當前位置:首頁 » 石油礦藏 » 什麼類型真菌可以降解石油
擴展閱讀
荷氏薄荷糖哪個公司產品 2024-04-16 20:55:39

什麼類型真菌可以降解石油

發布時間: 2022-07-05 10:49:20

『壹』 石油層中分離到的酵母菌的名稱及特徵

摘要 常見的降解石油的黴菌有麴黴屬、青黴屬,木酶屬,被孢霉屬等。酵母菌有假絲酵母屬、紅酵母屬、擲孢酵母屬、酵母屬。其中以假絲酵母應用最為廣泛,這是因為它所需要的營養要求不高,只需NH4+或NO3-等無機氮源存在,不需要其他生長素類物質

『貳』 有沒有哪種生物可以在自然狀態下降解石油

在二十一世紀能源是國民經濟建設的重要支柱。隨著工業的發展,人們對石油及其製品的需求日益增長,石油開采業由陸地走向海洋。石油的開采和海上運輸業的發展,使石油泄漏事故逐年增多,受污染的海域范圍不斷擴展。自1969年發生第一次超級油船失事以來,世界上已有超過40處大的海洋泄漏,據估計每年都有千萬公噸以上的石油污染世界海洋,對生物和生態環境造成了很大危害。石油污染問題引起了人們越來越多的關注,對之進行治理也成為了最迫切的事情。在治理中產生的生物降解方法的研究雖仍有很大爭論,但也已取得了一些成果。而且有種趨勢是天然微生物的生物降解作用已成為消除環境中石油烴類污染的主要機制。
一、生物降解是指由生物催化的復雜化合物的分解過程。而在石油降解中微生物首先通過自身的代謝產生分解酶,裂解重質的烴類和原油,降低石油的粘度,另外在其生長繁殖過程中,能產生諸如溶劑、酸類、氣體、表面活性劑和生物聚合物等有效化合物利於驅油,然後由其他的微生物進一步的氧化分解成為小分子而達到降解的目的。
二、海洋中最主要的降解細菌屬於:無色桿菌屬、不動桿菌屬、產鹼桿菌屬、節桿菌屬、芽孢桿菌屬、黃桿菌屬、棒桿菌屬、微桿菌屬、微球菌屬、假單胞菌屬以及放線菌屬、諾卡氏菌屬。在大多海洋環境中,上述這些細菌是主要降解菌,在真菌中,金色擔子菌屬、假絲酵母屬、紅酵母屬和擲孢酵母屬是最普遍的海洋石油烴降解菌。一些絲狀真菌如麴黴屬、毛霉屬、鐮刀霉屬和青黴屬也應被歸入海洋降解菌中。土壤中主要的降解菌除了上面提到的細菌種類外,還包括分枝桿菌屬以及大量絲狀真菌。麴黴屬和青黴屬某些種在海洋和土壤兩種環境中都有分布。木霉屬和被孢霉屬某些種是土壤降解菌。
三、治理石油污染關鍵是降解烴類化合物,根據烴類的化學結構特點,烴類的降解途徑主要可分兩部分:鏈烴的降解途徑和芳香烴的降解途徑。直鏈烷烴的降解方式主要有三種:末端氧化、亞末端氧化和ω氧化。此外,烷烴有時還可在脫氫酶作用下形成烯烴,再在雙鍵處形成醇進一步代謝。關於芳香烴的降解途徑,在好氧條件下先被轉化為兒茶酚或其衍生物,然後再進一步被降解。因此細菌和真菌降解的關鍵步驟是底物被氧化酶氧化的過程,此過程需要分子氧的參與。
具體機制如下:
1、正烷烴在正烷烴氧化酶作用下, 先轉化成羧酸而後靠β-氧化進行深入降解,形成二碳單位的短鏈脂肪酸和乙醯輔酶A,放出CO2。該正烷烴氧化酶是雙加氧酶,能催化正烷烴為正烷烴的氫過氧化物,該反應需O2 ,但不需NAD(P) H。烷烴也可先轉化為酮,但不是其主要代謝方式。多分枝的烯烴主要轉化成二羧酸再進行降解,甲基會影響解的進行。化學式如下:
2、環烷烴的降解需要兩種氧化酶的協同氧化,一種氧化酶先將其氧化為環醇,接著脫氫形成環酮,另一種氧化酶再氧化環酮,環斷開,之後深入降解。化學式如下:

