當前位置:首頁 » 生產成本 » 為什麼博弈成本低
擴展閱讀
廢電動工具線多少錢一斤 2025-05-17 19:10:45
地下車庫的成本如何核算 2025-05-17 19:02:22
俠客軍攻主城有多少資源 2025-05-17 18:34:24

為什麼博弈成本低

發布時間: 2022-08-21 04:45:38

⑴ 現代大國間的博弈方式為什麼大部分都是經濟博弈,它比軍事戰爭好在哪裡對敵國危害更大嗎

為什麼是經濟博弈而不是軍事戰爭?因為任何一個有智慧的國家從來都不會把戰爭作為自己強大的首選項。

俗話說,經濟基礎決定上層建築,如果一個國家經濟薄弱、國庫空虛,連自己的人民都養活不了,那麼它又有什麼資源去進行軍事戰爭呢?這就好比你的鄰居家境殷實,全副武裝到牙齒開著裝甲車,而你就穿一條褲衩,手持一根鐵棍去跟人家打架,最後吃虧的肯定還是自己。

另一方面,戰爭的花費是巨大的,一枚導彈的成本可能就有十幾萬上百萬,一場戰爭下來如果沒有深厚的家底,戰爭進行到一半這個國家早就被拖垮了。

古語有雲,不戰而屈人之兵為上策。而經濟博弈,則是上策中的上策,打掉敵人賴以發展的經濟基礎,對方自然就會國家衰弱。貧賤夫妻百事哀,對於國家也是一樣,國家衰弱會引發內部的動盪,這樣在對付這個國家時,就容易得多了。

⑵ 如何看待效率 成本 風險之間的關系

營銷成本和效率屬於直線關系。即效率越高成本相對越低,在直接成本相同的情況下,營銷效率越高,間接成本越低。但是反過來考慮,投入成本越大是否能導致營銷效率提高,答案是相對正確。

這種情況下,效率與成本之間屬於變現關系。直接成本投入到一定的時候,效率達到頂點,接下來,不論成本如何在投入也不會對營銷效率作出提高,這道問題看起來簡單。

但是裡面卻包含了相當復雜的成本和營銷和經濟分析等學術問題,通過以上直線及變線關系,可以得出: 營銷效率提高-間接成本降低,成本加大,營銷效率提高,但存在臨界點,超過臨界點,成本增加,營銷效率不變。

平等與效率的關系:平等和效率都很重要,既要「魚」,也要「熊掌」,社會應在二者之間進行折中。肯尼迪和約翰遜總統經濟顧問奧肯的核心思想,是在保留市場經濟制度的情況下增進平等。為取得更大的平等,政府可採取所得稅、社會保險、轉移支付等措施,來縮小過於懸殊的貧富差距。

(2)為什麼博弈成本低擴展閱讀:

在收獲經濟效益的同時,也要兼顧社會效益。社會效益會促進經濟效益。

資本市場是指證券融資和經營一年以上中長期資金惜貸的,包括股票市場、債券市場、基金市場和中長期信貸市場等,其融通的資金主要作為擴大再生產的資本使用,因此稱為資本市場。

堅持效率優先,兼顧公平的原則處理好先富,後富的關系反對平均主義和收入差距過分懸殊,提倡奉獻精神處理好初次分配。

⑶ 博弈的四種基本類型的實例有哪些

1.首先行動優勢
首先行動優勢(first-mover advantage)是指,在博弈中首先作出戰略選擇並採取相應行動的參與人可以獲得較多的利益。
2.確實可信的威脅

確實可信的威脅(credible threat)是指,博弈的參與人通過某種行動改變自己的支付函數,從而使得自己的威脅顯得可信。參與人為改變博弈結果而採取的措施稱為承諾(commitment)。

第四節 不完全信息靜態博弈

在許多情況下,參與人對對手的了解往往是不夠精確的。這種情況下的博弈就是不完全信息博弈。

舉例來說,某一市場原來被A企業所壟斷。現在B企業考慮是否進入。B企業知道,A企業是否允許它進入,取決於A企業阻撓B企業進入所花費的成本。如果阻撓的成本低,那麼,正如表7-10後兩列所表示的,A企業的占優戰略是阻撓,博弈有重復剔除的占優戰略均衡――A阻撓,B不進入。如果阻撓的成本高,那麼,正如表7-10前兩列所表示的,A企業的占優戰略是默許B進入,博弈有重復剔除的占優戰略均衡――A默許,B進入。B企業所不知道的,是A企業的阻撓成本是高是低。這里,某一參與人本人知道、其他參與人則不知道的信息稱為私人信息。某一參與人所擁有的全部私人信息稱為他的類型。在上述例子中,阻撓成本就是 A的私人信息。高阻撓成本和低阻撓成本則是兩種不同的類型。
顯然,在這里,B所遇到的,是不確定性條件下的選擇問題。因為B不僅不知道A的類型(是高還是低),而且不知道不同類型的分布概率。

