min的速度升溫,從45℃升溫至275℃,保持12min。
3)初始校準。對於每一種樣品導入方法,建立氣相色譜操作的參數,繪制相應的不同標准曲線。對於沒有凈化的易揮發物推薦使用內標法,內標物為六氟-2-丙醇、六氟-2-甲基-2-丙醇和2-氯丙烯腈。
a.分析單一組分分析物的外標校準步驟。對於每一個目標化合物和替代物,最少准備5個不同濃度的校準標准溶液。分取一種或幾種標准儲備液於容量瓶中,用適宜的溶劑稀釋至刻度。其中某個外標溶液的濃度應該小於或等於要求的定量限(以預處理方法中確定的最終體積內未稀釋的濃度為基礎),其他校準標樣的濃度應當與真實樣品的預期濃度范圍相對應,或者由檢測器的工作范圍來確定。
用與實際試樣導入氣相色譜相同的技術導入每個校準溶液。將峰高或峰面積響應值對進樣量列表。計算每個組分分析物的校準因子(CF)。
CF=標准溶液中化合物的峰面積(或峰高)/化合物注入質量(ng)
b.DROs和GROs的外標校準步驟。用來校準的響應值表現為DROs和GROs保留時間范圍內的色譜圖全面積,包括含在單一峰內的未分開的復雜混合物。
對於每一類型燃料,最少准備5個不同濃度水平的校準溶液。分取一種或幾種標准儲備液於容量瓶中,用適宜的溶劑稀釋至刻度。一種外標的濃度應該小於或等於要求的定量限(以預處理方法中確定的最終體積內未稀釋的濃度為基礎)。其他校準溶液的濃度應當與真實試樣的預期濃度范圍相對應,或者由檢測器的工作范圍來定。
`注意:只要有可能,應當用污染取樣現場的特定燃料來配製校準溶液(例如,被懷疑已漏的油桶內殘余的燃料樣品)。如果這樣的樣品不易獲得或不知曉,則使用最近購買的商用燃料。定性篩選注射和GC分析也許能識別未知燃料。
用與實際試樣相同的氣相色譜導入技術導入每個校準溶液。計算每種類型燃料的校準因子(CF):
CF=保留時間范圍內的總面積/化合物注入質量(ng)
4)校準線性。在整個工作范圍內,如果校準因子的相對標准偏差(RSD,%)小於20%,此有機物的線性可以被採取,而且可以用平均校準因子取代校準曲線。
在整個工作范圍內,RSD(%)如果大於20%,此有機物的線性就不能被採用。可使用非線性等其他校準選擇。
保留時間窗口。單一組分目標分析物以保留時間窗口為基礎鑒別。DROs和GROs以每個類型燃料中的特徵組分的保留時間范圍為基礎進行鑒別。
在建立保留時間窗口之前,一定要確定色譜系統的功能是可靠的;並且已經對被分析的試樣混合物中的目標分析物和替代物的操作參數進行了優化。
在初始校準中已定義了GROs的保留時間范圍。兩個特殊的汽油組分(2-甲基戊烷和1,2,4-三甲基苯)可以用來建立這個范圍。保留時間范圍的計算基礎為:保留時間窗口最低限為第一個流出組分,保留時間窗口最高限為最後一個流出組分。
在初始校準中已定義了DROs的保留時間范圍。此范圍的建立基礎為C10和C28烷烴的保留時間。保留時間范圍的計算基礎為:保留時間窗口最低限為第一個流出組分,保留時間窗口最高限為最後一個流出組分。
5)校準持續確認。校準曲線和保留時間必須在每12h換班開始時檢驗,這是最低要求。當單一的目標分析物被分析時,檢驗可以通過測量含有所有目標分析物和替代物的一個或多個校準溶液(通常是中間濃度的)來完成。當石油烴被分析時,檢驗可以通過測量燃料標准和烴的保留時間標准來完成。強烈建議12h內不斷追加分析檢驗標准溶液,尤其對於含有可見濃度浸油物質的試樣。
如果對於任何分析物的響應值與初始校準所獲得的響應值相差在±15%以內,則初始校準被認為是有效的,可以繼續將初始校準所測得的CF值或RF值用於試樣定量(若分析時使用共沸蒸餾作為試樣導入技術,D可達±20%)。如果分析物的響應值與初始響應值相差±15%以上(共沸蒸餾為±20%),必須採取校正措施重新恢復系統或者針對此化合物繪制新校準曲線。
在校準檢驗分析中,所有目標分析物和替代物或正構烷烴都應當符合先前已測定的保留時間窗口。如果任何分析物的保留時間不在±3σ窗口之內,必須採用重建系統的校正行為或者針對此化合物准備新的校準曲線。
溶劑空白和任何方法空白應當在校準檢驗分析時運行,以驗證實驗室污染沒有造成假陽性。
6)氣相色譜分析。試樣分析順序,以校準檢驗開始,接著是試樣提取分析。強烈推薦12h內不斷追加分析檢驗標樣,尤其是含有可見濃度浸油物質的試樣。在一批分析結束時再分析一個檢驗標樣。當一批試樣已被注射入氣譜或者當保留時間或D(%)質量控制標准超標,順序結束。如果標准超標,在重新標定和進行試樣分析之前,檢查氣相色譜系統。所有採用外標校準的分析必須包括數據質量分析(例如,校準和保留時間校準)。所有超過質控標準的標樣濃度和超過校準曲線范圍的試樣都必須重新分析。
試樣分析與校準使用的儀器條件應相同。當將吹掃捕集試樣導入時,打開樣品小瓶或從封閉的小瓶中取出一部分試樣(於是產生頂空)都將危及易揮發試樣的分析。因此,推薦准備兩個平行試樣進行吹掃捕集分析。如果第一個試樣的分析不成功或者結果超過了方法校準范圍,第二個試樣可以安全貯存24h用來重新分析或稀釋。共沸蒸餾所得的分餾物可分成兩部分並且在分析前將其共置於4℃環境中。推薦在蒸餾24h內分析蒸餾液(最長不超過7d)。