3、芳香烴一般通過烴基化形成二醇, ,環斷開,鄰苯二酚繼而降解為三羧環的中間產物。真菌和微生物都能氧化從苯到苯並蒽范圍內的芳烴底物。起初細菌藉助加雙氧酶的催化作用把分子氧的兩個氧原子結合到底物中, 使芳烴氧化成具有順式構型的二氫二酚類。順式-2-二氫二酚類進一步氧化成兒茶酚類, 兒茶酚類在另一種催化芳環裂解的加雙氧酶的作用下進一步氧化裂解。與細菌相反,真菌則藉助於加單氧酶和環水解酶的催化作用, 把芳烴氧化成反式-2-二氫二酚類化合物。(下面以萘的降解為例子)真菌將石油烴類化合物降解成反式二醇,而細菌幾乎總是將之降解成順式二醇(許多反式二醇是潛在的致癌物,順式二醇則無毒性) 。化學式如下:
簡單總結成下表:
各類烴 具體的降解過程和產物
正烷烴 正烷烴→羧酸→二碳單位的短鏈脂肪酸+乙醯輔酶A+CO2。
烯烴 烯烴→二羧酸
環烷烴 環烷烴→環醇→環酮
芳香烴 芳香烴→二醇→鄰苯二酚→三羧環的中間產物
由上面可知道,微生物對一些難降解化學物的降解, 是通過一系列氧化酶的催化作用完成的。在自然界中這一過程通常是由多種微生物的協同作用來完成, 速度比較緩慢。為了擴大微生物降解底物的范圍, 提高降解效率, 以使這些難降解化學物徹底礦化, 應該可以利用天然降解性質粒的轉移構建新功能菌株。降解性質粒,是指一類編碼有降解某些化學代謝途徑的質粒。例如:美國Chak rabany 等為消除海上溢油污染, 曾將假單胞桿菌中不同菌株的CAM、OCT、XAL 和NAH 4 種降解性質粒接合轉移至一個菌株中,構建成一株能同時降解芳香烴、多環芳烴、萜烴和脂肪烴的「多質粒超級菌」。該菌能將天然菌要花一年以上才能消除的浮油,縮短為幾個小時。
四、在自然環境中,微生物對石油烴類降解與否以及快慢都是與其所處的環境密切相關。
1、液態的石油烴類在水中會形成水油界面,微生物正是在這一水油界面上降解烴類的,降解速率與水油界面的面積密切相關,能產生生物乳化劑的微生物正是乳化劑增大水油界面的面積而促進微生物對烴類的降解。
2、石油烴類的微生物降解可在很大的溫度范圍內發生,在0 ℃~70 ℃的環境中均發現有降解石油烴類的微生物。大多數微生物在常溫下較易降解石油烴類,且由於某些對微生物有毒害的低分子量石油烴類在低溫下難揮發,會對石油烴類的降解有一定的抑製作用,所以低溫下石油烴類較難降解。
3、大多數的石油烴類是在好氧條件下被降解的,這是因為許多烴類的降解需要加氧酶和分子氧。但也有一些烴類能在厭氧條件下被降解。
4、氮源和磷源經常成為微生物降解烴類的限制因子。在天然水體中,為了促進石油烴類的降解而添加水溶性的氮源和磷源也受到限制,因為有限添加的氮源和磷源在水體中被高倍稀釋而難以支持微生物的生長。
5、石油烴類的微生物降解一般處於中性pH值,極端的pH 值環境不利於微生物的生長。
它的效率和質量還取決於石油烴類化合物存在的數量、種類及狀態。例如Chaineau 等用微生物處理被石油烴污染的土壤, 270 d 後發現, 75%的原油被降解; 飽和烴中, 正構烷烴和支鏈烷烴在16 d 內幾乎全部降解; 22% 的環烷烴未被降解; 芳香烴有71% 被同化;占原油總重量10% 的瀝青質完全保留了下來。一般而言, 各類石油烴被微生物降解的相對能力如下: 飽和烴> 芳香烴> 膠質和瀝青。在飽和烴部分中, 直鏈烷烴最容易被降解; 在芳香烴部分中,二環和三環化合物較容易被降解,而含有5 個或更多環的那芳香烴難於被微生物所降解; 膠質和瀝青則極難被微生物所降解。
結語:盡管微生物可以降解石油,可是目前為止還沒有一種能在短時間內徹底降解石油的有效方法,所以在微生物降解石油方面的研究仍然任重而道遠。但是隨著現代微生物學和基因組計劃的更進一步發展,更多微生物物種的發現和生物技術的應用,石油污染問題將會得到更有效的解決!

參考文獻:《土壤和環境微生物學》 陳文新主編
《微生物降解有機污染物研究進展》 田雷 等.
《污染物生物降解》 金志剛 張彤 朱懷蘭

從石油污染的土壤和水體中富集、分離到12株高效石油降解菌,各單菌株的降油率為40.3%~57.6%,其中O-8-3、O-28-2和O-46菌可耐受40℃的溫度和1.5%的鹽度.經初步鑒定,這3株菌分別為假單胞菌(Pseudomonas sp.)、芽孢桿菌(Bacillus sp.)和不動桿菌(Acinetobacter sp.).與單一O-8-3菌株相比,O-8-3/O-28-2/O-46混合菌株對石油的降解率可提高20.1%,可耐受石油類初始質量濃度從2000 mg/L提高到5000 mg/L.通過在實驗室接種O-8-3/O-28-2/O-46混合菌株於生物反應器中處理勝利油田採油廢水的試驗結果表明,72 h內石油污染物的降解率達96.9%,比接種自然細菌群落的降解率提高了60.7%.