解決這類問題的方法之一,就是把不確定性條件下的選擇轉換為風險條件下的選擇。在風險條件下,B雖然不知道A的類型,但可以知道不同類型的分布概率。將不確定性條件下的選擇轉換為風險條件下的選擇,稱為海薩尼轉換(the Harsanyi transformation)
按照海薩尼的方法,所有參與人的真實類型都是給定的。其他參與人雖然不清楚某一參與人的真實類型,但知道這些可能出現的類型的分布概率,而且這種概率是公共知識。用上例來說,公共知識不僅意味著B企業知道A企業高阻撓成本與低阻撓成本的分布概率,而且意味著A也清楚B知道這一概率。

通過海薩尼轉換,不完全信息博弈變成了完全但不完美信息博弈(games of complete but imperfect information)。這里的不完美信息,就是指其他參與人只知道某一參與人某些方面類型的分布概率,而不知道該參與人在這些方面的真實類型。

在上述轉換的基礎上,海薩尼提出了貝葉斯納什均衡(Bayesian Nash equilibrium)。對此,可以作如下解釋:在不完全信息靜態博弈中,參與人同時行動,沒有機會觀察到別人的選擇。給定其他參與人的戰略選擇,每個參與人的最優戰略依賴於自己的類型。由於每個參與人僅知道其他參與人有關類型的分布概率,而不知道其真實類型,因而,他不可能知道其他參與人實際上會選擇什麼戰略。但是,他能夠正確地預測到其他參與人的選擇與其各自的有關類型之間的關系。

因此,該參與人的決策目標就是:在給定自己的類型,以及給定其他參與人的類型與戰略選擇之間關系的條件下,使得自己的期望效用最大化。

貝葉斯納什均衡是一種類型依賴型戰略組合。在給定自己的類型和其他參與人類型的分布概率的條件下,這種戰略組合使得每個參與人的期望效用達到了最大化。

回到上面提到的市場進入的例子。在這個例子里,對於挑戰者B來說,原壟斷者A在阻撓成本方面,存在著兩種可能性:高成本或低成本。B不知道A的阻撓成本究竟是高是低,但他知道A在這兩種不同阻撓成本下會作出的選擇,以及不同阻撓成本(類型)的分布概率。假定高成本的概率為x,則低成本的概率為(1-x)。如果A的阻撓成本高,A將默許B進入市場;如果A的阻撓成本低,A將阻撓B進入市場。在這兩種情況下,如表7-10所示,B進入的支付函數分別是得到40和失去10。因此,B選擇進入所得到的期望利潤為40x+(-10)(1- x),選擇不進入的期望利潤為0。簡單的計算表明,當A阻撓成本高的概率大於20%時,挑戰者B選擇進入得到的期望利潤大於選擇不進入的期望利潤。此時,選擇進入是B的最優選擇。此時的貝葉斯納什均衡為,挑戰者B選擇進入,高成本原壟斷者選擇默許,低成本原壟斷者選擇阻撓。

根據參與者類型的公共知識獲得參與者行動的概率,依此決定下一步策略。

第五節 不完全信息動態博弈

在動態博弈中,行動有先後次序,後行動者可以通過觀察先行動者的行為,來獲得有關先行動者的信息,從而證實或修正自己對先行動者的判斷。
如上所述,在不完全信息條件下,博弈的參與人知道其他參與人可能有哪幾種類型,也知道不同的類型與相應戰略選擇之間的關系。但他們並不知道其他參與人的真實類型。在不完全信息靜態博弈中,我們是通過海薩尼轉換,即通過假定其他參與人知道某一參與人的所屬類型的分布概率,來得出博弈的貝葉斯納什均衡結果的。

而在不完全信息動態博弈中,問題變得更加簡單。博弈開始時,某一參與人既不知道其他參與人的真實類型,也不知道其他參與人所屬類型的分布概率。他只是對這一概率分布有自己的主觀判斷,即有自己的信念。博弈開始後,該參與人將根據他所觀察到的其他參與人的行為,來修正自己的信念。並根據這種不斷變化的信念,作出自己的戰略選擇。

對應於不完全信息動態博弈的均衡概念是精煉貝葉斯均衡(perfect Bayesian equilibrium)。這個概念是完全信息動態博弈的子博弈精煉納什均衡與不完全信息靜態均衡的貝葉斯(納什)均衡的結合。

具體來說,精煉貝葉斯均衡是所有參與人戰略和信念的一種結合。它滿足如下條件:第一,在給定每個參與人有關其他參與人類型的信念的條件下,該參與人的戰略選擇是最優的。第二,每個參與人關於其他參與人所屬類型的信念,但是使用貝葉斯法則從所觀察到的行為中獲得的。

