❶ 典型地區環境地質指標研究
一、研究區概況
大慶市位於松嫩平原中部,黑龍江省西部,屬松花江流域,是我國最大的石油、石化生產基地。現轄肇州、肇源、林甸、杜爾伯特四個縣,以及薩爾圖、讓胡路、龍鳳、紅崗、大同五個區,總面積21 219 km2,截至2006年10月18日,總人口數為265.7萬人,工業企業1000餘家。其中市區面積5107 km2,人口121.2萬。大慶市區行政區劃主要構成如表7-5所示,地理位置如圖7-1所示。
表7-5 大慶市區行政區劃表(2004年)
圖7-1 大慶市區行政區劃圖
(一)地質與地形地貌
大慶市在地質構造上屬松遼盆地,它位於松遼盆地北部,處於松花江、嫩江一級階地上,地層沉積厚度達6000 m以上。在漫長的地質構造運動作用下,大慶市地下岩層形成兩側為凹陷的構造——三肇凹陷和齊家古龍凹陷,中部為隆起構造——大慶長垣構造。大慶長垣是松遼盆地中央坳陷區北部的一個大型背斜構造帶,南北長140 km,東西最寬處約70 km。正是被稱為「大慶長垣」的構造,孕育了大慶油田的主體,長垣之上,自北而南有喇嘛甸、薩爾圖、杏崗村、太平屯、高檯子、葡萄花和敖包塔7個油田。
從第四紀地質構造上來看,大慶市可以分為:沖擊層、低漫灘堆積層、第四系水系、風積層、高漫灘堆積層、洪積(沖積)層和全新統,見表7-6。
表7-6 大慶市第四紀構造及其面積
全市地勢東北高、西南低,一般地面高程在126~165 m之間,自然坡降在1/5000至1/3000左右,相對高差較小,為10~39 m,境內無山無嶺,地貌表現為坡狀起伏的低平原。
從地貌成因類型及形態特徵看,大慶大面積為沖積洪積湖積低平原,局部為沖積洪積河漫灘、風積沙丘地貌。沖積洪積湖積低平原分布於大慶市中部廣大地區,地形平緩,表現為坡狀起伏:沖積洪積河漫灘呈條帶狀分布於沿江地帶,地勢平坦,地面濕潤,並分布有較多季節性泡沼和沼澤濕地及小塊的殘留階地;風成沙丘呈北西-南東向條帶狀分布,大部分現已固定或半固定。在地勢稍高多為平緩的漫崗,其上植被發育較差,平地上多為耕地、草原,間有許多面積不大的鹽鹼小丘;低處多為排水不暢的季節性積水窪地和低位沼澤,以及大大小小的鹼水泡子。
(二)氣候
大慶市地處北溫帶歐亞大陸東緣大陸季風氣候區,屬於半濕潤與半乾旱區域,受蒙古內陸冷空氣和海洋暖流季風的共同影響。春季多大風,少雨乾燥;夏季短暫,受太平洋高壓氣團影響,雨熱同季,高溫多雨;秋季日照長,常有早霜;冬季漫長,受高空西北氣流控制,嚴寒少雪。市區多年平均氣溫3.2℃,1月份平均氣溫-19.6℃,7月份平均氣溫22.8℃,極端最低氣溫-37.7℃,極端最高氣溫37.4℃。無霜期140天,年平均日照時數為2826h。季節性大風明顯,年平均風速3.9m/s。
大慶市氣候災害最主要的是乾旱,特別是春季,春季降水不到全年的15%。由於年內降水分配不均,強度大,降低了降水的有效性,造成夏、秋洪澇災害。此外,低溫寒冷、霜凍、冰雹、大風出現的頻率較高,造成程度不同的其他災害。
(三)土壤
大慶市區土壤是在特定的地貌、成土母質、氣候、水文、植被等成土因素的綜合作用下形成的。草原土壤占市區總土地面積的 18.64%,是主要的耕地土壤;水文土壤主要有草甸土和沼澤土,其中草甸土占市區總土地面積的52.23%。大慶地區特殊的自然地理環境使區內土壤既有一般的成土規律,又有特殊的隱域性成土方式。第四紀粘土、亞粘土為主的沉積物,決定了大慶地區土壤的基本性質,即具有溫帶平原土壤系列的基本特點。根據土壤普查資料,大慶市土壤共分 6 個土類,13 個亞類、13 個土屬,28 個土種。
(四)植被
大慶市天然植被主要由草甸草原、低地鹽化草甸和沼澤構成。草甸草原是松嫩平原的主要組成部分,分布在漫崗、緩坡地和低平地上,植物主要以中早生的多年生草本植物為建群種,並以叢生和根莖型禾草占優勢。禾本科主要有羊草、貝加爾針茅、野古草、隱子草和洽草等;豆科有興安胡枝子、細葉胡枝子、五脈山薰豆、首箱、草木褲、山野豌豆等,雜草類主要有篙屬、萎陵屬雜草。植被蓋度多在65%以上,草層平均厚度50 cm左右,畝產乾草約100~150 kg。此類草場是畜牧生產主要割草場和放牧地。低地鹽化草甸在大慶市有一定面積的分布,多處在地勢低窪地帶,與草甸草原植被呈鑲嵌分布。植被由鹽中生和早中生禾草、雜草類組成,主要植物有星星草、鹼茅、羊草、蘆葦、野黑麥、鹽生鳳毛菊、鹼蓬、鹼高等,植被蓋度60-80%,草層平均高55 cm,畝產乾草70 kg。此類草地主要作為放牧場。沼澤植被在大慶市有小面積分布,主要在長年積水或季節性積水的內地閉流窪地、無尾河散流低地和江灘窪地,植物主要有蘆葦、小葉樟、三棱草、苔草等組成,蘆葦是最常見的類型,植被蓋度在80-100%,生長高度150~250 cm,產量很高,主要用於造紙工業。除了占優勢的草本植物外,在西部風沙土區還有野生的蒙古杏、榆樹等樹種分布,現已遭受嚴重破壞。沿江地區還有天然的山杏、榆樹、灌木柳等。
不過目前,大慶市天然植被己有很大一部分被開墾為農田,並在村鎮周圍和農田邊緣種植了大量的楊樹。保持天然植被的地段多為干早貧膺的沙地、較重的鹽鹼地以及沼澤地等。另有一部分植被由於油田開發而受到嚴重破壞。
(五)水文
1.降水
大慶市夏季降水量豐沛,冬季降水稀少。多年平均降水量為380~470 mm,最大降水量為664 mm,最小降水量為213 mm。年內降水量分配不均,主要集中在7~8月份,約佔全年降水量的55%。大氣降水明顯表現為年際變化大、年內分配不均,並呈現夏季豐水、冬季枯水、春秋過渡的特點。
