當前位置:首頁 » 石油礦藏 » 藻類生產石油怎麼樣
擴展閱讀
天啟鑽石怎麼挖 2025-07-02 18:59:14
產品設計在哪裡學習 2025-07-02 18:50:42

藻類生產石油怎麼樣

發布時間: 2023-04-20 03:06:56

『壹』 海藻怎樣變成石油

海藻在太陽光照下吸收二氧化碳,然後在細胞內生成油脂。經過遺傳基因改良過的單細胞海藻在池塘中只需五天就可收獲。
把海藻從水中撈出,經過一種熱化學工藝的「濕性提取法」處理後,油脂便從海藻中分離出來了。
石油是經過漫長的地質年代才逐漸形成的寶貴資源,但用起來卻消耗得非常快。美國的科學家日前利用藻類作為原料,加快了「原油」的形成過程,只需並賣要約一個小時即可得到用藻類生產的生物燃料。
在已知銷蔽空的生產清潔能源的方法中,利用藻類生產的生物燃料最接近於海底沉積物產生的原油。在數百萬年的時間里,海底的沉積物經由微生物的作用變成了我們所熟知的石油。而最近,美國能源部的科學家們的研虧瞎究成果,使得這一需要進行數百萬年的反應得以在1小時內完成。

『貳』 海藻的化工用途

以海藻為原料製成的化工產品。1670年日本發現了用紅藻生產瓊膠的方法,並開始海藻膠的生產。20世紀50年代末中國進行了從海帶提取褐藻膠、甘露醇和碘的綜合利用研究,60年代末投入工業性生產。海藻加工產品主要有紅藻膠質製品與褐藻化工產品兩類。
海藻能夠避免與農作物爭奪耕地和淡水資源,有望成為未來理想的生物燃料。到目前為止,海藻生物燃料尚不具備經濟性,但隨著石油價格的不斷上漲,以及海藻可以提取出高附加值產品,這種情況可能會有所改變。英國阿伯里斯特維斯大學的傑西卡·亞當斯表示,海洋中生長著大量海藻,而人們卻沒有真正加以利用。法國海藻技術研究中心的揚尼克·勒瑞特也表示,海藻生長非常迅速,而且無需消耗淡水。
與陸地植物一樣,海藻中的碳水化合物可以用多種方式轉化成燃料。海藻可以通過熱解來製造油料,通過細菌發酵來生產乙醇,通過厭氧消化來轉化為甲烷。
海藻漂浮在水中,因而無需像陸地植物一樣製造木質來對抗地球引力。粗糙且難以降解的木質是將陸地生物燃料推向市場所面臨的關鍵障礙之一。 紅藻膠質製品,紅藻膠質的基本化學成分是由半乳糖組成的半乳糖膠。不同種類紅藻所含膠質中半乳糖的構型和構象以及所含硫酸基的數量與結合位置不同,各種製品的性質也有不同。
主要製品有:
① 瓊膠。又稱瓊脂、凍粉。從石花菜、江蘺等紅藻中用熱水提取出來的一種海藻多糖。加熱至90℃左右呈溶膠狀,冷至30℃左右時呈強度較高的凝膠。瓊膠由中性的瓊膠糖和一系列連續的硫酸性瓊膠兩部分組成。加工方法主要是天然凍干法和機械加工法。瓊膠在食品工業上主要用作軟糖、罐頭製品的凝凍形成劑,冷飲食品的穩定劑和乳化劑;醫學上用作培養基、輕瀉葯等。
② 卡拉膠。從角叉菜等紅藻中以熱水提取出的膠質。其膠液經處理可分成沉澱和不沉澱兩部分,分別稱為K-卡拉膠和λ-卡拉膠組分。其中K部有較強的凝固能力,工業生產的卡拉膠是兩者的混合物。生產方法有烘乾法、異丙醇脫水法和鹼預處法等。用途與瓊膠基本相同。
③ 叉紅藻膠。從帚狀叉紅藻中以熱水提取出的多糖。此種藻類多產於大西洋北部。叉紅藻膠的主要化學結構類似K-卡拉膠。用途和卡拉膠相似,絕大部分用於食品工業。
④ 海蘿膠。海蘿屬紅藻所含的膠質。海蘿加熱水攪拌提取,濾液與染料可直接配成印花漿使用。 褐藻化工產品主要有褐藻膠、碘和甘露醇等。褐藻膠是從海帶等褐藻經加鹼提取出的一種水溶性高粘度膠體,是所有褐藻所共有的細胞間多糖。褐藻膠包括水溶性褐藻酸的銨、鈉、鉀鹽,以及不溶於水的褐藻酸及其鈣、鐵等兩價以上的金屬鹽類。一般所說的褐藻膠主要指褐藻酸鈉。主要在食品工業中用作穩定劑、增稠劑、果醬等的凝凍成形劑;在醫葯衛生中用作乳化劑、葯片崩解劑、止血紗布等。有些褐藻膠有阻止動物體吸收放射性鍶的效果。在海帶的水浸泡液中加入酸和氧化劑使碘游離,通過陰離子交換樹脂標使碘吸附,再通入還原劑解吸、氧化,精製後即得醫用碘。從交換樹脂柱流出的液體中加鹼除去不溶物,然後經電滲析器脫鹽、濃縮、結晶即得甘露醇。碘廣泛用於人民生活、醫葯衛生、國防工業和農業等方面。甘露醇可用作治療眼、腦、糖尿病、高血壓等疾病的注射劑和口服葯;其衍生物可用作乳化劑以及用於製造泡沫塑料、炸葯等。