貝葉斯法則是概率統計中的應用所觀察到的現象對有關概率分布的主觀判斷(即先驗概率)進行修正的標准方法。採用上一節的例子,可以將貝葉斯規則的分析思路表達如下。
挑戰者B不知道原壟斷者A是屬於高阻撓成本類型還是低阻撓成本類型,但B知道,如果A屬於高阻撓成本類型,B進入市場時A進行阻撓的概率是20%(此時A為了保持壟斷帶來的高利潤,不計成本地拚命阻撓);如果A屬於低阻撓成本類型,B進入市場時A進行阻撓的概率是100%。
博弈開始時,B認為A屬於高阻撓成本企業的概率為70%,因此,B估計自己在進入市場時,受到A阻撓的概率為:
0.7×0.2+0.3×1=0.44
0.44是在B給定A所屬類型的先驗概率下,A可能採取阻撓行為的概率。
當B進入市場時,A確實進行阻撓。使用貝葉斯法則,根據阻撓這一可以觀察到的行為,B認為A屬於高阻撓成本企業的概率變成
A屬於高成本企業的概率=0.7(A屬於高成本企業的先驗概率)×0.2(高成本企業對新進入市場的企業進行阻撓的概率)÷0.44=0.32
根據這一新的概率,B估計自己在進入市場時,受到A阻撓的概率為:
0.32×0.2+0.68×1=0.744
如果B再一次進入市場時,A又進行了阻撓。使用貝葉斯法則,根據再次阻撓這一可觀察到的行為,B認為A屬於高阻撓成本企業的概率變成
A屬於高成本企業的概率=0.32(A屬於高成本企業的先驗概率)×0.2(高成本企業對新進入市場的企業進行阻撓的概率)÷0.744=0.086
這樣,根據A一次又一次的阻撓行為,B對A所屬類型的判斷逐步發生變化,越來越傾向於將A判斷為低阻撓成本企業了。
以上例子表明,在不完全信息動態博弈中,參與人所採取的行為具有傳遞信息的作用。盡管A企業有可能是高成本企業,但A企業連續進行的市場進入阻撓,給B企業以A企業是低阻撓成本企業的印象,從而使得B企業停止了進入地市場的行動。
應該指出的是,傳遞信息的行為是需要成本的。假如這種行為沒有成本,誰都可以效仿,那麼,這種行為就達不到傳遞信息的目的。只有在行為需要相當大的成本,因而別人不敢輕易效仿時,這種行為才能起到傳遞信息的作用。
傳遞信息所支付的成本是由信息的不完全性造成的。但不能因此就說不完全信息就一定是壞事。研究表明,在重復次數有限的囚徒困境博弈中,不完全信息可以導致博弈雙方的合作。理由是:當信息不完全時,參與人為了獲得合作帶來的長期利益,不願過早暴露自己的本性。這就是說,在一種長期的關系中,一個人干好事還是干壞事,常常不取決於他的本性是好是壞,而在很大程度上取決於其他人在多大程度上認為他是好人。如果其他人不知道自己的真實面目,一個壞人也會為了掩蓋自己而在相當長的時期內做好事。

根據參與者類型的公共知識以及參與者歷史行為來獲得參與者行動的概率,依此決定下一步策略

⑷ 為什麼籌碼平均成本變得很低了,股價也很低是主力走了嗎

一般是主力深度介入的並且在低位的股票才適合長期持有。一支股票中主力可能並不是只有一個,而且一般的股票都不能滿足主力深度介入的條件,所以股票交易主力都要和對方博弈才能找到合適的策略。

⑸ 什麼是博弈論它為什麼如此重要一般在我們生活中涉及於哪些方面

1.博弈論是指某個個人或是組織,面對一定的環境條件,在一定的規則約束下,依靠所掌握的信息,從各自選擇的行為或是策略進行選擇並加以實施,並從各自取得相應結果或收益的過程,在經濟學上博奕論是個非常重要的理論概念。

什麼是博弈論?古語有雲,世事如棋。生活中每個人如同棋手,其每一個行為如同在一張看不見的棋盤上布一個子,精明慎重的棋手們相互揣摩、相互牽制,人人爭贏,下出諸多精彩紛呈、變化多端的棋局。博弈論是研究棋手們 「出棋」 著數中理性化、邏輯化的部分,並將其系統化為一門科學。換句話說,就是研究個體如何在錯綜復雜的相互影響中得出最合理的策略。事實上,博弈論正是衍生於古老的游戲或曰博弈如象棋、撲克等。數學家們將具體的問題抽象化,通過建立自完備的邏輯框架、體系研究其規律及變化。這可不是件容易的事情,以最簡單的二人對弈為例,稍想一下便知此中大有玄妙:若假設雙方都精確地記得自己和對手的每一步棋且都是最「理性」 的棋手,甲出子的時候,為了贏棋,得仔細考慮乙的想法,而乙出子時也得考慮甲的想法,所以甲還得想到乙在想他的想法,乙當然也知道甲想到了他在想甲的想法…