2.地表水
大慶市地表水資源表現為明顯的閉流區特徵。境內湖泊、泡沼星羅棋布,但很多泡沼多為鹼性泡子,鹼性強、鹽分含量高,未經處理不能做灌溉用水。市區內無天然河流,松花江、嫩江從西南部邊緣通過。省內兩條最大的無尾河——烏裕爾河和雙陽河的尾部逐漸消失在林甸和杜蒙縣的大片葦塘和濕地中,大氣降雨都匯集到低窪處,形成許多季節性沼澤地,全市有常年水泡208個,其中市區有156個。地表水系由引水系統、排水系統和諸多泡沼組成。引水系統包括三條以嫩江水位水源的北部、中部、南部引嫩工程和相應的蓄水工程組成,蓄水工程主要包括大慶水庫、紅旗水庫、龍虎泡水庫、北湖、東湖等。日供水能力117萬m3。排水系統有南線排水和東線排水組成,東線由石化總廠污水管線進入清肯泡,南線主要是指安肇新河排水系統。
3.地下水
大慶市已探明地下有四個含水系統,即主要由第四系林甸組、泰康組及第三系大安組、白堊系明水組構成。因含水層受古沉積環境影響,其結構特徵、埋藏條件、補給、徑流條件差異很大,各含水層富水性差別較為明顯。總體而言,含水厚度在10~40 m之間,頂板埋深為35~60 m,一般單井出水量為20~50 t/h,地下水可開采量為每年9.6億m3。
大慶市各含水層為低礦化度重碳酸氫鈉(NaHCO3)型水,但主要指標有明顯的差異。在含水層之間,總溶解性固體由高到低依次為大安組、泰康組、林甸組、明水組,總硬度由高到低依次為泰康組、林甸組、明水組、大安組,錳含量由高到低依次為明水組、泰康組、林甸組、大安組,氟含量由高到低為林甸組、泰康組、大安組、明水組,pH值由高到低依次為明水組、林甸組、大安組、泰康組。總的情況分析,明水組水質最好,大安組水質次之,第四系、泰康組水質一般。在平面分布上的總體情況是,大慶長垣以東地區水質好於以西地區。
(六)石油天然氣
大慶市位於松遼盆地的中心部位,是中生代至新生代時期的一個大沉積盆地,地下有豐富的石油天然氣資源。截至 2001 年底,共發現探明石油地質儲量 56.2 億t,已動用地質儲量 47.9 億t,已開發的含油麵積 2123.77 km2,佔大慶市總面積的 41.59%。大慶市天然氣資源也較為豐富,天然氣地質儲量 548.22 億m3。
二、大慶市水土環境變化影響、狀態和後果分析及環境地質指標研究
綜觀大慶市水土環境惡化的各種相關因素,其主要成因為:大慶市地處松嫩平原腹地,地質環境脆弱;油田的開發、建設活動加劇了市區水質和土壤的污染,造成區域地下水位持續大幅下降,導致土地資源流失,土地利用結構發生變化等一系列水土環境問題。
(一)氣象
大氣降水情況表現為年際變化大、年內分配不均的特徵,並呈現夏季豐水、冬季枯水、春秋過渡的特點。夏季受東南季風的影響降水量豐沛,佔全年降水量的60%左右;冬季在乾冷東北風控制下降水稀少,僅佔全年的4%~6%,見表7-7、7-8。
表7-7 大慶市區代表站降水量系列豐枯評定表
表7-8 大慶市區主要代表站多年平均降水量分配表
對於潛水含水層,水位變化受降雨影響較大,豐水位出現在8~9月份,枯水期多出現在4~5月份,圖7-2是市區一潛水含水層地下水位與降雨量的關系曲線圖。
(二)水文地質
大慶市含水層主要由第四系林甸組、泰康組及第三系大安組、白堊系明水組構成。因含水層受古沉積環境影響,其結構特徵、埋藏條件、補給、徑流條件差異很大,各含水層富水性差別較為明顯,根據地下水含水層特徵及埋藏條件可將區域內地下水分為富水區、中等富水區、弱富水區和貧水區四個區域,以大慶長垣為界,將規劃區分為西部含水層系統及東部含水層系統,東部明水組缺失邊界以南為東南部含水層系統。
圖7-2 地下水位與降雨量的關系曲線
1.齊齊哈爾組潛水含水層
岩性為沖積和湖相沉積的細粉砂層。在低平原地區發育,岩性為黃土狀亞粘土、亞粘土、粉細砂,潛水含水層底板埋深一般在5.0~30.0 m之間。賦存孔隙潛水,含水層厚度2.50~8.50 m,水位埋深2.5~8.3 m,滲透系數0.6~3.2 m/d,單井涌水量<100 m3/d,水質類型為低礦化淡水-微鹹水。
2.大興屯組潛水含水層
岩性為沖積相沉積的地層。在區域高平原地區發育,岩性為黃土狀亞粘土、亞粘土、粉細砂,賦存孔隙潛水,含水層厚度0.50~5.50 m,水位埋深3.5~6.5 m 滲透系數0.8~2.5 m/d,單井涌水量<100 m3/d,水質類型為低礦化淡水-微鹹水。
3.林甸組承壓含水層
主要由河流相沉積細砂、砂礫石組成。除大慶長垣頂部缺失外,油田大部分地區都有分布,以油田西部發育最好。油田東部只有龍鳳—卧里屯一帶分布。在油田西部,埋深深度和厚度均自東向西,自南向北加深增厚,在前進水源以南地區逐漸變薄。厚度一般都在10.0 m以上,大部分地區都在20.0~60.0 m之間。少數在75~80 m之間。含水層顆粒粗大,分選較好,有效孔隙度大,透水性強,富水性較強。300 mm井管單井出水量為3615~5462 m3/d。林甸組含水層是規劃區主要開采層位之一,其原始靜水位埋深在3.0~10.0 m之間,目前,在降落漏斗范圍內,水位埋深在15~25.42 m之間。水質類型為低礦化度的重碳酸鈉型水。
4.泰康組承壓含水層
岩性主要是含礫細砂和含礫中粗砂,自上而下由細變粗,呈明顯河流相沉積。上部以中細砂和粉細砂為主,底部為厚層狀含礫中粗砂。含水層只分布於大慶油田的西側地區,與上覆第四系砂礫石層之間有一層分布不穩定的亞土、粘土和粉砂交互層,沉積發育比較穩定,厚度為5.0~20.0 m,且分布不穩定粘土或亞粘土互層相隔,沉積缺失而形成天然的「天窗」。通過弱透水層和「天窗」,使第四系林甸組含水層與該含水層相連通,水利聯系較為密切,可視為同一含水層系統。