『叄』 石油是怎麼形成的

石油是怎麼形成的在理論上不成熟,還有其他觀點,以下說法參考一下
傳統的石油地質理論認為:石油的生成是幾百萬年前沉積在海底的生物殘骸,經泥沙覆蓋,在微生物作用下腐爛,又經過長期的加壓加熱,形成油、氣。
現代石油理論則認為:石油是由含有機質的動植物殘骸被埋入地下後和泥沙組成了有機淤泥,由於地層的原因不斷地被一層一層地掩埋,愈埋愈深,最後於外面的空氣隔絕,造成了一個缺氧的環境,加上深層處溫度的升高,壓力的增強,厭氣性氧細菌便把有機質分解,形成了分散的油滴,這就是石油。
由於地層不斷地下降,濕度不斷地升高,加之地心的引力,被分解的油滴就會活躍起來,並向地心的方向游移,越往深入溫度就越高,油滴可能就越發活躍,由於地層的物質結構不同,而且越往深入物質的密度越大,但地層下的沉積物有時侯顆粒較粗,顆粒間空隙較大,便形成了砂岩、礫石;有時侯顆粒較細,就形成了頁岩、泥岩。在地層的壓力的作用下,這些分散的油滴就會不斷地順著它們可以通行的路線行進,最後被擠進多孔的砂岩層,成為儲積石油的地層;而空隙很小的頁岩層,由於油滴無法擠進去,儲積不了石油,就成了防止石油跑掉的「隔離層」。
又由於地殼是由密度較大的頁岩——玄武岩組成,而且凸凹不平,向上突起的叫被斜構造,向下彎曲的叫向斜構造;有的岩層像饅頭一樣的隆起,叫穹隆構造。集合的油滴就會沿著隆坡繼續前行,不斷向向斜構造或穹隆構造岩層的頂部匯集,這時石油位於上部,而處在中間、下部的則是水。進入凹陷的地殼區域,這里如同一個大的臉盆,把油流匯集起來,越集越多,這里就成為儲藏石油的大「倉庫」了,在地質學上管它叫做「儲油構造」。
由分散的油滴到匯集成的油流,最後進入到大的儲油「倉庫」,也可以說是地球對含有有機質的動植物殘骸進行分解、加溫、加壓、提煉、匯集、儲藏的一系列加工過程,是地球製造、儲藏高熱值能量物質的加工體系.