面對如許重重迷霧,博弈論怎樣著手分析解決問題,怎樣對作為現實歸納的抽象數學問題求出最優解、從而為在理論上指導實踐提供可能性呢?現代博弈理論由匈牙利大數學家馮·諾伊曼於20世紀20年代開始創立,1944年他與經濟學家奧斯卡·摩根斯特恩合作出版的巨著《博弈論與經濟行為》,標志著現代系統博弈理論的初步形成。對於非合作、純競爭型博弈,諾伊曼所解決的只有二人零和博弈--好比兩個人下棋、或是打乒乓球,一個人贏一著則另一個人必輸一著,凈獲利為零。在這里抽象化後的博弈問題是,已知參與者集合(兩方) ,策略集合(所有棋著) ,和盈利集合(贏子輸子) ,能否且如何找到一個理論上的「解」 或「平衡」 ,也就是對參與雙方來說都最「合理」 、最優的具體策略?怎樣才是「合理」 ?應用傳統決定論中的「最小最大」 准則,即博弈的每一方都假設對方的所有功略的根本目的是使自己最大程度地失利,並據此最優化自己的對策,諾伊曼從數學上證明,通過一定的線性運算,對於每一個二人零和博弈,都能夠找到一個「最小最大解」 。通過一定的線性運算,競爭雙方以概率分布的形式隨機使用某套最優策略中的各個步驟,就可以最終達到彼此盈利最大且相當。當然,其隱含的意義在於,這套最優策略並不依賴於對手在博弈中的操作。用通俗的話說,這個著名的最小最大定理所體現的基本「理性」 思想是「抱最好的希望,做最壞的打算」 。

2.在經濟學中,「智*博弈」(Pigs』payoffs)是一個著名博弈論例子。
這個例子講的是:*圈裡有兩頭*,一頭大*,一頭小*。*圈的一邊有個踏板,每踩一下踏板,在遠離踏板的*圈的另一邊的投食口就會落下少量的食物。如果有一隻*去踩踏板,另一隻*就有機會搶先吃到另一邊落下的食物。當小*踩動踏板時,大*會在小*跑到食槽之前剛好吃光所有的食物;若是大*踩動了踏板,則還有機會在小*吃完落下的食物之前跑到食槽,爭吃到另一半殘羹。
那麼,兩只*各會採取什麼策略?答案是:小*將選擇「搭便車」策略,也就是舒舒服服地等在食槽邊;而大*則為一點殘羹不知疲倦地奔忙於踏板和食槽之間。
原因何在?因為,小*踩踏板將一無所獲,不踩踏板反而能吃上食物。對小*而言,無論大*是否踩動踏板,不踩踏板總是好的選擇。反觀大*,已明知小*是不會去踩動踏板的,自己親自去踩踏板總比不踩強吧,所以只好親力親為了。
「小*躺著大*跑」的現象是由於故事中的游戲規則所導致的。規則的核心指標是:每次落下的事物數量和踏板與投食口之間的距離。
如果改變一下核心指標,*圈裡還會出現同樣的「小*躺著大*跑」的景象嗎?試試看。
改變方案一:減量方案。投食僅原來的一半分量。結果是小*大*都不去踩踏板了。小*去踩,大*將會把食物吃完;大*去踩,小*將也會把食物吃完。誰去踩踏板,就意味著為對方貢獻食物,所以誰也不會有踩踏板的動力了。
如果目的是想讓*們去多踩踏板,這個游戲規則的設計顯然是失敗的。
改變方案二:增量方案。投食為原來的一倍分量。結果是小*、大*都會去踩踏板。誰想吃,誰就會去踩踏板。反正對方不會一次把食物吃完。小*和大*相當於生活在物質相對豐富的「共產主義」社會,所以競爭意識卻不會很強。
對於游戲規則的設計者來說,這個規則的成本相當高(每次提供雙份的食物);而且因為競爭不強烈,想讓*們去多踩踏板的效果並不好。
改變方案三:減量加移位方案。投食僅原來的一半分量,但同時將投食口移到踏板附近。結果呢,小*和大*都在拚命地搶著踩踏板。等待者不得食,而多勞者多得。每次的收獲剛好消費完。
對於游戲設計者,這是一個最好的方案。成本不高,但收獲最大。
原版的「智*博弈」故事給了競爭中的弱者(小*)以等待為最佳策略的啟發。但是對於社會而言,因為小*未能參與競爭,小*搭便車時的社會資源配置的並不是最佳狀態。為使資源最有效配置,規則的設計者是不願看見有人搭便車的,政府如此,公司的老闆也是如此。而能否完全杜絕「搭便車」現象,就要看游戲規則的核心指標設置是否合適了。
比如,公司的激勵制度設計,獎勵力度太大,又是持股,又是期權,公司職員個個都成了百萬富翁,成本高不說,員工的積極性並不一定很高。這相當於「智*博弈」
增量方案所描述的情形。但是如果獎勵力度不大,而且見者有份(不勞動的「小*」也有),一度十分努力的大*也不會有動力了----就象「智*博弈」減量方案一所描述的情形。最好的激勵機制設計就象改變方案三----減量加移位的辦法,獎勵並非人人有份,而是直接針對個人(如業務按比例提成),既節約了成本(對公司而言),又消除了「搭便車」現象,能實現有效的激勵。
許多人並未讀過「智*博弈」的故事,但是卻在自覺地使用小*的策略。股市上等待莊家抬轎的散戶;等待產業市場中出現具有贏利能力新產品、繼而大舉仿製牟取暴利的游資;公司里不創造效益但分享成果的人,等等。因此,對於制訂各種經濟管理的游戲規則的人,必須深諳「智*博弈」指標改變的個中道理。
3.背景知識:納什博弈論的原理與應用