5.第三系大安組孔隙承壓含水層
該含水層受沉積構造運動影響,分布不穩定,含水層較薄,厚度在3.0~8.0 m之間,含水層岩性為含礫砂岩,膠結鬆散,顆粒較細,孔隙較小,富水性略差。單井出水量為800~1000 m3/d。礦化度為240~660 mg/l,水質類型為重碳酸鈉型水。
6.白堊系明水組孔隙承壓含水層
又分為明水組二段承壓含水層和明水組一段承壓含水層。前者沉積時受構造運動影響,分布不穩定,多以透鏡體分布。含水層單層較多,一般2~10層。單層厚度在3.0~26.0 m之間,累計厚度在10.0~80.0 m之間,局部最厚可達100 m。含水層岩石顆粒較細,孔隙較小,富水性略差。單井出水量為430~1700 m3/d。礦化度為300~700 mg/l,水質類型為重碳酸鈉型水。後者與明水組二段含水層平面分布范圍基本一致,含水層沉積特徵受構造運動的影響很小,分布穩定性較好,特別是其上部含水層呈連續分布,沉積發育良好。含水層單層數較明水組二段少,一般為1~8個單層,單層厚度在3.0~29.0 m之間。含水層累計厚度為在5.0~55.0 m之間,局部地區最厚可達66.5 m。明水組一段含水層發育較為穩定、厚度為20 m左右,灰黑色泥質砂岩,砂岩分為上下兩部分。其中上部發育良好,單層厚度較大,區域分布十分穩定,岩石顆粒較粗,有效孔隙度較大,富水性較強。而下部則發育較差,分布也不穩定,在三肇凹陷東部,發育相對較好。在龍鳳、東水源地區,該含水層在油田開發初期可噴出地面10餘m。目前,漏斗范圍內最大降深在地面以下50 m。單井開采量為400~1000 m3/d,礦化度為300~800 mg/l,總硬度為96~500 mg/l(以CaCO3計)。
(三)地表水質
地表水是大慶市水資源的重要組成部分。大慶市的地面水體主要由江河、「三引水系」、自然泡沼、人工湖庫和排水渠系共五部分組成。由於大慶以石油開采和石油化工為主體產業結構特點,結合大慶地區地表水體中的主要超標項目,選擇了DO、COD、BOD5、揮發酚、CN-、石油類、總砷、六價鉻、總鎘、氨氮10個為地表水環境質量評價因子。
江河:由表7-9可見,區內松嫩兩江,僅在中部引嫩乾渠渠首及肇源站段為Ⅲ類地表水體,其他站段為Ⅳ級水體。江水的環境質量主要受到沿途納污及江水自凈條件的影響。從北部拉哈站段水體為4.6級,到中部引水渠首江水由於自凈作用綜合級數變為3.60級,至江橋站段由於途中接納了齊齊哈爾市的污水排放使江水綜合級數上升到4.14級。至古恰,松花江接納庫里泡4.87級的排水後江水由4.10級上升為4.69級。各斷面環境監測資料統計表明,松嫩兩江主要超標項目是化學耗氧量、生化需氧量、石油類物質。烏裕爾河和雙陽河因受其上游各縣污水排放的影響,水質較差。其綜合級數分別為5.79和5.38級。屬Ⅴ類地表水體。主要超標項目有化學耗氧量、生化耗氧量和石油類物質。
引水系統:中部引嫩乾渠和北部引嫩總乾渠質量分別為Ⅲ級(3.67級)和Ⅳ級(4.6級)。大慶水庫和紅旗水庫為Ⅲ級地表水體。綜合級數分別是3.31級和3.9級。據不同水期的監測資料分析,大慶水庫枯、平、豐水期綜合級數變化明顯,主要表現為枯水期水質最差,豐水期水質較好,可達Ⅱ類地表水標准。
排水渠:安肇新河和西部排水乾渠為大慶市排水主幹系統,並匯合於大同,而後注入庫里泡。排水系統承泄大慶市的城市污水和工業廢水。安肇新河源於王花泡滯洪區,與東排干,中央排乾和興隆排干構成東部排水系統並串聯於中內泡。主要接納薩爾圖區、龍鳳區和紅崗區及大同區的部分污水。水質較差。綜合級數顯示,東排干為4.93級,中央排干為5.84級,安肇新河為5.44級。西部排水總乾渠北起大慶水庫,南到民榮泡南端入安肇新河,全103.4km。設計流量10m3/s。具有油田排水,工業排水、農田灌溉等功能。西部排水乾渠北部水質較好,基本符合Ⅲ級地表水體標准,其間串聯於啞葫蘆泡,東卡梁泡和八百垧泡後,接受了讓胡路區、紅崗區和大同區的污水排入,幾個斷面的綜合級數都在5.8級以上,污染較為嚴重。
湖泡:大慶地區湖泊眾多,是地表水環境系統的重要組成部分,多數湖泊具有納污功能,城市污水、工業廢水、地表徑流是這些湖泡的主要補給,有的湖泊也有來自地下水潛水的補給,如蓮環湖等,使這些湖泊終年不幹,得以存在,湖泊是污水的匯集地,也是區內污染最為嚴重的區域。據斷面監測,串聯於安肇新河的中內泡1998年豐水期綜合級數為8.06級,枯水期竟高達15.44級。大慶市與水環境密切相關的二十幾個湖泡,除王花泡、八百垧泡、蓮環湖、庫里泡為Ⅳ級地表水體外,其餘皆為Ⅴ級水體或超Ⅴ級水體。其中污染最為嚴重的是:老豬泡、中內泡、周瞎子泡、民榮泡、陳家大院泡。
表7-9 大慶市地表水體質量評價結果表
綜上所述,大慶地區地表水體的污染以化學耗氧量、生化需氧量、石油類、有機污染為主,其次為總氮和總磷超標元素。地表水體污染的主要原因是城市生活污水和工業廢水的排入造成的。其次地表徑流水質也是影響湖泊、河流水質的一個重要方面。
(四)地下水水質
大慶油田自開發以來,就以地下水作為主要的供水水源,由於地下水的大量開采,在開采區形成大面積水位降落漏斗,漏斗中心位於前進水源地附近,而且隨著開采量不斷增加,漏斗中心水位降落也相應增大,在許多水源地,如前進水源、齊家水源、讓胡路水源、喇嘛甸水源、紅衛星水源等水源地的水化學成分發生了變化,地下水的、硬度、Fe和Mn均有升高的趨勢。主要化學成分的情況如下:
1.Cl-離子
大慶市地下水中氯離子含量較低,大部分為Ⅰ級水,小於地下水環境質量標准規定的Ⅰ級水(50mg/L)。Ⅱ級水分布在齊家水源、喇化水源、西水源喇嘛甸水源一帶。
2離子
大慶市地下水中硫酸根含量大部分較低,為Ⅰ級水,低於地下水環境質量標准規定的50mg/l。Ⅱ級水分布在杏二水源、南二水源,龍鳳水源等地。Ⅲ級水主要分布在齊家水源地、西水源和讓湖路水源地。只在喇化、西水源、喇嘛甸水源的個別井點達到Ⅳ級和Ⅴ級水。
3.Fe離子
大慶市地下水中鐵離子的含量普遍較高,多數井點達到了Ⅳ級和Ⅴ級,即超過飲用水水質標准(0.3mg/l)。鐵的分布基本分成三個區,西部地下水中鐵含量較高,為Ⅴ級水,中部鐵含量主要為Ⅳ級水,而東部地下水中鐵含量相對較低,其中北水源、東水源、龍鳳水源至農牧廠一帶的地下水中鐵含量較低,為Ⅰ級水,是白堊系明水組含水層。紅衛星水源、喇嘛甸水源中部分井點及大同等地的地下水為Ⅳ級水,西部地區鐵含量普遍較高。
4.Mn離子
根據錳含量的高低,可將大慶市地下水分為東西兩個區。西區錳含量較高,多數為Ⅳ級水,個別地方為Ⅰ級水,如林甸的慶豐等地;而東部地區地下水中錳含量較低,大多為Ⅰ級水,如北水源、東水源、龍鳳水源至農牧廠一帶的明水組含水層,長垣西側的西水源、紅衛星水源、南水源、南二水源、前進水源等水源地部分井點為Ⅰ級水。
5離子
大慶市地下水中硝酸根含量大部分為Ⅰ級水,小於2mg/l。
6.F-離子
氟離子含量基本分為兩個區,西部地區含水層中含量較低,大部分為Ⅰ級水,包括綠色草原、胡吉吐莫、古龍、新肇、古恰等地,林源、新華、大興和肇源等地也為Ⅰ級水,而東部一些地區氟含量較高,為Ⅳ級水甚至Ⅴ級水。
7.TDS
大慶市地下水中溶解性總固體含量低的Ⅰ級水(<300mg/l)主要分布在明水組的慶賓館、九廠深、一廠作業一帶及肇源的個別地區,如源3。西部地區主要為Ⅱ級水,即TDS介於300~500mg/l。Ⅲ級水主要分布大同及杏二水源等地。只是在個別地方為Ⅳ級或Ⅴ級水,如喇化水源地、喇嘛甸水源地等。
8.硬度
大慶市西部地區地下水硬度含量介於150~350mg/l,為Ⅱ級水。
(五)地下水位
大慶市區是地下水開採的集中區域,由於大慶市無江無河缺乏地表水資源,開發初期主要以開發地下水作為主要的供水水源。在集中開采區先後建立地下水水源46座,經過40多年的開采,已形成東西兩個降漏漏斗。
西部漏斗區:主要開采目的層為第四系林甸組和第四系泰康組含水層,先後建成地下水水源地26座,由於集中開采形成南北長約104 km,寬40 km的降落漏斗,漏斗影響面積為4000 km2,從動態分析可以發現,水量和水位呈直線的相關,漏斗的分布直接受地下水開采量控制,漏斗中心水位已經由最初的地面以下9 m,下降至現在的45.6 m,平均每年下降0.96 m(圖7-3、表7-10)。開采區在1972年開采量達約1.0億m3時,地下水位埋深19.62 m,使地下水位下降9~14 m,地下水降落漏斗開始擴大,從1972年起開采量逐年增加,到1976年開采量達1.48億 m3,降落漏斗影響面積2500 km2,開采強度達5920m3/km2·年,漏斗中心水位埋深達29.50 m,此時降漏斗迅速發展面積擴大,1986年地下水開采2.0億m3,漏斗中心水位埋深達34.24 m,從1986~1988年之間,開采量減少,到1988年開采量為1.7億 m3,漏斗中心水位相應有所回升,漏斗中心水位埋深33.28 m,1989年以後地下水開采量逐年增加,漏斗水位又隨之下降,到1996年達2.4億m3,水位埋深為45.6 m,水位總下降約30 m,1997年地下水開采量為2.3億m3,形成北起林甸花園鄉,南到採油七廠,西起新店,東到大慶長垣西側,漏斗中心位於獨立屯水源及相鄰地區降落漏斗,漏斗面積4000 km2,開采強度達6.57×103 m3/km2·年。
東部漏斗區:地下水主要開采目的層為明水組白堊系含水層,有集中開采水源10座,開采區1970年上開采量達0.28億m3,地下水位埋深25.00 m,地下水降落漏斗擴大,到1984年開采量達0.32億m3,漏斗中心水位達33.50m,1984年以後逐年增加開采量,1992年開采量達0.38億m3,漏斗中心水位持續下降為42 m,到1997年水位下降到53.4m,開采強度達6.51萬m3/km2·年,形成了北起青龍山奶牛場,南到安達畜牧農場,東起安達中本鄉,西至缺乏邊界的長約50 km,東西寬30 km的降落漏斗1560 km2,見圖7-4、表7-11。
圖7-3 西部開采區開采量與水位變化的關系
表7-10 西部漏斗區水源井開采量與水位的變化關系統計表
圖7-4 東部開采區開采量與水位變化的關系
表7-11 東部漏斗區水源井開采量與水位的變化關系統計表
(六)土地利用結構