參考文獻:

〔1〕馬文臣,易紹金.石油開發中污水的環境危害.石油與天然氣化工,1997,6(2):125~127
〔2〕楊基先,馬放,張立秋.利用工程菌處理含油廢水的可行性研究.東北師大學報:自然科學版,2001,33(2):89~92
〔3〕Scholz W,Fuchs W.Treatment of Oil Contaminated Wastewater in a Membrane Bioreactor.Water Research,2000,34(14):3621~3629
〔4〕Tano-Debrah K,Fukuyama S,Otonari N,et al.An Inoculum for the Aerobic Treatment of Wastewaters with High Concentrations of Fats and Oils.Bioresource Technology,1999,69(2):133~139
〔5〕鄧述波,周撫生,余剛等.油田采出水的特性及處理技術.工業水處理,2000,20(7):10~12
〔6〕王振波,李發永,金有海.油田采出水技術處理現狀及展望.油氣田環境保護,2001,3:40~43
〔7〕東秀珠,蔡妙英,常見細菌系統鑒定手冊.北京:科學出版社,2001
〔8〕范秀容,李廣武,沈萍.微生物學實驗(第二版).北京:高等教育出版社,1989
〔9〕國家環保局<水和廢水監測分析方法>編寫組.水和廢水監測分析方法(第三版).北京:中國環境科學出版社,1998.372~374
〔10〕陳碧娥,劉祖同.湄州灣海洋細菌降解石油烴研究.石油學報,2001,17(3):31~35
〔11〕林鳳翱,於占國,李洪等.海洋絲狀真菌降解原油研究--石油烴降解的實驗室模擬.海洋學報,1997,19(6):68~76
〔12〕丁明宇,黃健,李永祺.海洋微生物降解石油的研究.環境科學學報,2001,21(1):85~88
〔13〕Lal B,Khanna S.Degradation of Crude Oil by Acinetobacter Calnoaceticus and Aicaligenes Odorans.J Appl Bacteriol,1996,81(4):355~362
〔14〕席淑琪,劉芳,吳迪.微生物對地表水中石油類污染物的降解研究.南京理工大學學報,1998,22(3):232~235
〔15〕李銘君,梁崇志,錢存柔.石油化工廢水的活性污泥中優勢微生物群系及其降解效能的研究.微生物學通報,1987,3:108~111
〔16〕管亞軍,梁鳳來,張心平等.混合菌群對石油的降解作用.南開大學學報(自然科學),2001,34(4):82~85
〔17〕馮樹,周櫻橋,張忠澤.微生物混合培養及其應用.微生物學通報,2001,28(3):92~95
〔18〕劉期松,齊恩山,張春桂等.石油污水灌區的微生物生態極其降解石油的研究.環境科學,1982,2(3):360~365

下面幾個地址你可以參考一下。
http://www.cls.zju.e.cn/basement/abs.htm
http://www.nsfc.gov.cn/nsfc/cen/00/kxb/dq/yjjz/03_d02_liguanghe.htm
http://210.46.127.249:85/~kjqk/swdyx/swdy2002/0202pdf/020211.pdf
http://dl2.lib.tongji.e.cn/wf/~kjqk/hjkx/hjkx2004/0405pdf/040529.pdf

『叄』 油田區環境微生態效應及優勢菌種的選擇

一、油田區的地質環境微生態效應

(一)石油開采對地質環境的影響

由於石油的開采和落地原油改變了原有地質環境中的生態系統,造成了非天然條件下生態系統中的生物演化與演替的較大波動。這些微生物的演替過程,即是石油污染產生各種微生物作用與地球化學作用的過程。特別是在水的參與下,微生物一方面可以對某些石油中有毒有害的物質進行分解和降解,但另一方面由於其分解得不徹底,易解析出或化合成對人類有害的甚至是有毒的物質,它們一旦逸出或隨水滲入地下或流入地表水體,均會對環境造成污染,對人類產生危害。