http://ent.sina.com.cn 2002年03月21日17:44 北京晚報
1950年和1951年納什的兩篇關於非合作博弈論的重要論文,徹底改變了人們對競爭和市場的看法。他證明了非合作博弈及其均衡解,並證明了均衡解的存在性,即著名的納什均衡。從而揭示了博弈均衡與經濟均衡的內在聯系。納什的研究奠定了現代非合作博弈論的基石,後來的博弈論研究基本上都沿著這條主線展開的。然而,納什天才的發現卻遭到馮·諾依曼的斷然否定,在此之前他還受到愛因斯坦的冷遇。但是骨子裡挑戰權威、藐視權威的本性,使納什堅持了自己的觀點,終成一代大師。要不是30多年的嚴重精神病折磨,恐怕他早已
站在諾貝爾獎的領獎台上了,而且也絕不會與其他人分享這一殊榮。

納什是一個非常天才的數學家,他的主要貢獻是1950至1951年在普林斯頓讀博士學位時做出的。然而,他的天才發現———非合作博弈的均衡,即「納什均衡」並不是一帆風順的。

1948年納什到普林斯頓大學讀數學系的博士。那一年他還不到20歲。當時普林斯頓可謂人傑地靈,大師如雲。愛因斯坦、馮·諾依曼、列夫謝茨(數學系主任)、阿爾伯特·塔克、阿倫佐·切奇、哈羅德·庫恩、諾爾曼·斯蒂恩羅德、埃爾夫·福克斯……等全都在這里。博弈論主要是由馮·諾依曼(1903—1957)創所立的。他是一位出生於匈牙利的天才的數學家。他不僅創立了經濟博弈論,而且發明了計算機。早在20世紀初,塞梅魯(Zermelo)、鮑羅(Borel)和馮·諾伊曼已經開始研究博弈的准確的數學表達,直到1939年,馮·諾依曼遇到經濟學家奧斯卡·摩根斯特恩(Oskar Morgenstern),並與其合作才使博弈論進入經濟學的廣闊領域。