2001 年大慶市區耕地面積 2042.16 km2,占總土地面積的 39.96%,牧草地面積 1486.97km2,占總土地面積的 29.10%,水域面積 431.96 km2,占總土地面積的 8.45%,建設用地 400.86km2,占總土地面積的 7.84%,未利用地733.34 km2,占總土地面積的 14.35%。與 1990 年相比(表7-12),11年期間耕地面積凈增 285.1 km2,年增長率 1.48%,牧草地面積減少 85.39 km2,平均每年遞減 0.49%,水域面積減少 51.54 km2,年遞減率 0.96%,建設用地增加 105.82 km2,年增長率 3.26%,未利用地減少 258.56 km2,平均每年遞減2.37%。1979年到1990 年期間,耕地增加 314.61km2,平均年增長 1.98%,牧草地減少 933.37km2,平均每年以 3.10%的速度減少,水域面積增加78.94 km2,年均增長 1.63%,建設用地增加 149.98 km2,年均增長 8.62%,未利用地增加 398.98 km2,年均增加 5.61%。其中各區1990、2001年土地利用情況見表7-13、表7-14。
表7-12 大慶市區土地利用類型統計表
表7-13 大慶市區1990年各區土地利用類型統計表
表7-14 大慶市區2001年各區土地利用類型統計表
1979 到 1990 年的 11 年期間研究區耕地主要去向是轉化為草地、居民點和未利用地,同時大量的草地轉變為耕地、水域、居民點和未利用地,未利用地一少部分轉變為居民點和耕地,大部分變成草地和水域用地。土地利用類型復雜的轉換過程,說明這一時期區域土地利用十分劇烈,人類的干擾活動是強烈而持續的。主要是由於大慶油田正處於中興鼎盛時期,一方面要保證產量,油井不斷加密,佔用了大量的耕地、草地,被佔用的土地建了油井和輸油管線以後不能再耕種和放牧形成了大面積的未利用地。另一方面大量人口的遷入和人口的自然增長使得城市建設的步伐不斷加快,油田佔用土地以後,剩餘的草地或被城市用地佔用,或者被開墾成耕地。而水域面積的增加主要是來自於草地和未利用地,則可能是由於氣候條件適宜,降水量增加導致地勢低窪處形成季節性積水的原因。居民點和建設用地主要轉變為草地和未利用地,主要原因是在油田區內建造的臨時居民點搬遷出油田。
1990 年到 2001 年期間,土地利用類型的相互轉化,主要表現為:草地面積因開墾耕地和城市建設佔用繼續減少,耕地面積繼續增加,城市建設用地增加,20世紀80年代形成的未利用地有一部分轉化為天然草地,大面積的天然水域萎縮變為未利用地,這與20世紀90 年代大慶氣候逐漸變干有著密切的關系。
(七)土壤質量
大慶市及周邊地區的土壤中,石油烴均值含量達78.01 mg/kg(背景值為48.36mg/kg),污染率為60%;揮發酚均值0.048 mg/kg(背景值為0.032mg/kg),污染率為48%;總鉛均值為24.34mg/kg(背景值為15.42mg/kg),污染率為43%;硫化物均值為0.13mg/kg(背景值為0.07mg/kg),污染率25%。上述資料明顯反映了大慶及周邊地區的土壤已遭受不同程度的污染。雖然石油類污染物在土壤中經3~5a即可降解;但這些物質可通過食物鏈進入人畜體內,從而危害人體健康。這些污染物來源於油田開發區和石油化工區的鑽井及輸油管線冒漏、井噴漏;石油化工廠的泄漏及廢氣廢液的排放和原材料堆放等;另外石油鑽井的廢液泥漿也是土壤污染的一個重要因素。每口井產生的廢液約60~80m3,20世紀80年代以前全部就地掩埋;以後2萬多口井液按80%回收,剩餘140萬m3井液就地掩埋。這些井液毒性大,顆粒小,呈黏稠狀,對土壤構成了嚴重威脅。
(八)水資源衰減
大慶全市地表水域面積42萬hm2,地下水可開采量每年為9.6億m3。由於採油過程中過量開采地下水,造成區域地下水位下降,在大慶長垣附近已經產生兩個區域性水位下降漏斗,漏斗面積分別為:4500 m2、1600 m2(包括林甸、杜蒙、安達部分),中心水位下降分別為36.00 m、44.00 m。由於漏斗范圍內承壓含水層壓力較小,可能導致地面沉降和地面塌陷。據不完全統計,自20世紀70年代開始,大慶市地下水水位年均下降16~19m。至2005年底,西部地區地下水水位埋深達48173m,而原始靜水位埋深僅210~1010m。
(九)土地退化
大慶市土地沙化、鹽鹼化及草原「三化」問題突出。據大慶市人大常委會數據,全市2.12萬km2土地,荒漠化土地面積已達8279 km2,占土地總面積的47%。由於土地沙化和鹽鹼化,使土壤黑土層變薄,有機質含量降低。據調查,大慶墾前黑土層厚度為40cm,墾後黑土層厚度僅為15~20cm。大慶現有1034萬畝草原,由於連年乾旱,載畜量過大,原生土壤高含鹼性,「三化」面積已達810萬畝,占總面積的78%。
(十)水文
濕地面積萎縮問題顯現。據黑龍江日報2006年報道,大慶市擁有濕地120萬公頃,佔全國已知濕地總面積的3.12%,接近1/30。大慶濕地發育的環境基礎為流速緩慢的河溪、淡水湖泊及相鄰的沼澤地,濕地類型屬河流及河漫灘沼澤濕地、湖泊及周邊沼澤濕地、草甸沼澤濕地。其中沼澤、葦地等 14.43 萬畝,水域 41.87萬畝。主要分布在肇源縣、杜蒙縣、林甸縣和市區。由於油田的深度開發,油田范圍不斷向外延伸,大量的濕地被開發利用。隨著石油化工的發展,污染排放物加劇,「落地油」及鑽井過程中產生化學泥漿和洗井廢水使得許多濕地變成了泥漿地、排污地、廢水排放池等。土壤、植被及濕地水體的大面積污染。
(十一)水土環境污染
