❶ 集成電路是怎樣製造出來
微電子技術涉及的行業很多,包括化工、光電技術、半導體材料、精密設備製造、軟體等,其中又以集成電路技術為核心,包括集成電路的設計、製造.集成電路(IC)常用基本概念有:
晶圓,多指單晶硅圓片,由普通硅沙拉制提煉而成,是最常用的半導體材料,按其直徑分為4英寸、5英寸、6英寸、8英寸等規格,近來發展出12英寸甚至更大規格.晶圓越大,同一圓片上可生產的IC就多,可降低成本;但要求材料技術和生產技術更高.
前、後工序:IC製造過程中, 晶圓光刻的工藝(即所謂流片),被稱為前工序,這是IC製造的最要害技術;晶圓流片後,其切割、封裝等工序被稱為後工序.
光刻:IC生產的主要工藝手段,指用光技術在晶圓上刻蝕電路.
線寬:4微米/1微米/0.6微未/0.35微米/035微米等,是指IC生產工藝可達到的最小導線寬度,是IC工藝先進水平的主要指標.線寬越小,集成度就高,在同一面積上就集成更多電路單元.
封裝:指把矽片上的電路管腳,用導線接引到外部接頭處,以便與其它器件連接.
存儲器:專門用於保存數據信息的IC.
邏輯電路:以二進制為原理的數字電路。
1.集成電路
隨著電子技術的發展及各種電器的普及,集成電路的應用越來越廣,大到飛入太空的"神州五號",小到我們身邊的電子手錶,裡面都有我們下面將要說到的集成電路。
我們將各種電子元器件以相互聯系的狀態集成到半導體材料(主要是硅)或者絕緣體材料薄層片子上,再用一個管殼將其封裝起來,構成一個完整的、具有一定功能的電路或系統。這種有一定功能的電路或系統就是集成電路了。就像人體由不同器官組成,各個器官各司其能而又相輔相成,少掉任何一部分都不能完整地工作一樣。任何一個集成電路要工作就必須具有接收信號的輸入埠、發送信號的輸出埠以及對信號進行處理的控制電路。輸入、輸出(I/O)埠簡單的說就是我們經常看到的插口或者插頭,而控制電路是看不到的,這是集成電路製造廠在凈化間里製造出來的。
如果將集成電路按集成度高低分類,可以分為小規模(SSI)、中規模(MSI)、大規模(LSI)和超大規模(VLSI)。近年來出現的特大規模集成電路(UISI),以小於1um為最小的設計尺寸,這樣將在每個片子上有一千萬到一億個元件。
2.系統晶元(SOC)
不知道大家有沒有看過美國大片《終結者》,在看電影的時候,有沒有想過,機器人為什麼能夠像人一樣分析各種問題,作出各種動作,好像他也有大腦,也有記憶一樣。其實他裡面就是有個系統晶元(SOC)在工作。當然,那個是科幻片,科技還沒有發展到那個水平。但是SOC已成為集成電路設計學領域里的一大熱點。在不久的未來,它就可以像"終結者"一樣進行工作了。
系統晶元是採用低於0.6um工藝尺寸的電路,包含一個或者多個微處理器(大腦),並且有相當容量的存儲器(用來記憶),在一塊晶元上實現多種電路,能夠自主地工作,這里的多種電路就是對信號進行操作的各種電路,就像我們的手、腳,各有各的功能。這種集成電路可以重復使用原來就已經設計好的功能復雜的電路模塊,這就給設計者節省了大量時間。
SOC技術被廣泛認同的根本原因,並不在於它擁有什麼非常特別的功能,而在於它可以在較短的時間內被設計出來。SOC的主要價值是可以有效地降低電子信息系統產品的開發成本,縮短產品的上市周期,增強產品的市場競爭力。