1944年他與奧斯卡·摩根斯特恩合著的巨作《博弈論與經濟行為》出版,標志著現代系統博弈理論的的初步形成。盡管對具有博弈性質的問題的研究可以追溯到19世紀甚至更早。例如,1838年古諾(Cournot)簡單雙寡頭壟斷博弈;1883年伯特蘭和1925年艾奇沃奇思研究了兩個寡頭的產量與價格壟斷;2000多年前中國著名軍事家孫武的後代孫臏利用博弈論方法幫助田忌賽馬取勝等等都屬於早期博弈論的萌芽,其特點是零星的,片斷的研究,帶有很大的偶然性,很不系統。馮·諾依曼和摩根斯特恩的《博弈論與經濟行為》一書中提出的標准型、擴展型和合作型博弈模型解的概念和分析方法,奠定了這門學科的理論基礎。合作型博弈在20世紀50年代達到了巔峰期。然而,諾依曼的博弈論的局限性也日益暴露出來,由於它過於抽象,使應用范圍受到很大限制,在很長時間里,人們對博弈論的研究知之甚少,只是少數數學家的專利,所以,影響力很有限。正是在這個時候,非合作博弈———「納什均衡」應運而生了,它標志著博弈論的新時代的開始!納什不是一個按部就班的學生,他經常曠課。據他的同學們回憶,他們根本想不起來曾經什麼時候和納什一起完完整整地上過一門必修課,但納什爭辯說,至少上過斯蒂恩羅德的代數拓撲學。斯蒂恩羅德恰恰是這門學科的創立者,可是,沒上幾次課,納什就認定這門課不符合他的口味。於是,又走人了。然而,納什畢竟是一位英才天縱的非凡人物,他廣泛涉獵數學王國的每一個分支,如拓撲學、代數幾何學、邏輯學、博弈論等等,深深地為之著迷。納什經常顯示出他與眾不同的自信和自負,充滿咄咄逼人的學術野心。1950年整個夏天納什都忙於應付緊張的考試,他的博弈論研究工作被迫中斷,他感到這是莫大的浪費。殊不知這種暫時的「放棄」,使原來模糊、雜亂和無緒的若干念頭,在潛意識的持續思考下,逐步形成一條清晰的脈絡,突然來了靈感!這一年的10月,他驟感才思潮湧,夢筆生花。其中一個最耀眼的亮點就是日後被稱之為「納什均衡」的非合作博弈均衡的概念。納什的主要學術貢獻體現在1950年和1951年的兩篇論文之中(包括一篇博士論文)。1950年他才把自己的研究成果寫成題為「非合作博弈」的長篇博士論文,1950年11月刊登在美國全國科學院每月公報上,立即引起轟動。說起來這全靠師兄戴維·蓋爾之功,就在遭到馮·諾依曼貶低幾天之後,他遇到蓋爾,告訴他自己已經將馮·諾依曼的「最小最大原理」(minimax solution)推到非合作博弈領域,找到了普遍化的方法和均衡點。蓋爾聽得很認真,他終於意識到納什的思路比馮·諾伊曼的合作博弈的理論更能反映現實的情況,而對其嚴密優美的數學證明極為贊嘆。蓋爾建議他馬上整理出來發表,以免被別人捷足先登。納什這個初出茅廬的小子,根本不知道競爭的險惡,從未想過要這么做。結果還是蓋爾充當了他的「經紀人」,代為起草致科學院的簡訊,系主任列夫謝茨則親自將文稿遞交給科學院。納什寫的文章不多,就那麼幾篇,但已經足夠了,因為都是精品中的精品。這一點也是值得我們深思的。國內提一個教授,要求在「核心的刊物」上發表多少篇文章。按照這個標准可能納什還不一定夠資格。

1996年諾貝爾經濟學獎得主莫爾里斯當牛津大學艾奇沃思經濟學講座教授時也沒有發表過什麼文章,特殊的人才,必須有特殊的選拔辦法。

納什在上大學時就開始從事純數學的博弈論研究,1948年進入普林斯頓大學後更是如魚得水。20歲出頭已成為聞名世界的數學家。特別是在經濟博弈論領域,他做出了劃時代的貢獻,是繼馮·諾依曼之後最偉大的博弈論大師之一。他提出的著名的納什均衡的概念在非合作博弈理論中起著核心的作用。後續的研究者對博弈論的貢獻,都是建立在這一概念之上的。由於納什均衡的提出和不斷完善為博弈論廣泛應用於經濟學、管理學、社會學、政治學、軍事科學等領域奠定了堅實的理論基礎。