『肆』 藻類是怎麼樣即發電又吃油的呢

人們常常在潮濕的地表上看到泛起的藍綠色、滑膩膩的「地皮」,這些東西的學名就叫「藍藻」,有人也叫它「藍細菌」、「藍綠藻」、「粘藻」。這種藻類是地球最古老的生物,遠在30億年前的遠古時代,地球剛剛誕生17億年左右時,它就誕生了,據說生物界那時只有這類藍藻。它在極為險惡的環境下,潛伏在水層里,依靠它所含有的葉綠素和藻藍素成功地利用透射和散射的太陽光進行光合作用,成功地把二氧化碳(CO2)和水(H2O)合成碳水化物〔(CH2O)n〕。光合作用是太陽能的生物轉換過程。這一過程合成的碳水化合物便是太陽能的化身。藍藻可以說是世界上最早的太陽能收集器、貯存器。它的出現意味著地球上以太陽能為動力的生命形式由低級走向高級,從簡單走向復雜的開始。藍藻是一個龐大的生物家庭。目前,已發現的藍藻有2000多種,分隸於140屬20科。

藍藻與其他光合細菌最大的區別是,其他光合細菌在光合過程中不會放出氧氣,而藍藻卻能源源不斷地往空中輸送氧氣。經過長期不斷地施放氧氣,終於改變了大氣的組成,進而在高空形成臭氧層,擋住了紫外線,為以後的需氧生物提供了有利的生存環境,並為海洋生物登陸提供了條件。因此,人們把藍藻看成是植物界的先驅,進化長河的源流,地球上最早的拓荒者。

藍藻還能把大氣中的游離氮(N2)同氫(H)合成氨(NH3),這就是藍藻所進行的固氮作用。能進行固氮的藍藻大多分化為兩種細胞:營養細胞和異形胞。在光合過程中,營養細胞能製糖和發電,而異形胞在特定條件下,能催化放出理想的燃料——氫來。

這樣說來,藍藻是一種既能光合(發電、放氧、製糖),又能固氮(合成氨),還能放氫的「綜合工廠」,這不僅是植物界絕無僅有的,就是人類社會上也無法與之比擬。可見,藍藻是一種貢獻獨特的微生物了。

人類認識和利用藍藻的歷史並不長。1889年首先由弗蘭克發現藍藻能固氮,但當時未能確證,直到1928年才為德雷韋斯所證實。20世紀40年代藍藻開始在稻田裡使用,它生長過程中分泌出的氮化合物和激素物質能大大幫助水稻生長,稻田養藻,水稻一般能增產10%。

更令人感到驚異的是藍藻竟能發電!揭開藍藻光合、固氮、放氫的秘密,將使人們可以用太陽能為動力,以水、二氧化碳和氮氣為原料,定向地進行發電,合成食物,生產氮肥,製造氫氣。近年來,國外已經開始用藍藻進行發電試驗取得成功。科學家們對利用藍藻制氫也極感興趣。

作為生物質能源,水生植物的使用,除藍藻外,其他許多藻類也具有很大潛力。專家們在進行海藻種植研究中發現,藻類生物質可厭氧發酵成甲醇,其轉化率可達50%~70%,因此證明,通過藻類可將太陽能轉化成化學能(甲醇)。還有人在將海藻研碎後進行發酵過程中發現,這些藻類能釋放出大量近似甲烷的可燃性氣體。據估算,一公頃海藻,一年內可排出4萬立方米的可燃性氣體。還有一種海藻,它能在高鹽鹼的水中產生大量有價值的烴類(其中也含有甘油)。小球藻也能提供大量熱能,每克可提供22千焦耳的能量。水風信子是沼氣發酵的極好原料,它繁殖速度極快,一株水風信子經過3個月後可產生248181個後代。

令人更為驚異的是藻類還能回收石油。「紅巨藻」(紫球藻屬)能以相當其生物量生產速度的50%的速率合成分泌出一種磺化多糖。這種多糖的粘度和催化作用與角叉藻聚糖類似,可用於從地下的沙質形成物中回收石油。用其回收石油的數量等於或高於用商品聚合物得到的數量。