3.集成電路設計
對於"設計"這個詞,大家肯定不會感到陌生。在修建三峽水電站之前,我們首先要根據地理位置、水流緩急等情況把它在電腦上設計出來。製造集成電路同樣也要根據所需要電路的功能把它在電腦上設計出來。
集成電路設計簡單的說就是設計硬體電路。我們在做任何事情之前都會仔細地思考究竟怎麼樣才能更好地完成這件事以達到我們預期的目的。我們需要一個安排、一個思路。設計集成電路時,設計者首先根據對電路性能和功能的要求提出設計構思。然後將這樣一個構思逐步細化,利用電子設計自動化軟體實現具有這些性能和功能的集成電路。假如我們現在需要一個火警電路,當室內的溫度高於50℃就報警。設計者將按照我們的要求構思,在計算機上利用軟體完成設計版圖並模擬測試。如果模擬測試成功,就可以說已經實現了我們所要的電路。
集成電路設計一般可分為層次化設計和結構化設計。層次化設計就是把復雜的系統簡化,分為一層一層的,這樣有利於發現並糾正錯誤;結構化設計則是把復雜的系統分為可操作的幾個部分,允許一個設計者只設計其中一部分或更多,這樣其他設計者就可以利用他已經設計好的部分,達到資源共享。
4.矽片製造
我們知道許多電器中都有一些薄片,這些薄片在電器中發揮著重要的作用,它們都是以矽片為原材料製造出來的。矽片製造為晶元的生產提供了所需的矽片。那麼矽片又是怎樣製造出來的呢?
矽片是從大塊的硅晶體上切割下來的,而這些大塊的硅晶體是由普通硅沙拉制提煉而成的。可能我們有這樣的經歷,塊糖在溫度高的時候就會熔化,要是粘到手上就會拉出一條細絲,而當細絲拉到離那顆糖較遠的地方時就會變硬。其實我們這兒製造矽片,首先就是利用這個原理,將普通的硅熔化,拉制出大塊的硅晶體。然後將頭部和尾部切掉,再用機械對其進行修整至合適直徑。這時看到的就是有合適直徑和一定長度的"硅棒"。再把"硅棒"切成一片一片薄薄的圓片,圓片每一處的厚度必須是近似相等的,這是矽片製造中比較關鍵的工作。最後再通過腐蝕去除切割時殘留的損傷。這時候一片片完美的硅圓片就製造出來了。
5.硅單晶圓片
我們製造一個晶元,需要先將普通的硅製造成硅單晶圓片,然後再通過一系列工藝步驟將硅單晶圓片製造成晶元。下面我們就來看一下什麼是硅單晶圓片。
從材料上看,硅單晶圓片的主要材料是硅,而且是單晶硅;從形狀上看,它是圓形片狀的。硅單晶圓片是最常用的半導體材料,它是硅到晶元製造過程中的一個狀態,是為了晶元生產而製造出來的集成電路原材料。它是在超凈化間里通過各種工藝流程製造出來的圓形薄片,這樣的薄片必須兩面近似平行且足夠平整。硅單晶圓片越大,同一圓片上生產的集成電路就越多,這樣既可降低成本,又能提高成品率,但材料技術和生產技術要求會更高。
如果按直徑分類,硅單晶圓片可以分為4英寸、5英寸、6英寸、8英寸等規格,近來又發展出12英寸甚至更大規格。最近國內最大的硅單晶圓片製造廠——中芯國際就准備在北京建設一條12英寸的晶圓生長線。
6.晶元製造
隨著科學技術的飛速發展,晶元的性能越來越高,而體積卻越來越小。我們在使用各種電子產品時無不嘆服現代科技所創造的奇跡。而這樣的奇跡,你知道是怎樣被創造出來的嗎?