在石油的分解過程中,某些物質呈分子狀態被分離出來,或又產生了新的化合物,特別是在微生物地球化學作用下,使石油污染物周邊的介質環境和地質環境發生變化,如pH值和Eh值、土壤性質,隨污染物質的變化而改變,溫度也隨分解和化合中能量形式的轉換而上升。這些地質環境的變化,反過來又影響著各種作用的方向和進程,尤其是微生物的演替。因此,在落地原油及其周圍地質環境中,物質成分和微生物地球化學作用是非常復雜而又不斷地變化著,直至在該環境所限定的條件下,經過長期作用,而達到新的平衡。水是石油分解演化中不可缺少的物質,也是一切生命物質的主要組成部分。影響油田區的主要水體是大氣降水和淺層地下水,它們一同作為環境中的物質循環載體,一方面對石油污染物在微生物細菌作用下進行降解;另一方面又對地質環境造成污染並使其遷移擴散。由於微生物細菌的微小並可隨水的運移而遷移,在其遷移過程中通過其生命的代謝活動參與各種生物化學反應,在一定條件下,微生物代謝活動可以催化石油有機物的分解,從而能促進污染質形成小分子絡合物而遷移進入地下水。另一方面在微生物作用下,可使許多有機物得到轉化和降解。

土壤包氣帶土體是微生物細菌生活的大本營,也是污染物質進入環境的一個重要媒介和載體。許多污染物質在進入土壤包氣帶土體後被其以物理機械吸附、膠體物理化學吸附、化學沉澱等方式作用截留,使其在土體中含量不斷積累。雖然土體中的大量微生物可以轉化和降解許多的污染物質,但受自然地理條件和營養物質等環境因素的影響,以及石油開采仍有不斷的落地原油等污染物質,進入包氣帶及地下水中,使其石油污染物的量在不斷增加,這就造成污染范圍的不斷擴大,因此,石油開采區落地石油對環境的污染成為影響生態環境的主要因素。對調查區的地質環境和水環境要素的調查與現場測試表明,石油類污染物一般為褐黑色,大多為黑色。

調查區中地表水體:pH值為7.43~9.1,90%以上的取樣點大於8。Eh值在-338~101mV之間,一般較低。TDS含量為336~3990mg/L。溶解氧(DO)大多含量較低,為0.8~8.2mg/L(表6-1)。

表6-1 研究區地表水中pH值,Eh,DO,TDS及溫度現場測試結果

地下水體中pH值為7.3~8.4,多為8以下近於中性。Eh值在23~134mV之間,為弱氧化環境。TDS含量為236~4980mg/L,大部分小於1000mg/L。溶解氧(DO)含量為1.6~8.2mg/L,大多含量為5mg/L左右(表6-2)。

油層水:pH值為7.0~7.5;Eh值在-109~-132mV之間;TDS含量為159000~292000mg/L,溶解氧(DO)含量較低,為1.6~4.1mg/L(表6-3)。

根據上述情況,地表水主要受採油和煉油污水的影響而定,如污水大量排入水質則差,否則水質好一些。地下水的情況較為復雜,受其各種條件的控制,有些地段污染較重,水質變化較大,有些地段較好尚未受到污染,但從pH值、Eh值和溶解氧(DO)來看,均是微生物細菌生長的良好環境,適宜多種微生物細菌的生長和繁衍。油層水含鹽量大於鹽鹵水,不適宜一般細菌的生長,僅有一些古細菌和極端細菌生長。

表6-2 研究區地下水中pH值,Eh,DO,TDS及溫度現場測試結果

表6-3 安塞油區油層水中pH值,Eh,DO,TDS及溫度現場測試結果

(二)油田區地質環境中嗜油微生物細菌(以油為碳源培養的細菌)的分布狀況分析

2006年4月我們對油田區周邊的不同類型的不同位置不同地點採集了27組各類水樣和37組土樣進行了微生物細菌可利用石油類為營養碳源的培養測試,具體選擇了能夠反映石油影響環境的以石油、液體石蠟為營養碳源培養的微生物細菌。

1.石油對水體環境污染影響中的嗜油微生物細菌分布狀況

從表6-4中可以看出,地下水中,以石油為營養碳源的細菌數,含量較低,一般細菌數在n~n×10個/mL,反映了大部地區地下水受石油污染影響較小,但在石油污染影響大的局部地區如琵琶寨、谷家灘則略高一些。

地下水也同樣隨石油污染程度、包氣帶厚度和岩性的不同,嗜油微生物細菌的含量也不同,一般距離石油污染越重包氣帶岩性較粗滲透性好,則受污染較重嗜油菌應較多。如果按飲用水標准看,採油場周圍許多淺層地下水中的石油含量均已超標不能飲用,僅從細菌指標來分析,結合其他水質分析,可能污染的程度會更大一些,應引起人們的高度關注。

表6-4 地下水中嗜油菌(以油為營養碳源培養的細菌)培養與計數結果

地表水河流主要受石油開采排污和地段以及降水的影響,河水一般視其排污混合的比例不同含量有所變化,大部分樣品是在河水的稀釋作用下石油營養細菌的含量也不是很高,但總的來說河流中下游比地下水高些,細菌群在n×10個/L。從地表水採集樣品來看,隨著距離不同而污染程度不同,河流的上游如無石油開采則水質相對較好,或在雨季降水量較大也都能對地表水污染起到稀釋的作用(表6-5)。