囚犯的兩難處境

大理論中的小故事

要了解納什的貢獻,首先要知道什麼是非合作博弈問題。現在幾乎所有的博弈論教科書上都會講「囚犯的兩難處境」的例子,每本書上的例子都大同小異。

博弈論畢竟是數學,更確切地說是運籌學的一個分支,談經論道自然少不了數學語言,外行人看來只是一大堆數學公式。好在博弈論關心的是日常經濟生活問題,所以不能不食人間煙火。其實這一理論是從棋弈、撲克和戰爭等帶有競賽、對抗和決策性質的問題中借用的術語,聽上去有點玄奧,實際上卻具有重要現實意義。博弈論大師看經濟社會問題猶如棋局,常常寓深刻道理於游戲之中。所以,多從我們的日常生活中的凡人小事入手,以我們身邊的故事做例子,娓娓道來,並不乏味。話說有一天,一位富翁在家中被殺,財物被盜。警方在此案的偵破過程中,抓到兩個犯罪嫌疑人,斯卡爾菲絲和那庫爾斯,並從他們的住處搜出被害人家中丟失的財物。但是,他們矢口否認曾殺過人,辯稱是先發現富翁被殺,然後只是順手牽羊偷了點兒東西。於是警方將兩人隔離,分別關在不同的房間進行審訊。由地方檢察官分別和每個人單獨談話。檢察官說,「由於你們的偷盜罪已有確鑿的證據,所以可以判你們一年刑期。但是,我可以和你做個交易。如果你單獨坦白殺人的罪行,我只判你三個月的監禁,但你的同夥要被判十年刑。如果你拒不坦白,而被同夥檢舉,那麼你就將被判十年刑,他只判三個月的監禁。但是,如果你們兩人都坦白交代,那麼,你們都要被判5年刑。」斯卡爾菲絲和那庫爾斯該怎麼辦呢?他們面臨著兩難的選擇——坦白或抵賴。顯然最好的策略是雙方都抵賴,結果是大家都只被判一年。但是由於兩人處於隔離的情況下無法串供。所以,按照亞當·斯密的理論,每一個人都是從利己的目的出發,他們選擇坦白交代是最佳策略。因為坦白交代可以期望得到很短的監禁———3個月,但前提是同夥抵賴,顯然要比自己抵賴要坐10年牢好。這種策略是損人利己的策略。不僅如此,坦白還有更多的好處。如果對方坦白了而自己抵賴了,那自己就得坐10年牢。太不劃算了!因此,在這種情況下還是應該選擇坦白交代,即使兩人同時坦白,至多也只判5年,總比被判10年好吧。所以,兩人合理的選擇是坦白,原本對雙方都有利的策略(抵賴)和結局(被判1年刑)就不會出現。這樣兩人都選擇坦白的策略以及因此被判5年的結局被稱為「納什均衡」,也叫非合作均衡。因為,每一方在選擇策略時都沒有「共謀」(串供),他們只是選擇對自己最有利的策略,而不考慮社會福利或任何其他對手的利益。也就是說,這種策略組合由所有局中人(也稱當事人、參與者)的最佳策略組合構成。沒有人會主動改變自己的策略以便使自己獲得更大利益。「囚徒的兩難選擇」有著廣泛而深刻的意義。個人理性與集體理性的沖突,各人追求利己行為而導致的最終結局是一個「納什均衡」,也是對所有人都不利的結局。他們兩人都是在坦白與抵賴策略上首先想到自己,這樣他們必然要服長的刑期。只有當他們都首先替對方著想時,或者相互合謀(串供)時,才可以得到最短時間的監禁的結果。「納什均衡」首先對亞當·斯密的「看不見的手」的原理提出挑戰。按照斯密的理論,在市場經濟中,每一個人都從利己的目的出發,而最終全社會達到利他的效果。不妨讓我們重溫一下這位經濟學聖人在《國富論》中的名言:「通過追求(個人的)自身利益,他常常會比其實際上想做的那樣更有效地促進社會利益。」從「納什均衡」我們引出了「看不見的手」的原理的一個悖論:從利己目的出發,結果損人不利己,既不利己也不利他。兩個囚徒的命運就是如此。從這個意義上說,「納什均衡」提出的悖論實際上動搖了西方經濟學的基石。因此,從「納什均衡」中我們還可以悟出一條真理:合作是有利的「利己策略」。但它必須符合以下黃金律:按照你願意別人對你的方式來對別人,但只有他們也按同樣方式行事才行。也就是中國人說的「己所不欲勿施於人」。但前提是人所不欲勿施於我。其次,「納什均衡」是一種非合作博弈均衡,在現實中非合作的情況要比合作情況普遍。所以「納什均衡」是對馮·諾依曼和摩根斯特恩的合作博弈理論的重大發展,甚至可以說是一場革命。

從「納什均衡」的普遍意義中我們可以深刻領悟司空見慣的經濟、社會、政治、國防、管理和日常生活中的博弈現象。我們將例舉出許多類似於「囚徒的兩難處境」這樣的例子。如價格戰、軍奮競賽、污染等等。一般的博弈問題由三個要素所構成:即局中人(players)又稱當事人、參與者、策略等等的集合,策略(strategies)集合以及每一對局中人所做的選擇和贏得(payoffs)集合。其中所謂贏得是指如果一個特定的策略關系被選擇,每一局中人所得到的效用。所有的博弈問題都會遇到這三個要素。

價格戰博弈:

現在我們經常會遇到各種各樣的家電價格大戰,彩電大戰、冰箱大戰、空調大戰、微波爐大戰……這些大戰的受益者首先是消費者。每當看到一種家電產品的價格大戰,百姓都會「沒事兒偷著樂」。在這里,我們可以解釋廠家價格大戰的結局也是一個「納什均衡」,而且價格戰的結果是誰都沒錢賺。因為博弈雙方的利潤正好是零。競爭的結果是穩定的,即是一個「納什均衡」。這個結果可能對消費者是有利的,但對廠商而言是災難性的。所以,價格戰對廠商而言意味著自殺。從這個案例中我們可以引伸出兩個問題,一是競爭削價的結果或「納什均衡」可能導致一個有效率的零利潤結局。二是如果不採取價格戰,作為一種敵對博弈論(vivalry game)其結果會如何呢?每一個企業,都會考慮採取正常價格策略,還是採取高價格策略形成壟斷價格,並盡力獲取壟斷利潤。如果壟斷可以形成,則博弈雙方的共同利潤最大。這種情況就是壟斷經營所做的,通常會抬高價格。另一個極端的情況是廠商用正常的價格,雙方都可以獲得利潤。從這一點,我們又引出一條基本准則:「把你自己的戰略建立在假定對手會按其最佳利益行動的基礎上」。事實上,完全競爭的均衡就是「納什均衡」或「非合作博弈均衡」。在這種狀態下,每一個廠商或消費者都是按照所有的別人已定的價格來進行決策。在這種均衡中,每一企業要使利潤最大化,消費者要使效用最大化,結果導致了零利潤,也就是說價格等於邊際成本。在完全競爭的情況下,非合作行為導致了社會所期望的經濟效率狀態。如果廠商採取合作行動並決定轉向壟斷價格,那麼社會的經濟效率就會遭到破壞。這就是為什麼WTO和各國政府要加強反壟斷的意義所在。