晶元是用地球上最普遍的元素硅製造出來的。地球上呈礦石形態的砂子,在對它進行極不尋常的加工轉變之後,這種簡單的元素就變成了用來製作集成電路晶元的矽片。
我們把電腦上設計出來的電路圖用光照到金屬薄膜上,製造出掩膜。就象燈光從門縫透過來,在地上形成光條,若光和金屬薄膜能起作用而使金屬薄膜在光照到的地方形成孔,那就在其表面有電路的地方形成了孔,這樣就製作好了掩膜。我們再把剛製作好的掩膜蓋在矽片上,當光通過掩膜照射,電路圖就"印製"在硅晶片上。如果我們按照電路圖使應該導電的地方連通,應該絕緣的地方斷開,這樣我們就在矽片上形成了所需要的電路。我們需要多個掩膜,形成上下多層連通的電路,那麼就將原來的矽片製造成了晶元。所以我們說矽片是晶元製造的原材料,矽片製造是為晶元製造准備的。
7.EMS
提起EMS,大家可能會想到郵政特快專遞,但我們集成電路產業裡面所說的EMS是指沒有自己的品牌產品,專門替品牌廠商生產的電子合約製造商,也稱電子製造服務企業。那麼就讓我們來看一下電子合約製造商到底是干什麼的。
所謂電子合約製造商,就是把別人的定單拿過來,替別人加工生產,就像是我們請鍾點工回來打掃衛生、做飯一樣,他們必須按照我們的要求來做事。EMS在各個方面,各個環節都有優勢,從采購到生產、銷售甚至在設計方面都具有自己的特色。因而它成了專門為品牌廠商生產商品的企業。EMS的優勢在於它的製造成本低,反應速度快,有自己一定的設計能力和強大的物流渠道。
最近,一些國際知名的EMS電子製造商正在將他們的製造基地向中國全面轉移。他們的到來當然會沖擊國內做製造的企業。但是對其他企業來說可能就是個好消息,因為這些EMS必須要依靠本地的供應商提供零部件。
8.流片
在觀看了電影《摩登時代》後,我們可能經常想起卓別林鈕螺絲的那個鏡頭。大家知道影片中那種流水線一樣的生產就是生產線。只是隨著科學技術的發展,在現在的生產線上卓別林所演的角色已經被機器取代了。我們像流水線一樣通過一系列工藝步驟製造晶元,這就是流片。
在晶元製造過程中一般有兩段時間可以叫做流片。在大規模生產晶元時,那流水線一樣地生產就是其中之一。大家可能很早就已經知道了這個過程叫流片,但下面這種情況就不能盡說其詳了。我們在搞設計的時候發現某個地方可以進行修改以取得更好的效果,但又怕這樣的修改會給晶元帶來意想不到的後果,如果根據這樣一個有問題的設計大規模地製造晶元,那麼損失就會很大。所以為了測試集成電路設計是否成功,必須進行流片,即從一個電路圖到一塊晶元,檢驗每一個工藝步驟是否可行,檢驗電路是否具備我們所要的性能和功能。如果流片成功,就可以大規模地製造晶元;反之,我們就需要找出其中的原因,並進行相應的優化設計。
9.多項目晶圓(MPW)
隨著製造工藝水平的提高,在生產線上製造晶元的費用不斷上漲,一次0.6微米工藝的生產費用就要20-30萬元,而一次0.35微米工藝的生產費用則需要60-80萬元。如果設計中存在問題,那麼製造出來的所有晶元將全部報廢。為了降低成本,我們採用了多項目晶圓。
所謂多項目晶圓(簡稱MPW),就是將多種具有相同工藝的集成電路設計放在同一個硅圓片上、在同一生產線上生產,生產出來後,每個設計項目可以得到數十片晶元樣品,這一數量足夠用於設計開發階段的實驗、測試。而實驗費用就由所有參加多項目晶圓的項目按照各自所佔的晶元面積分攤,極大地降低了實驗成本。這就很象我們都想吃巧克力,但是我們沒有必要每個人都去買一盒,可以只買來一盒分著吃,然後按照各人吃了多少付錢。