大慶是我國著名的油都,在貢獻高額利潤的同時,也對當地水土環境產生了極大的破壞。最為突出的表現就是水土環境污染。2004年度,大慶市排放廢水12414.0萬t,其中工業廢水7799.04萬t,生活污水4615萬t。工業廢水中主要的污染物有COD、BOD5、SS、氨氮、石油類、硫化物、揮發酚、CN、砷、六價鉻、鉛等。由於境內無江無河,除每年約7000萬t的污水經凈化處理重新利用外,其餘全部排入地表泡沼中,致使分布於大慶市境內大部分納污泡沼皆為V級水或劣V級水。另外,對納污泡渠一定范圍內淺層地下水樣的檢測發現,色度、濁度、總硬度、鐵、錳、氟化物、高錳酸鹽指數、溶解性總固體超標。其中,鐵、錳、氟化物超標反映受原生地質環境影響。而色度、濁度、總硬度和高錳酸鹽指數超標,表明受人為活動所致。
水體受到污染的同時,土壤污染也不容小覷。油田石油化工區、石油開發區土壤污染比較嚴重,污染物排量大、濃度高、毒性強,且在土壤中存留時間長,難於降解,並能通過食物鏈在人體內蓄積而影響人體健康。污染來源主要有鑽井泥漿、鑽井岩屑及石油開采過程中的落地原油。1995年,區域土壤污染調查時發現,主要的污染物為石油總烴、酚類和硫化物及重金屬元素鉛、銅等。2005年,重點對石油開發區內的土壤中(面積196km2)重金屬元素展開調查,發現污染程度呈增加趨勢。
❷ 一般土壤中石油類含量
石油化工區的沒做過,但是今天做了一個農田的土壤樣品。含量大概是12mg/kg
❸ 石油污染防治問題
石油經濟目前是生態經濟區內的主體經濟,石油工業也是造成區內水土體污染的主要因素,採油與煉化兩大部門是最主要的工業污染行業。揮發酚、石油類和化學需氧量是工業廢水中的主要污染物。
水體的污染主要是石油工業廢水的排放。區內的挑河、神仙溝、支脈河、廣利河、溢洪河、小清河、渤海灣7個主要水系的11條河流是主要的納污水系,土壤污染源由鑽井污染、採油污染及採油廢水污染三部分構成。在試油、修井、洗井過程中進入土壤環境及油井噴溢、管道泄漏等落地之原油,是油氣田開發建設造成土壤污染的主要污染物。
根據前面的敘述,揮發酚是區內地表水體第一位污染物,其餘依次是石油類、化學需氧量。從地面分析資料看,各河流主要污染物是化學需氧量、石油類。但實際上揮發酚雖然由排污口外排是含量很高,但進入地面水後,由於稀釋揮發物化等作用,在較短一段流程中削減較大,從而達到地面水國家標准。故應該把化學需氧量、石油類定為地面水控制的污染物。因此治理時主要應該以這兩項目標,削減化學需氧量和石油類的排放量。
自1986年以來,油田淺海海水污染有所加重,污染區域也有擴大的趨勢,神仙溝口及廣利河口的潮間帶污染較嚴重。因盡快採取措施控制入海河流及排澇站的水質,防止淺海海水的進一步惡化。
局部地區淺層地下水污染元素含量超過家飲用水標准。據監測,主要污染物是大腸菌群、細菌總數、石油類、COD和氨氮,其中以大腸菌群、石油類和總磷最為嚴重。污染嚴重的地區主要分布在排污河道沿岸、城鎮和工業集中區,其他地區污染輕微。控制污染的根本途徑還是減少企業的排污量。
區內土壤污染較大的地區為東營市東側和南側一帶、濱州北側、河口西側、北側一帶,均達到輕度污染程度,污染面積約佔全區24%。石油類是最大的污染指標,嚴重污染區域土壤含油量達40mg/kg以上,一般污染區域土壤含油量為20mg/kg左右,輕度污染區域土壤含油量為10mg/kg左右,而非污染區域土壤含油量為0.04mg/kg左右。從污染的深度上看,落地原油的70%~90%處於0~40cm的土壤深度上。
各項工業生產應按常規把其生產過程的污染物排放嚴格控制在國家規定的標准之內,採用無污染或少污染的生產工藝,並把污染控制逐步從未治理、或治理不達標為主轉到污染過程與生產全過程式控制制。首先選擇一批具有代表性的石油化工企業特別是污染大戶,大力改進工藝、設備和生產操作技術,把工業「三廢」最大限度地消除在生產過程中,加強對「三廢」研究,實現「三廢」資源化,實現清潔生產,最終實現以點帶面,推動整個石油化工行業的清潔生產。
❹ 落地油水土污染
一、地表水污染
1.污染現狀
本區除黃河輕度污染外,六干排溝、東營河、廣利河、廣蒲溝、五干排、淄脈溝、小清河等河渠均遭到了重度—嚴重污染(照片13-9~13-14),水質渾濁,顏色灰黑或灰紫色,石油類、酚、氰,以及砷、汞、鎘、鉛、六價鉻等五毒成分均有檢出,石油類含量0.34~2.896mg/L,均超標(表13-10)。
照片13-9 六干排支溝
照片13-10 東營河
照片13-11 廣利河
照片13-12 老廣蒲溝
照片13-13 五干排
照片13-14 小清河
表13-10 地表水質污染一覽表
以上污染河渠除黃河外,均接受來自區內的煉油廠、各類石油化工企業和境內石油開采等的污廢水排放污染。
2.污染評價
根據地表水污染調查狀況,選取石油類、酚類(C6H6OH)、氰化物(CN-)、鎘(Cd)、鉛(Pb)、砷(As)、汞(Hg)、六價鉻(Cr6+)等8項地表水污染因子,採用地下水污染綜合指數法(Pu)進行評價:
山東省地質環境問題研究
式中:Co為某污染因子背景值(mg/L);Ci為某污染物實測濃度(mg/L);n為評價因子項數。
污染因子背景值採用GB3838—2002《地表水環境質量標准》中的適用於各種用途的Ⅲ類水標准值(表13-11)。
表13-11 地表水污染因子背景值一覽表
按五級標准評價,評價分級標准見表13-12。
表13-12 地表水污染程度評價分級標准