如果試樣響應超過初始校準濃度范圍,必須分析稀釋的試樣。對於含有易揮發有機物的水樣,用來稀釋的必須是試樣的備份,即已密封和貯存准備使用和再分析的試樣。稀釋萃取液使所有的峰處於合適的尺寸,因為當色譜峰不合尺寸時重疊峰可能不很明顯。為保證超過100倍范圍的所有峰值都在合適的尺寸范圍內,計算機對色譜峰進行處理,重新給出色譜圖。只要未超過校準限定都可操作。當重疊峰導致峰面積積分錯誤時,推薦測量峰高而不用峰面積積分。
當試樣萃取物中的一個峰落入每日保留時間窗口時,單一組分分析可被暫時辨認。需要用第二根色譜柱或GC/MS證實。由於火焰離子化檢測器是非選擇性的,所以強烈推薦使用GC/MS定性單一組分分析物,除非可獲得支持定性的歷史數據。
對於石油烴分析,一般不需要第二根色譜柱證實。然而,如果分析有干擾,則要求使用第二根GC柱分析確認,也要確認樣品烴落在初始校準所建立的保留時間范圍內。
注意:燃料尤其是汽油,由於它們固有的揮發性致使鑒定是復雜的。燃料的早期洗提化合物顯現出很強的揮發性,取樣後若不馬上用塞子塞住,極易風蝕。在汽油的色譜圖中,汽油極易揮發的部分組成了50%的重要峰面積。這一小部分很少能在環境樣品或低濃度的有關汽油殘余物色譜圖中顯現。
每12h通過復測空白、標准和重份試樣以檢查全分析系統的狀態。需校正嚴重的拖尾峰,峰拖尾問題經常由色譜柱的活性部位、氣相色譜的冷部位、檢測器的操作或者系統的泄露導致。
7)計算。試樣中每個分析物的濃度可通過吹掃或注射標準的量計算。標準的量可以用校準曲線或從初始曲線獲得的CF或RF得到色譜峰的響應值計算。
盡管汽油和柴油含有的多種混合物能在GC/FID色譜圖中有較好的解析度,但兩種燃料都含有太多其他組分,這些組分不能被色譜分辨。這些未分辨的復雜混合物導致色譜圖中的「巔峰值」,形成了這些燃料的特徵。另外,盡管分離的色譜峰在定性特定的燃料類型時很重要,但未分離的色譜峰的峰面積可能占總響應面積的大部分。
為了分析DROs,將C10和C28的所有峰面積加和。這個面積由C10和C28保留時間范圍內所有基線凸起部分構成。
分析DROs使用的氣相色譜條件會導致嚴重的柱流失,同時導致基線上升,所以應該在測DROs氣相色譜圖的面積時適當的減去柱流失。在分析試樣中的DROs時,每12h換班時分析二氯甲烷空白,用測定試樣的方式測量該色譜圖峰面積。先通過DROs保留時間的范圍制定水平的基線,然後將該面積值從已測量的試樣面積中減去,所得面積之差按下式計算出DROs的濃度。
a.外標法校準-線性校準模型:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:ρS為試樣中目標分析物的濃度,μg/L或ng/mL;AS為試樣中分析物的峰面積(或峰高);Vt為試樣濃縮液的總體積(μL),吹掃-捕集法分析中不存在Vt值,因此設定為1;CF為為初始校準的校準因子,每ng的面積值(或峰高);D為試樣或試樣提取液分析前的稀釋因子,試樣品沒有稀釋時D=1,量綱為一;Vi為提取液進樣體積(μL),通常水樣和校準標准品的進樣體積應該相同,對於吹掃-捕集分析法不存在Vi,因此取值為1;如果計算校準因子時使用了濃度單位,則在此方程式中不使用Vi;VS為水樣或吹掃體積,mL。
如果使用吹掃-捕集方法,樣品的甲醇提取液加入到了水中進行測定。
如果使用不通過原點的線性校準,可以用最小二乘法做線性回歸,得到回歸方程。根據面積響應值(y)、斜率(a)和截距(b)計算測定溶液中分析物的濃度,然後換算為原樣中的濃度。
對於吹掃-捕集分析法,若吹掃進樣前未對試樣進行稀釋,則進入系統的樣品中分析物的濃度與原始濃度相同。
b.內標法校準-線性校準。水樣中每個分析物的濃度按下式計算:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:ρS為試樣中目標分析物的濃度,μg/L或ng/mL;ρiS為測定液中內標物的濃度,μg/L或ng/mL;AS為試樣中分析物的峰面積(或峰高);AiS為內標物的峰面積(或峰高);Vt為試樣濃縮液的總體積(μL),吹掃-捕集法分析中不存在Vt值,因此設定為1;CF為為初始校準的校準因子,每ng的面積值(或峰高);D為試樣或試樣提取液分析前的稀釋因子,如果試樣品沒有稀釋,D=1,量綱為一;Vi為提取液進樣體積(μL),通常試樣和校準標準的進樣體積相同,對於吹掃-捕集法不存在Vi,故取值為1;如果計算校準因子時使用了濃度單位,則在此方程式中不使用Vi;RF為初始校準的平均響應因子,與外標法的校準因子不同,響應因子量綱為一;VS為水樣或吹掃體積,mL。
c.非線性校準曲線的計算。當使用非線性曲線校準時,非線性方程必須變形後,求解提取液或吹掃體積中分析物濃度,然後將提取液中分析物濃度換算成試樣中分析物的濃度。
為了分析DROs,將分布在2-甲基戊烷和1,2,4-三甲基苯之間所有的峰面值相加,使用上述方程式計算GROs濃度。GROs分析中通常不需要減去柱流失。
計算公式涵蓋了外標校準和內標校準、直線校準曲線和非直線校準曲線。
8)篩選。為了減少GC/MS分析高度污染樣品造成的儀器停工期,可用本法的單點校準進行篩選。
與GC/MS連接的進樣設備配置同樣可用於GC/FID或其他配置。
建立起穩定的系統響應和穩定的色譜保留時間,分析GC/MS校準標準的最高點。
分析水樣或水樣萃取液時,當目標待測物濃度超過校準曲線高限時,且在相同保留時間沒有其他化合物流出,比較試樣和最高濃度標准中分析物的峰高,計算試樣中分析物的濃度。然而與GC/MS系統相比,FID對鹵化物反應不太靈敏,因此上述比較方法並不絕對正確。