污染博弈:

假如市場經濟中存在著污染,但政府並沒有管制的環境,企業為了追求利潤的最大化,寧願以犧牲環境為代價,也絕不會主動增加環保設備投資。按照看不見的手的原理,所有企業都會從利己的目的出發,採取不顧環境的策略,從而進入「納什均衡」狀態。如果一個企業從利他的目的出發,投資治理污染,而其他企業仍然不顧環境污染,那麼這個企業的生產成本就會增加,價格就要提高,它的產品就沒有競爭力,甚至企業還要破產。這是一個「看不見的手的有效的完全競爭機制」失敗的例證。直到20世紀90年代中期,中國鄉鎮企業的盲目發展造成嚴重污染的情況就是如此。只有在政府加強污染管制時,企業才會採取低污染的策略組合。企業在這種情況下,獲得與高污染同樣的利潤,但環境將更好。

貿易自由與壁壘:

這個問題對於剛剛加入WTO的中國而言尤為重要。任何一個國家在國際貿易中都面臨著保持貿易自由與實行貿易保護主義的兩難選擇。貿易自由與壁壘問題,也是一個「納什均衡」,這個均衡是貿易雙方採取不合作博弈的策略,結果使雙方因貿易戰受到損害。X國試圖對Y國進行進口貿易限制,比如提高關稅,則Y國必然會進行反擊,也提高關稅,結果誰也沒有撈到好處。反之,如X和Y能達成合作性均衡,即從互惠互利的原則出發,雙方都減少關稅限制,結果大家都從貿易自由中獲得了最大利益,而且全球貿易的總收益也增加了。
參考資料:網路知道

⑹ 關於博弈的問題,急需

1是博弈論的題目么?如果是的話 第一道題的均衡利潤0 0,但如果不是要求NASH均衡的話 當然兩家企業串通 最高價報價了。
2因為規模經濟 沃爾瑪的成本比某家低

⑺ 在股市中如何判斷莊家持股的成本(簡單易懂)

關於這一點,建議樓主只可以大致估算,千萬不可去細致考證。因為主力大多數時候,是不會讓局外人能算得出持倉成本的。財經網站上有所謂標注的主力成本,都是騙小孩子的數據,如果認真,會吃虧的。稍詳細點為樓主釋疑罷。通常有兩種狀況。一是某隻股票中的老主力,長線庄。這種主力的持倉成本是最最難以估算的。甚至連大概的估算都做不到。這是真話。舉個例子,如果我告訴樓主,長庄在某些時候,手裡的籌碼成本居然是負數,樓主一定覺得不可思議對嗎?但實情確實如此。你有機會可以試一下。假如你買入某股一萬股,獲利百分之三十後,賣出八千股,那麼你再查一下,你手裡留有的二千股,成本就是負數了。就是這個道理。老主力長年運作一隻股票,反復幾百次高拋低吸,底倉的成本低得驚人,甚至無法計算。這就是為什麼熊市來了,股票暴跌,散戶大戶都承受不了,但主力卻泰然自若的根本原因。在股票市場,主力與散戶的博弈,說到底就是成本高低的博弈。另外一種是相對容易估算一點的,比如說面對突發性利好,或者過江龍游資對某股的突然強制介入。主力原本沒有底倉籌碼,或是底倉太少,只能用拉高建倉的手法,此時主力的成本就會很高,大致成本得從最低位起加百分之二十。但主力的水平不均,對這個數字也要辯證地看,不能按圖索驥。

⑻ 什麼是博弈學習博弈對我們的生活有什麼用如何認識博弈呢

博弈是指在一定的游戲規則約束下,基於直接相互作用的環境條件,各參與人依靠所掌握的信息,選擇各自策略(行動),以實現利益最大化和風險成本最小化的過程。簡單說就是人與人之間為了謀取利益而競爭。
建議你去看看納什的博弈論,他的博弈論的應用領域十分廣泛,在經濟學、政治科學(國內的以及國際的)、軍事戰略問題、進化生物學以及當代的計算機科學等領域都已成為重要的研究和分析工具。此外,它還與會計學、統計學、數學基礎、社會心理學以及諸如認識論與倫理學等哲學分支有重要聯系。