表6-5 地表水中嗜油菌(以油為營養碳源培養的細菌)培養與計數結果

地下油層水石油營養菌數很少,一般在n個/mL,原因是油層水中含有高濃度的鹽,鹽含量高達數十g/L,抑制了一般性微生物細菌的生長(表6-6)。

比較表6-4~6-6培養的石油營養細菌來看,基本反映了石油污染對水環境的影響,尤其是對地表水系石油污染影響較大。

表6-6 油層水中嗜油菌(以油為營養碳源培養的細菌)培養與計數結果

2.石油對土壤環境影響中的嗜油微生物細菌分布狀況

從表6-7不同地區的不同位置深度採集土壤樣的石油營養微生物細菌培養測定結果看出,表層土的細菌群數量較大,隨深度的加大則減少,但由於總的取樣深度不大,有些細菌變化不大,這與土體中石油含量、土壤顆粒大小、氧化還原環境、pH值、溫度等有關。石油營養細菌數,在0.25m以淺數量較大,從0.25~1.0m隨深度加大數量在減小。

表6-7 土壤中嗜油菌(以油為營養碳源培養的細菌)培養與計數結果

土壤的石油污染程度不同也影響微生物細菌的種類和數量,高濃度石油污染物破壞了土壤的理化性質及通透性,改變了微生物的生存環境,對微生物的生長繁殖有毒害作用,因此,微生物種類數少。而石油污染程度較輕的土樣,由於土壤中低濃度的石油污染物為微生物生長提供了碳源,促進微生物的生長繁殖。然而,從這些微生物細菌在土壤包氣帶中的菌類數量變化,也可得出環境條件的改變對微生物分布及活動的影響,當然不僅是隨深度或距離的變化而變,而是隨某些特定的地層環境而變化,這些變化也有助於包氣帶土體對污染物質的阻控與凈化。我們也可以利用包氣帶土體的某些特徵層位對石油污染物質加以阻控和修復。這就為我們修復污染土壤提供了一個信息,利用土著微生物修復油污土壤。

對比表6-4~6-7可以看出,土壤中石油營養菌數較地下水、地表水含量大得多,要高出幾個數量級,其數量在n×103~n×107個/g之間。石油污染源的邊緣地帶土壤包氣帶中,細菌數量隨距離和深度變化而發生變化。這也反映了土壤包氣帶土體對石油污染的阻滯凈化作用較明顯。

總之,從石油開采地區環境中的微生物細菌的調查研究,可以得出,石油的開采已經對其周邊的環境造成了不同程度的污染。但污染程度和范圍尚不是很大,究其原因一是大部分開采區近幾年開始的清潔生產和人們環保意識的增強,加大投入主動治理環境,使開采區環境有較大的改變;二是包氣帶和土體均有一定的環境容量,對石油污染物質有一定物理和地球化學的吸附、過濾、氧化分解及化合、螯合等作用;三是在微生物細菌的作用下,使部分石油污染物質降解轉化,等等。

二、石油降解菌的篩選和鑒定

本試驗從調查區石油污染土壤中篩選出一系列石油降解菌群,通過初步石油降解實驗驗證後,將優勢混合菌群投加到原污染土壤中,進行不同條件下微生物強化降解石油污染土壤的試驗,其效果以土壤中石油去除率來驗證。

(一)石油降解菌的篩選

將從調查區取得各類石油污染樣品,用選擇性培養基進行微生物培養並進行計數,確定不同環境中石油降解菌的種類和數量,一方面了解石油對環境污染的生態效應;另一方面從中篩選優勢石油降解菌用於放大培養修復試驗用菌群。

從調查區石油污染土壤中分離到的各類優勢微生物均具有嗜油性,也就是其具有降解石油烴的能力,添加這些優勢菌群,就可以提高微生物處理石油污染土壤的效果。

石油污染菌種菌群的分離與優化是用細菌的選擇性培養基和富集培養基,對試驗場石油污染土壤的樣品進行菌種、菌群的培養分離,選擇優化出試驗用降解土壤中石油污染物的菌種、菌群。本次試驗選擇優化出的細菌初步鑒定主要為假單胞菌屬、微球菌屬、放線菌屬、真菌類(毛霉、青黴、麴黴)等菌群。

(1)菌種篩選及優勢菌群的構建

取石油開采區污染地下水10mL或土壤10g,加入100mL蒸餾水和1mL原油,30℃搖床培養5~7d,搖床轉速100r/min。5d後接種到以石油或液體石蠟為唯一碳源的選擇培養基平板,挑選生長良好的菌株在培養基平板上分離、純化,獲得石油降解菌。細菌、放線菌和真菌分別用不同的選擇性培養基進行培養,並用石油為碳源進行篩選。將篩選得到的細菌、放線菌、真菌進行初步石油降解實驗,即在無機鹽培養基中加入1%的原油,再接種1%的培養24h後的菌懸液,搖床培養。5d後取出,用三氯甲烷萃取進行分析,從分析結果判斷菌群對石油的降解情況,從而構建出優勢降解菌群。