為了確定儀器響應和氣相色譜保留時間的穩定性,最高點標准應該最少每隔12h分析一次,但是對於篩選不要求做質量檢測。
9)儀器維護。注入廢棄物試樣的萃取液通常會在注射口區域、分流器(分流進樣時)和色譜柱頭留有高沸點的剩餘物,該剩餘物影響一些氣相色譜分析性能(例如,殘余物峰值、保留時間變化、分析物降解等),因此儀器維護非常重要。分流器中殘余物累積可能迫使氣流拐彎,由此改變分流比。如果這種情況在分析時發生,定量數據有可能不準確。適當的清理技術使問題最小化,質量檢測設備將顯示何時需要儀器維護。
推薦氣相色譜儀維護。
分流裝置的連接:連接雙柱可使用壓力適應Y形的玻璃分流裝置或者是Y形熔凝石英的連接器,清潔並將分流裝置脫活或更換用潔凈脫活的分流器。切除柱子靠近進樣口一端的幾英寸(最多1英尺)。根據生產商的說明,拆下柱子和用溶劑反向沖洗進樣口。如果這些步驟不能消除降解問題,有必要對進樣口金屬主體進行脫活處理或更換柱子。
柱子沖洗:柱子應該用幾倍柱體積的適當溶劑沖洗。極性和非極性溶劑都可使用,根據樣品殘余物的性質決定,第一次用水沖洗,接著用甲醇和丙酮,最後用二氯甲烷沖洗。有時只用二氯甲烷沖洗。為了使固定相中的試樣殘留物轉入溶劑,柱子內應該注滿二氯甲烷,保持過夜;然後用新鮮的二氯甲烷沖洗柱子,再排干,室溫下用超純的氮氣流乾燥柱子。
質量控制
在每批試樣分析過程中都應包括方法空白、基質添加、重復樣和質量控制樣。
如果估計試樣中含有目標分析物,要使用一個基質添加樣和一個未添加基質的實際試樣重復分析。若估計試樣中不含有目標分析物,則應使用一個基質添加樣和一個基質添加重復樣。
分析每批試樣時,都應分析一個實驗室質量控制樣(LCS)。LCS含有相似於試樣的基質成分,與試樣基質具有相同質量或體積。該LCS用相同的待測化合物、同樣濃度添加作為基質添加樣。當添加基質分析結果顯示潛在的問題由試樣基質本身產生時,LCS結果可用來校驗實驗室用的清潔基質的分析結果。
應評價每個試樣中的替代物回收率。
方法性能
水基質中使用共沸蒸餾的揮發性有機物方法檢出限見表82.56。
表82.56 共沸蒸餾提取水樣中揮發性有機物的方法檢出限
續表
色譜圖見圖82.20~圖82.24。
圖82.20 300×10-6汽油標准色譜圖
圖82.21 30×10-6柴油標准色譜圖
圖82.22 30×10-6柴油標准色譜圖在C10~C18之間的基線
圖82.23 使用共沸蒸餾法提取試劑水中揮發性化合物色譜圖(混合物1)
圖82.24 使用共沸蒸餾法提取試劑水中揮發性化合物色譜圖(混合物2)
注意事項
1)當分析揮發性有機物時,樣品在運輸和貯存過程中可能被穿過容器隔膜的外界揮發性有機物(尤其是含氯氟烴和二氯甲烷)污染。准備一份純水作空白樣品,使其經過取樣和後續的貯存和處理操作過程,用以監測樣品污染。
2)高濃度和低濃度試樣的連續分析可能導致高濃度試樣的殘余物對後續低濃度試樣的污染。為了降低這種污染,在分析不同試樣時必須先用適當的溶劑將進樣針或吹掃裝置洗凈。分析非常規濃度的試樣後都應分析溶劑空白,以防止儀器中殘留的試樣污染後續試樣。
3) 清洗器皿時,先用洗滌液洗滌,再用蒸餾水沖洗,接著放置於 105℃ 的烘箱中烘烤。清洗進樣針或自動進樣器時,用適當的溶劑沖洗沾有試樣的表面即可。
所有的玻璃器皿都必須認真的清洗。玻璃器皿盡可能用完後立即用最後使用過的溶劑沖洗,接下來應當用含有洗滌劑的熱水洗滌,再用自來水和純水沖洗。最後晾乾玻璃器皿後放置於 130℃烘箱中烘幾小時,或用甲醇沖洗後晾乾,存放在清潔環境中。
4) 火焰離子化檢測器 (FID) 是非選擇性檢測器,可能存在很多干擾分析的非目標化合物。
參考文獻和參考資料
地下水質檢驗方法 (DZ/T 0064—1993) [S].1993.北京: 中國標准出版社
何淼,饒竹 .2008.圓盤固相萃取富集-氣相色譜法測定地表水中有機氯和有機磷農葯 [J].岩礦測試,27 (1) : 12-16
何淼,饒竹,蘇勁,黃毅 .2007.GDX -502 樹脂富集高效液相色譜法測定地表水中酚類化合物 [J].岩礦測試,26 (2) : 101 -104
黃毅,饒竹.2009.吹掃捕集氣相色譜-質譜法測定全國地下水調查樣品中揮發性有機污染物[J].岩礦測試,28 (1) : 15 -20
李松,饒竹,宋淑玲 .2008.全國地下水調查中 12 種半揮發性必檢組分的測定 [J].岩礦測試,27 (2) :91-94
李松,饒竹.2009.地下水中12 項半揮發性有機污染物測定的質量控制 [J].岩礦測試,28 (2) : 157 -160
劉風枝,劉瀟威 .2007.土壤和固體廢棄物監測分析技術 .北京: 化學工業出版社
饒竹,李松,佟柏齡,等 .2004.頂空氣相色譜法測定地層水中的苯系物 [J].岩礦測試,23 (2) :97-101
生活飲用水衛生標准 釋義 (GB 5749—2006) [M].2007.北京: 中國標准出版社
生活飲用水標准檢驗方法 微生物指標 (GB/T 5750.12—2006) [S].2007.北京: 中國標准出版社
生活飲用水標准檢驗方法 有機物綜合指標 (GB/T 5750.7—2006) [S].2007.北京: 中國標准出版社