多項目晶圓提高了設計效率,降低了開發成本,為設計人員提供了實踐機會,並促進了集成電路設計成果轉化,對IC設計人才的培訓,及新產品的開發研製均有相當的促進作用。
10.晶圓代工
我們知道中芯國際是中國大陸知名的IT企業,可能也聽說了這樣一個消息,就是"台積電"將要來大陸投資建廠。他們所從事的工作都是晶圓代工。那現在讓我們來了解一下什麼是晶圓代工。
我們是熟悉加工坊的,它使用各種設備把客戶送過去需要加工的小麥、水稻加工成為需要的麵粉、大米等。這樣就沒有必要每個需要加工糧食的人都來建造加工坊。我們現在的晶圓代工廠就像是一個加工坊。晶圓代工就是向專業的集成電路設計公司或電子廠商提供專門的製造服務。這種經營模式使得集成電路設計公司不需要自己承擔造價昂貴的廠房,就能生產。這就意味著,台積電等晶圓代工商將龐大的建廠風險分攤到廣大的客戶群以及多樣化的產品上,從而集中開發更先進的製造流程。
隨著半導體技術的發展,晶圓代工所需投資也越來越大,現在最普遍採用的8英寸生產線,投資建成一條就需要10億美元。盡管如此,很多晶圓代工廠還是投進去很多資金、采購了很多設備。這足以說明晶圓代工將在不久的未來取得很大發展,佔全球半導體產業的比重也將與日俱增。
11.SMT
我們經常會看到電器里有塊板子,上面有很多電子器件。要是有機會看到板子的背面,你將看到正面器件的"腳"都通過板子上的孔到背面來了。現在出現了一種新興技術,比我們剛才說的穿孔技術有更多優點。
SMT 即表面貼裝技術,是電子組裝業中的一個新秀。隨著電子產品的小型化,占面積太大的穿孔技術將不再適合,只能採用表面貼裝技術。它不需要在板上穿孔,而是直接貼在正面。當然器件的"腳"就得短一點,細一點。SMT使電子組裝變得越來越快速和簡單,使電子產品的更新換代速度越來越快,價格也越來越低。這樣廠方就會更樂意採用這種技術以低成本高產量生產出優質產品以滿足顧客需求和加強市場競爭力。
SMT的組裝密度高、電子產品體積和重量只有原來的十分之一左右。一般採用SMT技術後,電子產品的可靠性高,抗振能力強。而且SMT易於實現自動化,能夠提高生產效率,降低成本,這樣就節省了大量的能源、設備、人力和時間。
12.晶元封裝
我們在走進商場的時候,就會發現裡面幾乎每個商品都被包裝過。那麼我們即將說到的封裝和包裝有什麼區別呢?
封裝就是安裝半導體集成電路晶元用的外殼。因為晶元必須與外界隔離,以防止空氣中的雜質對晶元電路的腐蝕而造成電路性能下降,所以封裝是至關重要的。封裝後的晶元也更便於安裝和運輸。封裝的這些作用和包裝是基本相似的,但它又有獨特之處。封裝不僅起著安放、固定、密封、保護晶元和增強電路性能的作用,而且還是溝通晶元內部世界與外部電路的橋梁--晶元上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印製板上的導線與其他器件建立連接。因此,封裝對 CPU和其他大規模集成電路都起著重要的作用。隨著CPU和其他大規模電路的進步,集成電路的封裝形式也將有相應的發展。
晶元的封裝技術已經歷了好幾代的變遷,技術指標一代比一代先進,晶元面積與封裝面積之比(衡量封裝技術水平的主要指標)越來越接近於1,適用頻率越來越高,耐溫性能也越來越好。它還具有重量小,可靠性高,使用方便等優點。
13.晶元測試
為了能在當今激烈的市場競爭中立於不敗之地,電子產品的生產廠家就必需確保產品質量。而為了保證產品質量,在生產過程中就需要採用各類測試技術進行檢測,以及時發現缺陷和故障並進行修復。