(2)降解石油細菌、放線菌、真菌的培養基成分

·1號石油碳源的培養基

固體培養基:K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),CaCl2(0.02g),FeCl3(微量),瓊脂(12~20g),石油(1%~5%),水(1000mL),pH(7.0)。121℃滅菌30min備用。

液體培養基:K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),CaCl2(0.02g),FeCl3(微量),石油(1%~5%),水(1000mL),pH(7.0)。121℃滅菌30min備用。

·2號液體石蠟碳源的培養基

固體培養基:K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),CaCl2(0.02g),FeCl3(微量),瓊脂(12~20g),液體石蠟(1%~5%),水(1000mL),pH(7.0)。121℃滅菌30min備用。

液體培養基:K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),CaCl2(0.02g),FeCl3(微量),液體石蠟(1%~5%),水(1000mL),pH(7.0)。121℃滅菌30min備用。

·3號土壤放線菌培養基

(NH4)2SO4(2.0g),CaCO3(3.0g),K2HPO4(1.0g),MgSO4·7H2O(1.0g),NaCl(1.0g),可溶性澱粉(10.0g),瓊脂(18g)(液體培養不加),水(1000mL),pH(7.0)。121℃滅菌30min備用。

·4號土壤真菌培養基

取去皮的馬鈴薯塊200g,加水1000mL,煮沸20min左右,用砂布棉花過濾,濾液加水至1000mL,加0.2%的蔗糖,1.5%的瓊脂,pH自然。121℃滅菌30min備用。臨用時在培養皿中加入無菌的25%的乳酸2滴。

本項實驗選擇了調查區大部分水樣、土樣所培養的嗜油微生物細菌和培養的放線菌、真菌類進行了強化、馴化、組合優化實驗多達60餘組次,進行了大量的實驗。

(二)菌群的鑒定

選擇的是被石油污染的研究區原位的土壤樣品,而後從這些樣品中分離、優化、組合,強化這些土著微生物細菌的降解石油污染的能力。根據中國科學院微生物研究所東秀珠等編著的《常見細菌系統鑒定手冊》,對選擇的降解石油污染的優勢菌群進行了初步鑒定主要是:假單胞桿菌屬(Pseudomonas)、微球菌屬(Micrococcus)、放線菌屬(Actino-mycetes)、真菌(fungus)類的黴菌(mold)青黴屬(Penicillium)、毛黴菌屬(Mucor)、麴黴屬(Aspergillus)等菌群。

『肆』 吸食石油的細菌

分解者,分解石油中的有機物

『伍』 研究發現了神秘微生物吃石油產甲烷,這是種什麼樣的微生物

在中國發現的可以通過吃油排出甲烷的微生物,已經有35億年以上的歷史了。它可以通過自身的代謝過程將食用的油脂轉化為甲烷和二氧化碳,是一種低成本、高效率的甲烷生產方式。因為微生物在自然界中無處不在,但是肉眼是看不到的!微生物有很多種。微生物分為以下八類:細菌、病毒、真菌、放線菌、立克次體、支原體、衣原體和螺旋體。

這是一種生產甲烷的實用方法。根據目前的研究結果,目前地球大氣中的甲烷大部分是由這種微生物排放的。在沒有氧氣的情況下,這種微生物可以分解有機物產生甲烷。不管微生物有多神秘,它也屬於大自然。當然,因為它在這個世界上起源較早,所以也是多變的,所以種類也很多,而且每一種也大不相同。有些可以在極低的溫度下生存,有些可以在極高的溫度下生存,有些可以在數千個大氣壓下生存,有些可以在缺氧的情況下生存。很多細菌被人們利用,比如甲烷,是甲烷細菌代謝有機物產生的,生物煉銅,還有冬蟲夏草中的草。