全區9條河渠中主要污染物為石油類,個別河渠有酚類和鉛超標(表13-12)。黃河超標組分為石油類、酚、鉛,評價級別為Ⅱ級,輕度污染;永豐河起於墾利縣城,向東流入海,已成為小型排污河渠,超標組分為石油類、酚、鉛,評價級別為Ⅴ級,嚴重污染;溢洪河從墾利城南主要油區穿過,是東營城區北部石化企業和勝利油田重要排污河渠,超標組分為石油類、酚,評價級別為Ⅳ~Ⅴ級,重度—嚴重污染;六干排溝是東營市和墾利縣的分界河渠,也是東營城區北部石化企業和勝利油田重要排污河渠,超標組分為石油類,評價級別為Ⅴ級,嚴重污染;廣利河、廣蒲溝、五干排起源於東營市西部,流經勝坨油田、新村油田、東辛油田、史南油田、現河油田、牛庄油田和東營市區,是東營市城區和勝利油田的重要排污河道,主要超標組分為石油類,評價級別為Ⅳ~Ⅴ級,重度—嚴重污染;支脈溝和小清河起源於區外,除接受上游城鎮污廢水排放外,流經黃河三角洲南部區內、外油田區,主要超標組分為石油類,評價級別為Ⅴ級,嚴重污染。
另外,在有新的污染源不斷加入的情況下,下游污染較上游為重(溢洪河、淄脈溝);而少有新的污染源加入的情況下,河渠自身對污染組分具有一定的自凈能力(黃河、五干排)。
二、地下水污染
(一)淺層地下水污染
1.區域淺層地下水污染
落地油、滲漏油等通過土壤,在自然降水、灌溉的作用下,下滲形成對地下水污染。同時,區內的污染河流滲漏也是引起淺層地下水污染的重要原因。在全區14個地點採取的地下水污染分析樣品,石油類、酚(C6H6OH)、氰(CN-),以及鎘(Cd)、鉛(Pb)、砷(As)、汞(Hg)、六價鉻(Cr6+)等均有檢出,檢出率100%。地下水污染以石油類為主,個別樣品點砷(As)超標。石油類檢出含量范圍0.01~0.69mg/L,平均值0.11mg/L,超標9件,超標率達60%;其他組分除砷有個別點超標外,均未超標(表13-13)。
表13-13 淺層地下水水質污染現狀一覽表
2.油井對地下水污染
在墾利縣勝坨鎮東北和東營市史口鎮呂家南選擇了兩處典型油井剖面,進行了油井對地下水污染調查。通過調查分析,油井落地油等對地下水的污染具有較為明顯的規律。油井近處地下水中污染組分石油類含量較高,隨著遠離污染源,含量漸低(表13-14)。
表13-14 油井對地下水污染剖面一覽表
注:單位為mg·L-1。
3.淺層地下水動態污染
淺層地下水污染動態的變化,與所在位置有著巨大的關系。在油井周圍附近地下水污染動態受土壤污染的影響較大。由於土壤對石油和重金屬等具有較強的吸附能力,因此,土壤中污染組分含量普遍高於地下水中相應離子含量3~4個數量級。在大氣降水淋濾作用下,土壤中的污染組分向淺層地下水中運移,無論是石油類,還是重金屬離子,雨季在地下水中的含量呈上升趨勢(表13-15)。
表13-15 淺層地下水污染物含量動態對比表
注:收集地下水動態觀測資料。
在遠離油井的區域內地下水污染動態與油井周圍附近地下水污染動態恰恰相反,由於土壤中的污染物質相對較低,雨季地下水得到大量的補給,污染物質被淡化,地下水中的含量相對降低。
(二)污染評價
根據區內地下水開發利用和污染現狀,結合已有背景資料,選擇了石油類、酚類(C6H6OH)、氰(CN-)、砷(As)、汞(Hg)、鎘(Cd)、六價鉻(Cr6+)、鉛(Pb)等8項評價因子。採用污染綜合指數法(Pu)進行評價。評價計算公式見(式13-5)。
污染因子濃度背景值採用GB/T14848—93《地下水質量標准》中的適用於各種用途的Ⅱ類水標准值(表13-16)。按五級標准評價,評價分級標准見表13-13。
表13-16 地下水污染因子背景值一覽表
注:石油類背景值參照地表水離子背景值確定,單位為mg·L-1。
本區地下水主要污染組分為石油類。全區從Ⅰ級未污染水到Ⅴ級嚴重污染水均有(表13-13)。從區域上看,淺層地下水污染主要集中分布於調查區中西部區域(圖13-8),分布面積約1976km2,佔52%;其中:地下水污染北部以勝坨油田、史口和現河油田為中心,南部以廣饒石村小清河為中心,形成了3個重度(Ⅳ)—嚴重(Ⅴ)污染地段,污染面積418km2,佔11%;3個污染中心外圍為中度(Ⅲ)污染區,污染面積1216km2,佔32%;在中度污染與未污染的交接地帶為輕度污染帶,面積342km2,佔9%。北部沿黃地帶和東部瀕海地帶,總面積約1824km2,油田分布較少,淺層地下水沒有明顯的污染。
圖13-8 淺層地下水污染現狀評價圖(2005年10月)
三、土壤污染
1.區域土壤污染現狀
本區主要分布有勝利、東辛和現河3個採油廠,勝坨、寧海、東辛、永安、廣利、新立村、現河庄、郝家、王家崗、牛庄、史南、樂安等12個油田4700多口油井,油井在鑽鑿過程中對周圍土壤的污染、石油開采過程中形成的落地油、輸油管路的滲漏等,是土壤污染的主要途徑。土壤石油污染以點狀和斑狀污染為特點。以油井為中心,大致在半徑40~50m的范圍,面積6000m2左右。
全區採取的淺層(0.2~0.3m)土壤樣品20組(件),深層(0.6~1.0m)土壤樣品15組(件),石油類及重金屬等均有檢出。
淺層土壤石油類量檢出范圍1.38~17450mg/kg,平均值175.45mg/kg;鉛檢出范圍9.59~313.10mg/kg,平均值22.38mg/kg;鎘檢出范圍0.088~0.19mg/kg,平均值0.11mg/kg;鉻檢出范圍0.03~0.10mg/kg,平均值0.06mg/kg;砷檢出范圍8.40~25.00mg/kg,平均值13.04mg/kg;汞檢出范圍0.00944~0.06627mg/kg,平均值0.02345mg/kg(表13-17)。
表13-17 淺層土壤污染現狀一覽表