生活飲用水標准檢驗方法 (GB/T 5750.10—2006) [S].2007.北京: 中國標准出版社
王若蘋 .2005.固相微萃取-毛細管氣相色譜法快速同步分析水中硝基苯類及氯苯類化合物 [J ].中國環境監測,21 (6) : 15 -19
魏復盛 .2002.水和廢水監測分析方法 第四版 .北京: 中國環境科學出版社
謝原利,吳瞻英,饒竹,等 .2008.氣相色譜/負化學電離質譜測定地下水中多氯聯苯 [J].水文地質地質工程地質,35 (增刊) : 301 -304
張蘭英,饒竹,劉麗娜 .2008.環境樣品前處理技術 〔M〕.北京: 清華大學出版社
US EPA Method 8015D,Nonhalogenated Organics Using GC /FID [S] .Revision 4 2003
US EPA Method 8081B,Organochlorine Pesticides by Gas Chromatography [S]
US EPA Method 8260C,Volatile Organic Compounds by Gas Chromatography /Mass Spectrometry (GC /MS) [S]
US EPA Method 8310,Polynuclear Aromatic Hydrocarbons [S]
本章編寫人: 耗氧量和生化需氧量測定,劉曉雯 (天津市地礦局測試中心) 。微生物等測定,田來生、齊繼祥(中國地質科學院水文地質環境地質研究所) ,有機污染物測定,饒竹 (國家地質實驗測試中心) 。
㈤ 海水分析化學的有機物分析
海水中的有機物含有氨基酸、碳水化合物等來自生物的天然存在的物質,和石油烴、氯代烴類殺蟲劑等人為的環境污染物。它們的濃度一般都很低,通常為ppb水平或更低,因此在大量無機鹽存在下分析有機物時,必須預先用蒸發、溶劑萃取、電泳脫鹽和離子交換樹脂分離等方法加以濃縮。常用的分析方法有分光光度法、色譜法、熒光分析法和紅外吸收光鉛昌譜法等。在研究海洋有機物在元素地球化學平衡中的作用(見海洋地球化學)和它們對無機鹽類和氧的循環所起的作用時,常討論總有機碳、總有機磷和總有機氮的含量。
總有機碳分析 有濕氧化法、光化學氧化法和干燃燒法。濕氧化法是在水樣中加入氧化劑進行氧化,使有機碳生成二氧化碳;光化學氧化法是用汞弧燈管照射水樣,使有機碳進行光化學氧化而生成二氧化碳;干燃燒法則將水樣酸化,然後蒸干,或用少量水樣直接注射入燃燒管,在催化劑存在下通入氧氣進行高溫燃燒,使有機碳轉化成二氧化碳,然後用電導法,氣相色譜法或非色散紅外分析法測定。這 3個方法中,以濕氧化法比較簡便易行,應用最廣。
總有機氮分析 可用改進的微量謝爾達爾法或光化學氧化法,將試樣中的有機氮分解並生成硝酸鹽,也可在鹼性條件下用氧化劑將其氧化成硝酸鹽,然槐橘扒後還原成亞硝酸鹽,按常規方伍舉法測定。
總有機磷分析 在加壓下將有機磷分解,使生成無機磷酸鹽,然後用磷鉬藍光度法測定。也可用光化學氧化法和過硫酸鹽氧化法進行分解,然後測定。後面這兩種方法,因適合連續自動化測定,已被推薦為標准方法。
碳水化合物分析 可測定其總量,也可測定個別單糖的含量。總量的測定是用濃硫酸將碳水化合物脫水,再使其與某些芳香類化合物形成有色化合物,進行比色測定。常用的試劑有苯酚、蒽酮、N-乙基咔唑、5-甲基苯二酚-【1,3】、1-色氨酸等。 個別單糖的測定可以在分離富集後用色譜分析、分光光度法分析、酶分析或熒光分析法檢測。
氨基酸分析 常用配位交換法富集海水中的氨基酸,即用亞氨基二乙酸系陽離子交換樹脂與某些重金屬離子,如銅離子,結合而成的金屬-樹脂交換劑,選擇吸附氨基酸,然後用自動氨基酸分析儀進行測定。還可將分離富集後的氨基酸製成甲基或乙基衍生物,再進行氣液色譜分析。此外,熒光分析法和高效液相色譜法已得到較廣泛的應用,例如用鄰-苯二醛和氨基酸生成熒光產物後進行檢測。此法靈敏度高,檢測濃度可達幾個pmol。
脂肪酸、羥基酸和脂類化合物分析 通常在酸化條件下進行萃取濃縮,再製成衍生物或熒光化合物,然後用氣相色譜法或高效液相色譜法分析。還可用間接的方法測定總脂肪酸的濃度。如用氯仿萃取濃縮後,使形成銅絡合物,再用原子吸收光譜測定絡合物中的銅。
光合色素分析 主要是進行葉綠素的分析。為此,用90%丙酮萃取後,用分光光度計測出在 3個不同波長下的吸光值,應用SCOR/UNESCO方程式或其他3色分光光度方程式計算,可分別得出葉綠素a、b、c的濃度。
維生素分析 通常分析維生素B12、維生素 B1和生物素。用生物鑒定法檢測其濃度。
烴類化合物分析 有天然存在的和因石油污染而進入海洋的。其測定方法首先是用有機溶劑萃取,分離之後,再根據測定總量或測定個別組分而選擇分析的方法。對一般污染監測,可測定其總量。萃取後,或者用色譜分離法除去其他有機化合物後,用紫外吸收光譜法測定,也可用紅外吸收光譜分析法對烴類進行定性或定量分析。個別組分的揮發性烴,可先用有機溶劑萃取濃縮,通入惰性氣體,用吸附劑或冷阱收集,解吸後進行氣相色譜分析。高效液相色譜法有連續定量檢測的優點,應用較廣。還可用氣相色譜-質譜聯用分析法,它有較高的靈敏度。