『陸』 有機污染物有幾類,現有處理手段,主要用到什麼微生物

1.碳氫化合物的微生物降解:石油是含有多種烴類和少量其他有機物的混合物,一般由多種微生物的共同作用使其降解。微生物在石油污染的治理中正發揮越來越大的作用。已知有28屬細菌,30屬絲狀真菌和12屬酵母,共70屬200個種的微生物能降解石油。當前各國學者正從各個方面努力提高微生物對石油的分解速度,一邊更有效地治理石油污染,例如構建「超級菌」降解石油。瓦斯在煤礦中易爆炸,經過甲烷氧化菌或酶處理後可消除煤礦甲烷,防止瓦斯爆炸。
2.氰(腈)化合物的微生物降解:能分解氰(腈)化合物的微生物有諾卡氏菌,茄病鐮刀霉,木霉和假單細胞菌等幾十種。
3.合成洗滌劑的微生物降解:其方向是改變合成洗滌劑的結構,製成易被微生物分解的(軟型)洗滌劑。其代表為直鏈烷基苯磺酸鹽(LAS)。
4.多氯聯苯的微生物降解:許多微生物能降解多氯聯苯,如產鹼桿菌和不動桿菌能分解多種多氯聯苯;臘狀芽孢桿菌能使一氯聯苯,二氯聯苯全部分解。
5.農葯的微生物降解:微生物以兩種方式降解農葯:一種是以農葯作為碳源和能源,有時還可作為氮源,使農葯降解。具有這種能力的微生物很多,如假單胞菌屬和諾卡氏菌屬的某些種。另一種是共代謝作用,即微生物從其他化合物獲得碳源能源後才能使農葯轉化。
6.剩餘污泥的分解:處理污泥主要有消化法和高溫堆肥發酵法。消化法是將污泥排入濃縮池,濃縮後進入消化罐進行厭氧發酵,以提高肥效和減少殘毒。高溫堆肥發酵法是先將污泥排入干化池滲濾脫水,再與馬糞,廄肥等混合堆積,一層馬糞一層污泥,加適量的水,注意通氣,用泥封頂。適時翻堆。利用微生物對有機物進行分解和再合成,同時利用微生物的分解產生的高溫殺死病菌和蟲卵。

『柒』 如何設計篩選高效降解某種有機物的微生物實驗方案

生物降解是指由生物催化的復雜化合物的分解過程。而在石油降解中微生物首先通過自身的代謝產生分解酶,裂解重質的烴類和原油,降低石油的粘度。

另外在其生長繁殖過程中,能產生諸如溶劑、酸類、氣體、表面活性劑和生物聚合物等有效化合物利於驅油,然後由其他的微生物進一步的氧化分解成為小分子而達到降解的目的。



注意事項:

海洋中最主要的降解細菌屬於:無色桿菌屬、不動桿菌屬、產鹼桿菌屬、節桿菌屬、芽孢桿菌屬、黃桿菌屬、棒桿菌屬、微桿菌屬、微球菌屬、假單胞菌屬以及放線菌屬、諾卡氏菌屬。在大多海洋環境中,上述這些細菌是主要降解菌。

在真菌中,金色擔子菌屬、假絲酵母屬、紅酵母屬和擲孢酵母屬是最普遍的海洋石油烴降解菌。一些絲狀真菌如麴黴屬、毛霉屬、鐮刀霉屬和青黴屬也應被歸入海洋降解菌中。土壤中主要的降解菌除了上面提到的細菌種類外,還包括分枝桿菌屬以及大量絲狀真菌。麴黴屬和青黴屬某些種在海洋和土壤兩種環境中都有分布。木霉屬和被孢霉屬某些種是土壤降解菌。

『捌』 清理石油的細菌是什麼者

屬於分解者

消費者是指直接或間接以生產者為食物的生物,又稱異養生物(相對自養生物而言)。消費者通常都是動物。素食動物通過吃生產者以維持生命(為直接以生產者為食物),然後再由肉食動物把素食動物消化(為間接以生產者為食物)。在這個過程中,不但在生產者內的物質會被轉移,有關能量亦一並轉至消費者,但不會全部轉移。

分解者(decomposer)主要是生態系統中的各種細菌和真菌。它們能夠分解動植物屍體中的有機物並且利用其中的能量,將有機物轉化成為無機物供生產者如植物再利用,重新以有機物形式出現於食物鏈的基層。細菌、蚯蚓等生物便屬於分解者。