無獨有偶。同屬微生物的一種細菌也能分解原油。據報道,1991年由日本大阪大學的今中忠行教授首次發現了在無氧環境中可以分解原油的細菌。據說,在日本靜岡縣中部山區,有一股自戰前就一直向外涌流的原油,使周圍環境受到嚴重污染。經對油流周圍的土質勘察分析後找到一種以原油為食的新菌種。它與目前所掌握的分解原油的細菌同屬假單胞菌,其棒狀體形直徑0.5微米,長1.2~1.5微米。科學家認為,迄今一直難以處理的沉積海底的原油,因這一新菌種的發現將可得到解決。更重要的是,如果用二氧化碳和氫就可以培養這一新的細菌,那麼合成接近原油成分的碳氫化合物就將成為可能。

『伍』 藻類怎樣回收石油

令人驚異的是藻類還能回收石油。「紅巨藻」(紫球藻屬)能以相當其生物量生產速度的50%的速率合成分泌出一種磺化多糖。這種多糖的粘度和催化作用與角叉藻聚糖類似,可用於從地下的沙質形成物中回收石油。用其回收石油的數量等於或高於用商品聚合物得到的數量。

『陸』 植物能產生石油嗎

在尋找新能源的過程中,科學家們欣喜地發現了可再生的「石油植物」,可以有效地解決上述問題。它的蘊藏量豐富,可以迅速生長,是可再生的種植能源,用「植物石油」代替傳統的石油將從根本上解決能源危機。英美等發達國家正在對已發現的40多種「石油植物」進行品種選育和品質優化工作,並准備盡快實現商業化生產。法國、日本、巴西、俄羅斯等國也正在開展「石油植物」的研究和應用。目前,甚至有一些科學家在培育產油量較高的轉基因植物。
美國一個名叫卡爾文的科學家在巴西發現了一種神奇的橡膠樹,只要在這棵樹的樹幹上鑽個小洞,就可接到「柴油」,因而又稱之為「柴油樹」。澳大利亞有一種古巴樹,每棵每年可獲得約25升燃料油,且這種油可直接用於柴油機。美洲香槐草是產於美國的一種雜草,它生長在乾旱和半乾旱地區,每公頃土地可以收獲約1600升燃料油。
一些藻類現在也是產油熱點。這些「油藻」生長繁殖迅速,范圍大,燃料油產量也高。如在淡水中生存的一種叢粒藻,它們簡直就是產油機,能夠直接排出液態燃油。另外,那些目前尚未發現有明顯經濟價值的藻類,也可以用它們來做沼氣原料,而那些含糖量大的藻類則可以用來生產醇類作為燃料。

『柒』 石油是如何產生的

目前普遍認同的理論是,埋藏在地下的遠古時代未被細菌分解的有機物在一定溫度、壓力條件下,經過幾百萬年的演變,形成了可供開採的石油。微生物將地表以下的有機物轉化為碳氫化合物,剩下的埋藏在深層地底的有機物則在溫度和壓力下經過分解及復雜的化學反應生成石油。通常具有商業價值的油田都位於地表以下500米-700米深處,最深的油井在約6公里深的地底。而10公里以下的更深處則根本不會有石油或天然氣。

肯尼認為,淺層地表形成的低壓條件更容易產生甲烷,而不是較重的碳氫化合物。他在實驗室中將氧化鐵、卵石和水加熱至900攝氏度高溫時得到重碳氫化合物。據此他認為,穩定的石油只有在30000個大氣壓條件下,也就是100公里以下的地底才能形成。

不過,即使肯尼關於石油形成的理論只有部分正確,也可能為石油勘查工作打開一扇新的探索之門。

『捌』 藻類植物產油

從植物中提煉石油最讓人鼓舞的前景之一來自對藻類的研究和開發,因為它們生長迅速,產量也高。如在淡水中生存的一種叢粒藻,它們簡直就是產油機,能夠直接排出液態燃油。在美國西海岸附近的海域中,生長著一種巨型海藻,一晝夜可長60厘米,其含油量很高。
日本的一個科研小組宣布,他們成功地從一種淡水藻類中提出取出了石油。這種藻類石油生成能力遠遠超過預想的程度。