氯化烴類化合物分析 人類活動造成的海洋污染物,如 DDT、DDD、狄氏劑、PCB類等各種氯代烴類化合物在海水中的濃度,一般在pmol以下,常用液-液萃取法和吸附劑分離法,先分離、富集,然後用氣相色譜法進行分析。
酚類化合物分析 在沿岸海域的海水中,酚類化合物的濃度較大,它主要是工業污染物,少量是由潮間帶的固著藻類分泌出來的,可用比色法分析。例如從酸性溶液中用水汽蒸餾法分離出酚類化合物之後,加入4-氨基安替比林,生成有色衍生物,用光度法測定。也可用熒光法和極譜法,測定酚類化合物。個別酚類化合物可用大孔陰離子交換樹脂進行分離,然後用氣相色譜法或氣相色譜-質譜聯用法測定。 用液相色譜法可分析某些具有天然熒光的酚類。沿岸水中的腐殖質、木質素等多酚類物質,可用熒光分光光度法檢測。
有機汞、砷化合物分析 對人類有直接毒害的化合物。對有機汞化合物,一般先將其破壞分解或氧化為無機汞然後測定。還可用萃取法將有機汞預先分離,或將其轉化為碘化物或氯化物後再分離,最後用氣相色譜法測定。分子量較低的有機砷化合物因易於揮發,可用氣相色譜法或原子吸收法。為鑒別各種形式的砷,可用硼氫化鈉將其還原成相應的胂類化合物,以冷阱收集後緩慢升溫,然後用色譜法或原子吸收法測定。
表面活性物質分析 在海水中有自然存在的和人類活動引入的表面活性物質,它們集中於海-氣界面,必須用特殊的采樣器采樣。人為的陰離子表面活性劑,可用次甲藍分光光度法測定,也可在試樣中加入過量的陽離子表面活性劑,酸化後用 4苯硼化鈉標准溶液滴定。此外,還可應用金屬化合物如雙-乙二胺銅(Ⅱ)與陰離子表面活性劑生成絡合物後,用有機溶劑萃取,再用原子吸收法測定金屬的含量。對人為的陽離子表面活性劑,可在試樣中加入過量的陰離子表面活性劑後,用與上面相似的方法測出其含量。若需鑒定各組分,可用液相色譜法分離後加以測定。海水中自然存在的表面活性物質,可用極譜法或分光光度法測定。
自動化分析 為了分析數量很多的海水樣品,最好在現場進行連續自動測定。海水自動化學分析系統主要由取樣器、蠕動泵、分析線、延遲和反應系統、流動式比色計記錄裝置等幾部分所組成。根據上述原理已設計和生產出多種型號的測定氮、磷、硅等微量成分和有機碳的自動分析系統。在另一類自動分析中,使用了感測器,將感測器投放於海水中,連續走航記錄。但是,感測器的靈敏度還不夠高,已採用過的有鹽度、pH、氧化還原電位、溶解氧、濁度、氟離子濃度等少數項目的測定。
海水分析化學雖然已發展成為分析化學和海洋化學中較系統的一個分支學科。但是,海洋科學的發展,仍給它提出了許多有待解決的課題。例如:保持現場狀態不同種類水樣的采樣方法,超痕量無機組分的分析及其分析准確度的提高,不同組分的形態分析方法,超痕量有機組分的分析,快速的現場自動分析方法,保證和提高分析可靠性和可比性的方法學的研究和有關標准參考物質的制備等。
㈥ 城市污水中有機物的檢測與去除方法
由於污水中污染物成份復雜,有機物有成千上萬種,一般不進行特定有機物的檢測,進行已知有機污染物的檢測除外。
一般通過用COD和BOD檢測來表明有機污染的程度,用的儀器除常規玻璃儀器外,有電爐和迴流裝置,進行BOD測定還要生化培養箱。
去除的方法有物理的——沉澱和過濾;化學的——絮凝沉澱;生物化學的——活性污泥法。
㈦ 水資源污染的監測
(1)無機污染的監測
被無機鹽污染的水,由於離子濃度增高,使其電阻率降低。一般來說,地下電阻率與介質孔隙的連通性、孔隙中是否有液體以及液體的電阻率有關。如果孔隙的大小和連通性基本不變,而液體的電阻率只和污染有關,用電法就可以確定污染的范圍和程度,通過電測深和時間域電磁法可以確定污染的垂向分布,而通過電剖面法和頻率域電磁法可以確定污染的橫向范圍,用電(磁)測量比只用鑽探成本低、效率高。此外,電(磁)測井也是一種輔助手段。
應用地面電法監測污染的基本條件是:污染水與非污染水電阻率有明顯差別,埋藏不太深,污染水體有一定的厚度,地表物質電性比較均勻。工作時可先用電測深或時域電磁法確定污染水體頂底板深度,然後按一定系統進行固定極距的電剖面或固定裝置和頻率的頻域電磁測量。電法一般都要與少量監測井互相配合,解釋時利用地質、鑽探和其他地球物理資料。對工礦廢水污染的監測是受到廣泛關注的問題,利用地球物理方法對工礦廢水進行污染監測有許多成功的實例。
圖9.1用電法監測工廠廢水對岩溶的加速作用
工廠的廢水排入地下,不僅污染水源,而且在某些地區還加速地下岩溶的發育過程。例如在蘇聯的奧卡河沿岸有一個大的化工廠生產硫酸,酸性廢水滲入地下,溶蝕了石膏質的岩石,在這些岩石中形成了岩溶洞穴,老洞穴不斷加大、新洞穴不斷出現,連續成地下通道,沿著這些通道,溶解的物質流入奧卡河,造成河水污染。通過地面電法測量和河水電阻率測量可以圈定岩溶水的通道位置,並且評價岩溶作用隨時間的變化。從圖9.1中時間t1和t2兩次觀測的視電阻率曲線可以看出,低電阻率的范圍加寬,是溶洞變寬的結果。河水電阻率測量表明,被溶解物質的流入量明顯增加(低電阻率面積擴大)。通過上述測量確定了廢水污染的范圍和程度,以便採取必要的措施。