我們在使用某個晶元的時候,經常發現這樣的現象,就是晶元的其中幾個引腳沒有用到。我們甚至還會以為這樣子使用這個晶元是用錯了。其實這幾個引腳是用來測試用的。在晶元被製造出來之後,還要由晶元測試工程師對晶元進行測試,看這些生產出來的晶元的性能是否符合要求、晶元的功能是否能夠實現。實際上,我們這種測試方法只是接觸式測試,晶元測試技術中還有非接觸式測試。
隨著線路板上元器件組裝密度的提高,傳統的電路接觸式測試受到了極大的限制,而非接觸式測試的應用越來越普遍。所謂非接觸測試,主要就是利用光這種物質對製造過程中或者已經製造出來的晶元進行測試。這就好像一個人覺得腿痛,他就去醫院進行一個X光透視,看看腿是不是出現骨折或者其他問題。這種方法不會收到元器件密度的影響,能夠以很快的測試速度找出缺陷。
14.覆晶封裝技術
我們都知道鳥籠是用竹棒把上下兩塊木板撐出一個空間,鳥就生活在這裡面。我們將要說到的覆晶封裝和鳥籠是有相似之處的。下面我們就來看一下什麼是覆晶封裝技術。
我們通常把晶片經過一系列工藝後形成了電路結構的一面稱作晶片的正面。原先的封裝技術是在襯底之上的晶片的正面是一直朝上的,而覆晶技術是將晶片的正面反過來,在晶片(看作上面那塊板)和襯底(看作下面那塊板)之間及電路的外圍使用凸塊(看作竹棒)連接,也就是說,由晶片、襯底、凸塊形成了一個空間,而電路結構(看作鳥)就在這個空間裡面。這樣封裝出來的晶元具有體積小、性能高、連線短等優點。
隨著半導體業的迅速發展,覆晶封裝技術勢必成為封裝業的主流。典型的覆晶封裝結構是由凸塊下面的冶金層、焊點、金屬墊層所構成,因此冶金層在元件作用時的消耗將嚴重影響到整個結構的可靠度和元件的使用壽命。
15.凸塊製程
我們小時候經常玩橡皮泥,可能還這樣子玩過,就是先把橡皮泥捏成一個頭狀,再在上面加上眼睛、鼻子、耳朵等。而我們長凸塊就和剛剛說到的"長"眼睛、鼻子、耳朵差不多了。
晶圓製造完成後,在晶圓上進行長凸塊製程。在晶圓上生長凸塊後,我們所看到的就像是一個平底鍋,鍋的邊沿就是凸塊,而中間部分就是用來形成電路結構的。按凸塊的結構分,可以把它分為本體和球下冶金層(UBM)兩個部分。
就目前晶圓凸塊製程而言,可分為印刷技術和電鍍技術,兩種技術各擅勝場。就電鍍技術而言,其優勢是能提供更好的線寬和凸塊平面度,可提供較大的晶元面積,同時電鍍凸塊技術適合高鉛製程的特性,可更大幅度地提高晶元的可靠度,增加晶元的強度與運作效能。而印刷技術的製作成本低廉較具有彈性,適用於大量和小量的生產,但是製程式控制制不易,使得這種方法較少運用於生產凸塊間距小於150μm的產品。
16.晶圓級封裝
在一些古董展覽會上,我們經常會看到這樣的情形,即用一隻玻璃罩罩在古董上。為了空氣不腐蝕古董,還會採用一些方法使玻璃罩和下面的座墊之間密封。下面我們借用這個例子來理解晶圓級封裝。
晶圓級封裝(WLP)就是在其上已經有某些電路微結構(好比古董)的晶片(好比座墊)與另一塊經腐蝕帶有空腔的晶片(好比玻璃罩)用化學鍵結合在一起。在這些電路微結構體的上面就形成了一個帶有密閉空腔的保護體(硅帽),可以避免器件在以後的工藝步驟中遭到損壞,也保證了晶片的清潔和結構體免受污染。這種方法使得微結構體處於真空或惰性氣體環境中,因而能夠提高器件的品質。
隨著IC晶元的功能與高度集成的需求越來越大,目前半導體封裝產業正向晶圓級封裝方向發展。它是一種常用的提高矽片集成度的方法,具有降低測試和封裝成本,降低引線電感,提高電容特性,改良散熱通道,降低貼裝高度等優點。