『玖』 海洋生物學對水體的凈化作用分別從海洋的動物 植物 微生物 分別舉例說明個體作用

海洋微生物是在海洋環境中能夠生長繁殖、形體微小、
單細胞或個體結構較為簡單的多細胞、甚至沒有細胞結構
的一群低等生物。海洋微生物種類繁多,按其結構、形態和
組成不同,可分為三大類:非細胞型(如海洋病毒)、原核細
胞型(如海洋細菌、海洋放線菌和海洋藍細菌等)和真核細
胞型(如海洋酵母菌、海洋黴菌等)[1]。從微生物學或環境
微生物學角度來講,海洋微藻也應歸入海洋微生物的范
疇[2, 3]。
微生物在廢水處理等環境污染防治方面具有廣泛的應
用,在農林牧漁業、環保等各方面發揮著巨大的作用[4]。近
年來,人們對微生物在環境中的分布狀況、分離純化和開發
(包括馴化和基因操作等)利用等方面的報道與日俱增。對
於海洋微生物這部分來講,隨著環境微生物和海洋科學兩
大學科的發展,人們對其研究也日益深入,從海洋表層的海
水微生物[5]到深海微生物[6]等各方面均有報道。另外,對
於我們通常認為較難研究的海洋浮游病毒,國外研究進展
很快,已經滲入到海洋浮游病毒的形態、分類、生態學效應、
在海洋不同深度的種群和數量、在海洋生態系統物質循環
中的作用以及海洋藻類噬藻體等方面[7~14]。
隨著人口的增長以及工農業的發展,人類向海洋排放
的污染物逐年增多,海洋環境被污染的程度越來越嚴重,導
致海洋生物的生存受到嚴重的威脅。海洋污染物主要包括
石油及其產品、重金屬、農葯、PAH、PCBS等。在這些污染物
的遷移和轉化過程中,海洋微生物發揮著重要作用,參與各
種海洋污染物的降解和轉化過程,這樣有助於保持海洋生
態系統的平衡和促進海洋自凈能力。1 海洋微生物在海洋石油污染生物修復中的應用
海洋石油及其產品的污染是目前一種世界性的嚴重的
海洋污染現象。隨著大陸架、海洋石油資源的開發、海上
油事故、沿岸石油化工的發展以及20世紀90年代爆發的戰
爭等原因使局部海域受到嚴重的石油污染,對生態環境造
成了災難性的破壞。據估計,全世界每年流入大海的石油就
有1. 0@107t,我國每年有60多萬噸原油進入環境,污染土
壤、地下水、河流和海洋,造成污染海域在短期內溶解氧的缺
乏[15],對近海海域及沙灘等造成污染,對人們在天然浴場游
泳和沙灘休閑娛樂產生不利影響。
據報道,能夠降解石油的微生物達200多種,分屬於70
多個屬,其中細菌約佔40個屬,在海洋生態系統中佔主導地
位[16]。海洋石油降解菌廣泛分布在油污海域,常見種類見
表1。由於海洋微生物可以有效地去除各種形式的石油污
染物,因此在海洋石油污染生物修復中發揮著重要作用。從
20世紀70年代開始,美國率先開展了利用細菌消除油污染
的研究,隨後,世界各國相繼利用各種微生物開展了這方面
的工作。我國應用海洋微生物治理海洋石油污染的研究發
展也很快。林鳳翱等[18, 19]從近岸油污染海洋環境中篩選出
了高效的降解石油烴絲狀真菌,研究表明,該絲狀真菌能降
解多種石油烴,且降解速率快、不受氮、磷營養鹽和氧含量的
限制、在被油污染的海灘等的應用前景和開發價值很大。丁
明宇等[20]利用從青島近岸海水中篩選到的73株細菌和10
株真菌進行了降解石油的研究,多數菌株具有明顯的降解
石油的能力,有3個菌株對石油的降解效率高達58. 35%
(真菌F-37)、62. 75% (細菌SJ-27B)和71. 06% (真菌F
-38)。此外,史君賢等[21]利用氣相色譜測定了石油烴降解
細菌對柴油的正烷烴的降解作用,石油烴降解細菌對正烷
烴有明顯的降解作用,混合菌株的降解率明顯高於單菌株
的降解率,且溫度對正烷烴的降解有明顯的影響,在35e條
件下降解速度最快。陳碧娥等[22]研究了從湄洲灣海域分離
的絲狀真菌轉化石油烴的過程,指出,絲狀真菌去除原油的

『拾』 木黴菌降解石油烴的機制

石油泄漏和煉製品中大多數分子是可生物降解的,能被微生物利用,而最終在環境中消失。與生物碳循環中的其他大多數有機分子相比,這些通常被認為是弱的可生物降解化合物。原油主要由數百種不同的烴分子組成,主要是C1-C40的直鏈烷烴、C6-C8支鏈烷烴、環己烷、芳香族化合物以及含硫、氮和氧的化合物。在石油烴混合物中的脂族烴,正構烷烴在實驗室培養物和環境中被最快降解。大多數微生物的通過一個單加氧酶將正構烷烴轉化成相應的烷醇,而絲狀真菌的酶促作用受到營養物質的調控。在木黴菌中,氮、碳和硫是酶合成的限制因素,而錳和氮被發現有很強的調節作用。烷烴通常經過末端氧化作用變成酒精和脂肪酸,隨後進入β-氧化途徑,從而被降解。烷烴也可能通過次末端氧化轉化成二級醇。對烷烴的降解機理研究表明,烷烴基的鏈長度對總細胞脂肪酸組成有明顯的影響。碳原子數為奇數的烷烴,得到的主要脂肪酸具有偶數個碳原子,並且反之亦然。Hadibarata等(2009)從石油污染土壤中分離到1株能降解正二十烷的木黴菌S019(Tri-choderma sp.)。通過在液體培養和土壤條件下降解試驗發現,降解最適碳源是添加葡萄糖,30 d降解率為73%,而最適氮源為多聚蛋白腖,降解率為63%。此外,添加碳和氮源都會影響正二十烷的降解。在S019降解正二十烷的反應產物中檢測了十九烷酸。