礦山和油田廢水也是水資源的重要污染源,例如在美國有成千上萬口已經廢棄的、封閉不好的油氣井,由於二次回採而使產油層產生過壓,這些井會使注入油田的鹵水沿鑽孔向上運移而進入淺部的飲用水含水層。在俄克拉荷馬州林肯縣產油的普魯砂層附近曾利用可控源音頻大地電磁法來圈定鹵水的污染。從 20 世紀 30 年代就開始從普魯砂層採油,從 50 年代開始注入鹵水來提高回採率。瓦穆薩組是該區飲水的主要水源層,淡水層的底部深度變化於 40 ~ 135m 之間,固溶物總量低於 500mg/L。1979 年所打的試驗井表明在油田上含水層的鹵水含量異常高。在該區選出的一些部位按一定網格開展了可控源音頻大地電磁法,圖 9. 2 是一口廢井附近典型的視電阻率擬剖面,它表明深部的良導物質向地表運移,其他一些測線上也檢測到另外一些污染體。根據地球物理結果所打的兩口試驗井的 Br/Cl 比值表明,瓦穆薩組的污染源確實是普魯砂層的鹵水。
圖 9. 2 廢注水井附近的視電阻率等值線圖
(2)有機污染的監測
地下水有機污染的種類較多,其物性特徵不盡相同,探測難度較大。來自煉油廠、化肥廠、制葯廠等排放的廢液多為有機污染,它們在自然環境下不易降解,化學需氧量(COD)、總有機碳(TOD)等指標較高。多數情況下有機污染物與水是非混溶的。輕非水相液體污染物(LNPAL)集中在地下水的表層,而重非水相液體(DNPAL)污染物集中在地下水的底部,這使地下水不同程度地混雜了有機雜質,引起地下水在物理性質和化學性質上的變化。這樣可以根據不同的物理性質(化學性質)選取不同的地球物理方法。
20世紀90年代加拿大和美國的學者在加拿大安大略省開展了一項針對乙烯(C2Cl4)的試驗研究。乙烯用於服裝乾洗和金屬清洗,僅1986年美國就生產乙烯12×108L。乙烯的特點是密度大,在水中下沉,不太受地下水橫向流動的影響。雖然乙烯的溶解度(200mg/L)低,但仍然比世界衛生組織規定的飲水標准(0.01mg/L)高幾個數量級,每排放1L乙烯最終可污染1000×104L的地下水。試驗場地面積9m×9m,周圍用鋼板打入地下,穿過3.3m厚的地表含水層進入下伏半隔水層,有效地隔斷場地內外的水力聯系。通過鑽孔向場地內注入770L乙烯,在圍繞注入孔的9個監測孔內進行中子、密度和感應測井,還定期測地面和井地電阻率。探地雷達工作頻率200MHz,300MHz,500MHz,900MHz,沿測線進行測量。地球物理監測開始於注液前幾天,注液延續了3d,注液後觀測38d,第一個星期每8h觀測一次,以後時間逐漸加長。隨後採用表面活化劑清除乙烯,再監測清除的過程。在中子測井曲線上,由於氯俘獲中子,出現明顯的負峰,如圖9.3(a)所示,從電阻率異常的變化上則可以看出乙烯隨時間的運移,如圖9.3(b)所示。探地雷達測量表明,注入的乙烯先在注入點下1m深左右的界面上匯聚,然後沿該界面向兩側擴散。
圖9.3注乙烯後參數變化
地面加油站儲油罐和地下儲油設施普遍存在腐蝕和泄漏現象,難以發現。北京、沈陽、西安、成都均發生過此類事故。發生在北京地區某加油站的一次漏油事故中,由於污染區面積較大,致使自來水廠停水和地下施工停工。國外此類事故更多,據報道美國對21萬個加油站調查發現,在20世紀70年代以前建設的加油站幾乎都有滲漏,其中1.8萬個已對地下水造成污染。油氣滲漏的檢測技術較多,其中烴類檢測技術(油離烴)、探地雷達技術,能現場實時給出檢測結果,且快速、方便;吸收烴乙烷、熒光光譜法探測精度高、結果可靠。圖9.4和圖9.5分別是北京市某加油站滲漏污染范圍的游離烴CH4和吸附烴C2H4檢測效果圖。
圖9.4北京某加油站滲漏污染范圍的游離烴CH4檢測效果圖
圖9.5北京某加油站滲漏污染范圍的吸附烴C2H4檢測效果圖
石油污染頗為常見,已有許多利用地球物理方法探測石油污染的實例。例如利用探地雷達探測石油污染、用常規的直流電法和電磁法有可能探測石油污染。石油進入地下介質的孔隙系統後可使其電阻率明顯增高。研究人員利用地面低頻電磁或電阻率成像方法追索到幾十至幾百米深處的石油污染。例如在美國俄克拉荷馬城的Carlswell空軍基地,利用鑽孔EM測量數據作出地下電阻率三維分布圖像,推斷出石油污染的位置,據此所打的鑽孔證實了高阻區域與油污染吻合。
圖9.6屏蔽體法的室內試驗和數學模擬結果
浮在潛水面上的高阻油層對電法測量來說會產生屏蔽作用,因此研究人員提出了「屏蔽體」法(SB)。屏蔽體法是一種井地電法,一個供電電極置於污染層之下,用於確定污染層的范圍。室內模擬和數學模擬的結果如圖9.6所示。圖(a)為室內測得石油污染帶上的電位值V(mV);圖(b)為數學模擬計算的電位值V(mV);圖(c)為數學模擬計算的電位梯度ΔV(mV/m)。室內模擬在電解質槽內進行,數學模擬採用有限元法。在野外試驗中採用了電測深和屏蔽法兩種方法,其目的是確定石油污染的范圍,污染層厚度0.2m,深5.7m,賦存於7m厚的第四系礫-砂沉積中,下伏不滲透的白堊系沉積。電測深AB/2最大為50m,在AB/2=15m時沿一些測線出現了電阻率的升高,為污染帶的響應,但最高異常值僅達背景值的15%,難於斷定污染帶的橫向范圍,而屏蔽法顯示了污染帶的范圍比電測深要清晰得多,地球物理野外測量結果已被監測孔證實。
澳大利亞CoffeyPartners公司曾提出,用探地雷達和低頻電磁法探測石油污染有一定的困難,只有頻率在30kHz~5MHz間的電磁波法效果最好。當頻率為1.2MHz時,通過土壤和風化岩石的最大探測深度約30m。在南澳的一個大型柴油機車加油站發現在終端泵站和加油點之間有明顯漏油。開始用EM31電磁儀作剖面測量和探地雷達探測均未奏效,後改用GRC-2儀器作無線電波剖面法,其垂直發射線圈和水平接收線圈沿剖面移動,兩者保持零耦合狀態,測量垂直磁場強度,線圈距在工作期間保持不變。結果在柴油污染范圍內測出明顯垂直磁場強度低值異常,並經鑽探和槽探證實。