深層土壤石油類量檢出范圍2.60~38.00mg/kg,平均值14.47mg/kg;鉛(Pb)檢出范圍14.70~33.00mg/kg,平均值19.55mg/kg;鎘(Cd)檢出范圍0.073~0.127mg/kg,平均值0.099mg/kg;鉻(Cr)檢出范圍0.032~0.136mg/kg,平均值0.06mg/kg;砷(As)檢出范圍7.47~14.52mg/kg,平均值10.94mg/kg;汞(Hg)檢出范圍0.00377~0.024mg/kg,平均值0.0158mg/kg(表13-18)。
2.油井剖面污染特徵
為研究油井對土壤的污染狀況,在調查區黃河南、北主要石油開采區,選擇了2處(Yp1、Yp2)典型油井進行了油井土壤污染剖面調查。以油井為中心,按照0.20m、0.50m、1.5m的調查深度,以及距油井5.00m、20.00m、40.00m的調查距離,在調查半徑40~50m范圍內進行了調查取樣。分析檢測結果見表13-19。
表13-18 深層土壤污染現狀及評價一覽表
表13-19 油井剖面污染數據一覽表
根據土壤污染資料分析,重金屬組分含量無論是縱向還是垂向上沒有明顯的變化,而且與調查區的重金屬組分數據基本一致,進一步說明在石油開采區沒有明顯的重金屬污染。石油類組分含量具有明顯的變化規律,以油井為中心,由近而遠、由淺入深石油組分含量逐漸減少(圖13-9)。這種變化規律淺層和近油井地帶尤為明顯,到40m遠處石油類組分含量深淺變化不大,說明油井落地油污染范圍半徑已達到40m。
3.土壤污染動態
土壤中的石油和重金屬離子,隨著時間的變化具有明顯的規律性。利用經過1個雨季的不同時間和地點的土壤污染動態數據對比分析,在大氣降水淋濾作用下,不同深度的土壤污染物質均有不同程度的降低,以石油類組分尤為明顯(表13-20)。
圖13-9 油井污染剖面曲線圖
表13-20 淺層地下水污染物含量動態對比表
❺ 水質標準的石油類是包括什麼
礦物油類化學物質,是各種烴類的混合物。石油類可以溶解態、乳化態和分散態存在於廢水中。石油類進入水環境後,其含量超過0.1~0.4mg/L,即可在水面形成油膜,影響水體的復氧過程,造成水體缺氧,危害水生物的生活和有機污染物的好氧降解。
水體油類污染是海洋污染中最普遍、最嚴重的污染。石油是一種很復雜的自然的有機混合物,具有一定毒性。在極微量濃度下也可使魚肉帶有石油味。大量石油在海面形成油膜,會影響水中氧的補充和植物的光合作用。油污染會對自然環境產生多種復雜的影響。工業廢水中的油類也可使地表水體遭受污染。
(5)土壤中石油類的含量一般為多少擴展閱讀:
一、主要來源
油類通過不同途徑進入水體環境形成含油污水. 含油污水是一種量大、面廣且危害嚴重的污水. 全世界每年有500 ~ 1 000 萬T石油通過各種途徑進入水體。按其來源可分為:自然來源( 約佔8%) 和人類活動來源( 約92%) 。
自然來源主要海底、大陸架滲漏,含油沉積岩缺損等。人類活動來源主要有油輪事故和海上石油開採的泄漏與井噴事故,港口和船舶的作業含油污水排放、石油工業的廢水及餐飲業、食品加工業、洗車業排放的含油廢水等。
二、油類污染物對漁業的影響
石油污染破壞水體環境給漁業帶來的損害是多方面的。首先是石油污染能破壞漁場,沾污魚網、養殖器材和漁獲物,水體污染可直接引起魚類死亡,造成漁獲量的直接減產。
其次表現為產值損失,油污染能使魚蝦類生物產生特殊的氣味和味道,而且這些氣味和味道無論採取怎樣的加工方法都無法消除,因此可降低水產品的食用價值,嚴重影響其經濟利用價值。當海水中的石油含量為0.01 mg/L 時,在24 h內即可使魚、蝦、貝類產生異味。
人們在食用受石油烴衍生出的致癌物質特別是多環芳烴污染的水產品時,這些致癌物質可通過食物鏈的傳遞危及人體的健康和安全。另外,水體石油污染還會造成相當大的社會和經濟損失,如影響到旅遊和娛樂。
❻ 土壤中總石油烴中的碳10到40
石油烴:石油中的烴類化合物,烴類即碳氫化合物,在石油中占絕大部分,約幾萬種,沒有明顯的總體特徵,主要由烴組成,且各種烴類的結構和所佔比例相差很大。石油類:礦物油類化學物質,是各種烴類的混合物。石油類可以溶解態、乳化態和分散態存在於廢水中。石油烴=石油烴類化合物總稱,石油類=各種烴類的混合物,接近相等,估計是不同行業不同叫法而已
❼ 地下水中總石油烴含有多少算是標准
截止到目前,相關的標准一直在更新中。
其中地下水質量直接相關的標准有一項——地下水質量標准。目前頒布的最新的GB/T 14848-2017 地下水質量標准中,無總石油烴TPH項,因此無法直接引用。
目前的通用做法是參考下列標准:
① GB 3838—2002 地表水環境質量標准中,有石油類標准值(分為1到5五類,分別為0.05、0.05、0.05、0.5、1.0 ,單位:mg/L);
I 類 主要適用於源頭水、國家自然保護區;
Ⅱ類 主要適用於集中式生活飲用水地表水源地一級保護區、珍稀水生生物棲息地、魚蝦類
產卵場、仔稚幼魚的索餌場等;
Ⅲ類 主要適用於集中式生活飲用水地表水源地二級保護區、魚蝦類越冬場、洄遊通道、水
產養殖區等漁業水域及游泳區;
Ⅳ類 主要適用於一般工業用水區及人體非直接接觸的娛樂用水區;
Ⅴ類 主要適用於農業用水區及一般景觀要求水域。
② GB5749-2006 生活飲用水衛生標准中,有石油類標准限值為0.3mg/L。
在工業場地的地下水評價中,一般採用保守演算法,按照生活飲用水石油烴標准限值0.3mg/L來評價。
參考:
GB/T 14848-2017 地下水質量標准;
GB 3838—2002 地表水環境質量標准;
GB5749-2006 生活飲用水衛生標准。