『玖』 石油是怎麼形成的

一、1763年,俄國科學家羅蒙諾索夫首先表明觀點:石油起源於植物。

二、1876年,俄國化學家門捷列夫提出了「碳化說」。他認為,地球上有豐富的鐵和碳,在地球形成初期,它們可能化合成大量碳化鐵,以後又與過熱的地下水作用,就生成碳氫化合物。

碳氫化合物沿著地殼裂縫上升到適當的部位儲存凝結,最終形成石油。但這一假說的不足之處是:地球深處的碳化鐵含量極其微小,並且地球內部的高溫也使地下水無法到達地球深處。

三、1866年,勒斯奎勞第一個提出了石油的「有機成因說」,認為石油可能是由古代海生的纖維狀植物沉積到地層以後慢慢轉化而成的。

四、1888年,傑菲爾指出石油是海生動物的脂肪經過一系列變化而形成的。二十世紀三十年代,前蘇聯的古勃金又提出了石油的「動植物混合成因說」;四、五十年代,有人還提出石油的「分子生油說」,就是油烴類是沉積岩中的分散有機質在成岩作用早期轉變而成的。

五、十九世紀末,俄國另一位科學家索科洛夫提出了「宇宙成因」假說。他認為,在地球還處在溶融的火球狀態時,吸收了大量原始大氣中的碳氫化合物。隨著原始地球不斷冷卻,這些碳氫化合物逐漸凝結埋藏,並在地殼中形成石油。

六、1951年,前蘇聯地質學家創立了「岩漿說」。他們認為,石油是在地球深部的岩漿作用中形成的。地球深處的岩漿裡面,不僅有碳和氫,而且有氧、碳、氮等元素。

在岩漿從高溫到低溫的變化過程中,這些元素進行了一系列的化學反應,從而形成甲烷、碳氫化合物等一系列石油中的化合物。伴隨著岩漿的侵入和噴發,這些石油化合物在地殼內部遷移、聚集、最終形成石油礦藏。

(9)藻類生產石油怎麼樣擴展閱讀:

石油,地質勘探的主要對象之一,是一種粘稠的、深褐色液體,被稱為「工業的血液」。地殼上層部分地區有石油儲存。主要成分是各種烷烴、環烷烴、芳香烴的混合物。

石油的成油機理有生物沉積變油和石化油兩種學說,前者較廣為接受,認為石油是古代海洋或湖泊中的生物經過漫長的演化形成,屬於生物沉積變油,不可再生。

後者認為石油是由地殼內本身的碳生成,與生物無關,可再生。石油主要被用來作為燃油和汽油,也是許多化學工業產品,如溶液、化肥、殺蟲劑和塑料等的原料。

石油的成分主要有:油質(這是其主要成分)、膠質(一種粘性的半固體物質)、瀝青質(暗褐色或黑色脆性固體物質)、碳質。石油是由碳氫化合物為主混合而成的,具有特殊氣味的、有色的可燃性油質液體。

嚴格地說,石油以氫與碳構成的烴類為主要成分。構成石油的化學物質用蒸餾能分解。原油作為加工的產品,有煤油、苯、汽油、石蠟、瀝青等。嚴格地說,石油以氫與碳構成的烴類為主要成分。分子量最小的4種烴,全都是煤氣 。

原油的顏色非常豐富,有甚紅、金黃、墨綠、黑、褐紅、至透明;原油的顏色是它本身所含膠質、瀝青質的含量決定的,含的越高顏色越深。我國重慶黃瓜山和華北大港油田有的井產無色石油,克拉瑪依石油呈褐至黑色,大慶、勝利、玉門石油均為黑色。

無色石油在美國加利福尼亞、原蘇聯巴庫、羅馬尼亞和印尼的蘇門答臘均有產出。無色石油的形成,可能同運移過程中,帶色的膠質和瀝青質被岩石吸附有關。但是不同程度的深色石油占絕對多數,幾乎遍布於世界各大含油氣盆地 。