總之,地下水有機污染濃度較低,物理化學性質上的變化較小,監測難度大,必須採用高解析度、高密度的方法以及應用地球物理的綜合解釋方法技術。
(3)地下水污染路徑的動態監測
以河北滄州為例。河北滄州地處濱海平原,該區以沖積-湖積的粉細砂鬆散岩層為主,並夾有多層海積層。自上而下共有五組含水層,且咸、淡水交替出現,地下水含氟量較高(2~7mg/L),地下水補、經、排條件差,地下水循環交替作用緩慢,垂向補給逐漸被側向補給所代替。由於集中開采地下水,使得滄州地下水失衡而形成巨大的地下水漏斗(圖9.7)。
圖9.7滄州漏斗Q2含水組水位下降剖面圖
滄州漏斗的形成給地下水資源的開發、利用帶來了嚴重的問題,尤其是地下水嚴重污染。由於漏斗的形成,加速了地面污水向地下水的倒灌,使地下水造成污染,同時稠密的機井給地表(淺層)污水、鹹水和淡水層形成的污染通道,使所利用的含水層遭受不同程度的污染。利用地球物理方法,如用直流電法和探地雷達,在地面監(遙)測地下水漏斗的動態變化、監測地面上工業和生活污水向漏斗遷移的路徑,從污染源和污染路徑上卡住污染物對地下水的污染。
(4)井中多個含水層之間交叉污染的監測
已經廢棄的工業用井和供水用井,以及一些設計得不適當的監測井穿過多個含水帶,使得地下水流系統「短路」。如果其中有的含水層已被污染,便會產生水層之間的交叉污染。美國地質調查所和美國環境保護署合作在賓夕法尼亞州東南部三疊紀斯托克頓組地層中利用地球物理方法研究了廢棄井中多個含水層之間的交叉污染,測量了井內的垂向水流,取樣並分析了井中的液體。所使用的地球物理方法包括井徑測井、液體電阻率測井、液體溫度測井、自然伽馬測井和單點電阻測井。在16個鑽孔的45~143之間進行,用以劃分岩性、地層,圈定了含水裂隙和井液垂向運移帶,測量了垂向液流,確定了井液的運移方向和速度。
(5)地表水污染治理中的地球物理工作
在杭州西湖換水過程中曾經成功地應用了地球物理方法。西湖由於常年污染,湖水的水質和透明度日益變差,市政府決定開鑿隧道引錢塘江水更換西湖湖水。為了解江水進入西湖的運移和分布情況、換水的進度和效果,利用電阻率法在換水過程中及其前後進行了動態和靜態觀測(圖9.8)。
在換水之前對江水和湖水的電阻率進行了測量,江水的電阻率變化范圍為81~93Ω·m,平均為88Ω·m。西湖由五個相互連通的湖泊組成,其中電阻率最低的變化范圍為55~60Ω·m,平均為57Ω·m,最高的變化范圍為69.5~75Ω·m,平均為72Ω·m。這是利用電阻率法監測換水過程的基礎。水電阻率觀測比例尺為1∶5000,線距200~400m,整個湖面均勻發布20條測線。觀測儀器為測井全自動記錄儀,安裝在電瓶驅動船上,用七心電纜連接電源、探測器和自動記錄儀。探測器為井液流體電極系,固定在水深約70cm處,換水期間每天沿各測線連續探測水的電阻率一次。根據觀測結果,可以得出江水進入西湖後逐日的擴散范圍、水流的主要方向,指導了換水工作的進行。同時發現了一些原來未發現的污染源。
(6)地下水污染防護中的地球物理工作
地球物理方法也可用來監測有機化合物污染的治理過程。美國能源部執行了一項「非乾旱區土壤和地下水易揮發有機化合物綜合示範計劃(VOC-NAS)」,向地下注入甲烷與空氣的混合物,作為新陳代謝的碳源,以繁殖一種微生物,使三氯乙烯降解。混合物注入地下後,在運移的途徑上,由於置換了地層水,使電阻率升高,因而可以通過地下(井間)電阻率層析使運移的途徑成像。電阻率層析是在5個鑽孔之間進行的,每一孔內有21個電極,從地面到61m深度等距發布,兩孔之間的地面有4個電極。結果發現,注入氣體流動途徑為復雜的三維通道網,有些通道延伸到距注入井30m以外,這些通道在幾個月過程中並不穩定,不斷有新通道出現,氣體注入通道的電阻率隨時間而增大。影響微生物繁殖的其他因素還包括大氣降水和來自地表的水溶養分。所以,在另一組試驗中,水從地面滲入地下並作出滲入前和滲入過程中某一瞬間電阻率差值的圖像,這些圖像表明,水的入滲也是限於具有三維結構的狹窄通道,水流受地層滲透率變化(砂和泥的分布)的控制,不過水流通道隨時間的變化小。這些通道在圖像上表現為低阻帶。
圖9.8西湖初次換水混合流推進圖
美國桑迪亞國家實驗室提出一種不盡相同的治理方案,並在南卡羅萊納州的一個場地進行了試驗。該場地也被揮發性的三氯乙烯和四氯乙烯污染。為了治理污染,打了兩口水平井,由潛水面以下的井注入空氣,而由上面的另一口井抽取污染物,當空氣通過地下孔隙時溶解揮發性污染物,再被上面的井抽出。空氣在地下的分布會直接影響治理的范圍並且影響如何對注入氣流進行調節。因此,桑迪亞實驗室利用監測井井間地震數據,根據注入氣體飽和度變化引起的地震波速變化了解空氣的分布。為能提高解析度,選用井間地震層析成像方法,既減少近地表雜訊的影響及與近地表物質有關的衰減,又使震源和檢波器更接近目標,減少高頻波的能量損耗,高頻波波長短而具有更高的空間解析度。為此,在空氣注入前後都作了S波和P波層析。S波震源為頻率掃描氣動可控震源,用井中三分量檢波器。震源和檢波孔相距27.4m,孔內測點垂向距離1m。