17.晶圓位階的晶元級封裝技術
半導體封裝技術在過去二十年間取得了長足的發展,預計在今後二十年裡還會出現更加積極的增長和新一輪的技術進步。晶圓位階的晶元級封裝技術是最近出現的有很大積極意義的封裝技術。
我們把晶元原來面積與封裝後面積之比接近1:1的理想情況的封裝就叫做晶元級封裝。就像我們吃桔子,總希望它的皮殼薄點。晶圓位階的晶元級封裝技術就是晶圓位階處理的晶元級封裝技術。它可以有效地提高硅的集成度。晶圓位階處理就是在晶圓製造出來後,直接在晶圓上就進行各種處理,使相同面積的晶圓可以容納更多的經晶元級封裝的晶元,從而提高硅的集成度。同理,假如我們讓人站到一間屋子裡去,如果在冬天可能只能站十個人,而在夏天衣服穿少了,那就可以站十一或者十二個人。
晶圓位階的晶元級封裝製程將在今後的幾年裡以很快的速度成長,這將會在手機等手提電子設備上體現出來。我們以後的手機肯定會有更多的功能,比如可以看電視等,但是它們可能比我們現在使用的更小,那就用到了晶圓位階的晶元級封裝技術。
資料來源:COB邦定技術(http://www.bonding-cob.com/index.asp)
❷ 為什麼同樣的元器件有不同的封裝
不同的封裝適用於不同的產品,塑封的成本低,但是耗散功率也低,不適合環境溫度高的場合,而金屬封裝的性能好,製造成本高,價格也高。貼片封裝體積小,而且適合自動化裝配生產,陶瓷封裝的耐高溫,適用於軍品。隨著封裝技術的進步,晶元面積與封裝面積之比越來越接近,引腳數增多,引腳間距減小,封裝形式就更多了。
http://wenku..com/view/fa6c85e8172ded630b1cb6ab.html
❸ 什麼是晶圓級晶元尺寸封裝
晶圓級晶元封裝技術是對整片晶圓進行封裝測試後再切割得到單個成品晶元的技術,封裝後的晶元尺寸與裸片一致。
WL-CSP 與傳統的封裝方式不同在於,傳統的晶片封裝是先切割再封測,而封裝後約比原晶片尺寸增加20%;而WL-CSP則是先在整片晶圓上進行封裝和測試,然後才劃線分割,因此,封裝後的體積與IC裸晶元尺寸幾乎相同,能大幅降低封裝後的IC 尺寸.
到維庫電子通查一下吧
❹ 晶元試產為何會比量產還要貴
一顆晶元從設計到量產,最貴的地方就在於流片環節了,因為當晶元完全設計出來以後需要按照圖紙在晶圓上進行蝕刻,才用什麼樣的製程工藝,多大尺寸的晶圓,晶元的復雜程度都會影響這顆晶元的流片成功率和成本,而且許多晶元都不是一次就能流片成功的,往往需要進行多次流片才能獲得較為理想的效果,但是這些失敗流片也都是一筆費用。
而有瑕疵的晶元就可能被廢棄,量產環節成本大大降低,只要產量足夠大,原本高昂的流片成本就可以被巨大的數量平攤,成本就會不斷降低,即使是擴展生產線,只要數量達到一定級別,額外生產線的費用不算什麼。
❺ 晶圓和晶元的關系是什麼
晶元是晶圓切割完成的半成品。
❻ 晶元研發所需要的成本到底有多高科技企業的研發成本又是如何來的呢
晶元,又稱微電路、微晶元、集成電路等等。具體指的是那些內含集成電路的矽片,體積很小,常常是計算機或其他電子設備的一部分!我們通常所理解的晶元主要是在電腦,手機等通信領域使用率高的場景內,但其實晶元的應用范圍遠遠不止這些!比如很多家用電器,智能,人腦等等領域都有廣泛的應用場景!因此晶元又被稱之為「工業糧食",可知其對於工業的重要性!
言歸正傳,我國對於晶元的使用情況如何呢?