捷克的一家發電廠也進行過類似的監測,他們為了檢查粉煤灰堆放池的施工質量,在未敷設防滲層之前先在池底埋設若干條平行長導線作為檢測用的供電電極,然後在其上敷設防滲層。施工結束後向池內放水,將設置在防滲層下的長導線作為供電線路的一個極,另外一個極置於無窮遠,在小船上用單電位電極進行測量,在池邊用經緯儀測量定位。如果測到高電位異常,即為防滲層破漏處,發現率為94%。
㈧ 什麼是總石油烴TPH
此為「Total Petroleum Hydrocarbons」的縮寫。
為:礦物油。
理由:油類物質,從來源上一般分為三大類:一是礦物油。指天然石油(原油)及其煉制產品,由碳氫化合物組成。。。。。。本方法針對的是礦物油,即總石油烴(TPH)的測定。
(引自:文獻:《氣相色譜法測定水中總石油烴》,穆肅 胡冠丸 江蘇省環境監測中心 江蘇 南京 210036)
相關知識拓展:油類物質,一般分成三大類:一是礦物油,二是動植物油脂,三是香精油。
㈨ 生活污水裡的石油類含量大於動植物油
含油污水對於生態環境的破壞十分巨大,如果不能及時處理,其中存在的致癌物質還會隨著污水污染周圍植物或者動物,對人體造成影響。今天和大家探討下含油廢水的具體危害和處理步驟。
含油污水的危害主要體現在這幾個方面:對於江河湖海的污染。科學研究表明,含油污水的密度低於水的密度,如果含油污水排入江河湖泊之後會覆蓋水面,從而隔絕了水體中氣
體和大氣之間的交換,導致水體中氧含量急劇下降。而水體中氧含量的減少會對水生物的生長造成直接的影響,導致水中動植物的死亡,造成水體質量的下降,直接影響到水資源
的利用。更加嚴重的是,如果含油污水直接污染到飲用水源,將會導致大規模的人體疾病,甚至直接引起群體性的食物中毒,危害巨大。每當游輪泄露石油時,總會引起社會各界的關注。
此外,當含油污水不經處理傾倒在地面,也會對土壤造成污染,油污會附著在植物的葉片上,阻隔植物進行正常的光合作用;含油污水的沉澱物會影響植物根系的正常生長會導致植物大面積的死亡。
目前對於含油污水的處理工藝逐步在完善,含油廢水處理,大致可分為三個階段。
1、要對於含油污水中的水和油進行初次的分離處理。這一階段在實際操作中要根據含油污水的特點施加相應的處理工藝。比如對於顆粒較小的含油污水可以採用油水過濾器來進行水油分離;顆粒較大、凝固點較高的含油污水通過加熱保溫的方式來處理;
2、在初次油水分離後要在加入絮凝劑、混凝劑等催化污水的絮化,減少對設備的堵塞的基礎上採取氣浮收油裝置、濾罐過濾、微生物反應這幾種方式來進行進一步的水油分離。
3、完成了兩步的水油分離操作之後,還需要對處理後的污水進行檢測,如未達到相應的排放標准,則需要重復進行處理,重復處理時不排除使用石英砂過濾罐或者活性炭過濾罐對水體進行進一步的過濾,直到達到排放標准後再進行排放。
含油污水因為其來源較多、處理工藝復雜,因此在水污染處理中是比較重要的一項。因此,在對含油污水的處理過程中,必須對含油污水的來源、成分以及其所處的存在方式、對生態環境的危害有充分的分析和認識。
㈩ 非鹵代烴類 (含石油烴) (Non-halogenated Hydrocarbons) 的測定
85.2.6.1 土壤中礦物油的測定 (5 分子篩吸附法)
方法提要
在提取非鹵代烴類過程中可能有少量土壤有機酸、腐殖酸、脂肪酸、油脂等一起被萃取出來,為了除去這些干擾物質,採用 5A 分子篩吸附法。根據礦物油在近紅外區(3.4μm) 有特徵峰,從而可以進行定量分析。
儀器和裝置
萬分之一天平。
紅外分光光度計。
5 分子篩 (MS) 。
試劑
四氯化碳 (AR) (重蒸餾) 。
無水硫酸鈉 (AR) 。
標准油的制備 在萬分之一分析天平上精確稱取 20 號重柴油 0.5000g,以四氯化碳溶於 250mL 容量瓶中,此液含油 20mg/mL 的標准儲備液。
分析步驟
1) 稱取土樣約 25g (視土壤含油量而定) 於 125mL 磨口三角瓶中,加鹽酸調節 pH值至 3 以下,加入 30mL 四氯化碳,加蓋輕輕旋轉搖動 1~2min,放置過夜。翌日在 70 水浴上熱浸 1h,將上清液濾入三角瓶中,再在熱水浴上分別用 10mL 四氯化碳浸提土壤 2次,每次 0.5hr,合並濾液,加入 10g 無水硫酸鈉,每隔 10min 搖動一次,0.5h 後過濾於50mL 容量瓶中,再加入 5g 5 分子篩,每 15min 搖動一次,1h 後過濾。在測定時將其到入 1cm 厚的石英槽中,用四氯化碳為參比溶液,在紅外分光光度計上,於 3.4μm 波長處測定吸光度。以 3.4μm 處吸光強度 (峰高) 按基線法在記錄紙上量出相應峰高值,由校準曲線查出其相應含量。
2) 校 准 曲 線。吸 取標准 油 儲 備 液 0.10mL、0.20mL、0.30mL、0.40mL、0.50mL、0.60mL (此 液 各 為 0.20mg / mL、0.40mg / mL、0.60mg / mL、0.80mg / mL、1.00mg / mL、1.20mg / mL) ,用四氯化碳定容於 10mL 容量瓶中,然後在紅外分光光度計上進行測定,記錄各點於 3.4μm 處的吸光強度。以吸光強度為縱坐標,濃度為橫坐標,繪制校準曲線圖。
3) 結果計算。
岩石礦物分析第四分冊資源與環境調查分析技術
85.2.6.2 非鹵代有機物的氣相色譜法分析
參見第 82章 82.22 氣相色譜分析方法。
本節編寫人: 饒竹 (國家地質實驗測試中心) 。