不得不說我國也是一個晶元的使用大國,很多領域都有晶元的身影。在2016一年中,我國晶元進口額高達2271億美元,這是連續4年進口額超過2000億美元。而晶元進口的花費已經連續兩年超過了原油的進口花費,過去十年累計耗資更是高達1.8萬億美元!雖然花費巨大,但是卻又迫不得已,因為晶元普遍用於眾多熱門高新科技領域,比如手機,汽車,計算機等等,如果沒有自主研發的晶元,那麼就只能進口人家的,哪怕多貴也得啃下去啊!
問題來了,我國在很多領域都處於世界先進水平,然而為何小小的晶元卻未能自主研發呢?
晶元生產有多難?我國處於晶元狀況如何?
記得有人問過一個問題:晶元和原子彈生產相比,哪個比較難?這里可以負責任地告訴大家,晶元的生產研發難度要遠遠高於原子彈!說晶元的研發與製造能力是代表了一個國家整體的科技水平一點都不為過!
可能在很早之前,有些人可能聽說過我國研發的「龍芯一號」,「龍芯二號」中央處理器等等!有人可能就會認為我國其實很早就掌握了晶元的獨立自主研發能力!其實這是不正確的,因為其所用的絕大多數材料仍然來自於國外進口,比如原材料、外延片、晶圓、封裝測試等等,都沒有實現完全的獨立自主研發!所以以至於知道現在,還要依靠著大量的技術進口,才能夠維持國內的一些領域!
其實這並不是說我國的科技水平低下,而是晶元的研發難度實在太大了!
主要難度其實並不能通過一篇文章就講清楚,因為它的生產經過了非常多的工序流程,生產規模龐大,系統極為復雜,而且所需投入的成本也是極大的!當今有名的晶元提供商有英特爾,三星,高通等,全球提供商不超過30家,出名的更是不超過10家!
我個人認為我國晶元研發之所以落後是因為以下幾點原因:
國內晶元產業起步晚,導致技術的劣勢比較明顯,生產的晶元在品質和性能上難以得到保證。(起步晚)
國內很多晶元企業早起給予政府支持,在一定程度上脫離市場規律,存在投機取巧心理,過度依賴政府扶持,最終導致核心能力不強,以至於難以正真走向市場!(過度依賴)
晶元產業更新換代速度很快,且產業門檻較高,屬於高投入、高研發,但是回報可能較慢。(成本技術風險高)
國內產業鏈的整體發展水平和垂直整合直接影響國內晶元產業發展和效率的提升。(產業鏈的影響)
最後還是想說,一直以來受到國外技術封鎖,加上我國對於高新產業起步較晚,能以達到瞬間的崛起與超高水平的超越,這都是情有可原的!但是我相信未來幾年後,我國一定可以研發出屬於自己的「中國芯」!
❼ 為什麼74HC244的貼片封裝要做成寬、窄兩種,寬的那種浪費空間,有什麼好處
一般封裝都有各自的優點,有的是便於安裝,有的是適用於高頻。
有的是成本比較低。
所以選擇自己需要的行可以了。現在DIP封裝的也有好多呢,各有各的好處吧。
一、DIP雙列直插式封裝
DIP(DualIn-line Package)是指採用雙列直插形式封裝的集成電路晶元,絕大多數中小規模集成電路(IC)均採用這種封裝形式,其引腳數一般不超過100個。採用DIP封裝的CPU晶元有兩排引腳,需要插入到具有DIP結構的晶元插座上。當然,也可以直接插在有相同焊孔數和幾何排列的電路板上進行焊接。DIP封裝的晶元在從晶元插座上插拔時應特別小心,以免損壞引腳。
DIP封裝具有以下特點:
1.適合在PCB(印刷電路板)上穿孔焊接,操作方便。
2.晶元面積與封裝面積之間的比值較大,故體積也較大。
Intel系列CPU中8088就採用這種封裝形式,緩存(Cache)和早期的內存晶元也是這種封裝形式。
二、PQFP塑料方型扁平式封裝和PFP塑料扁平組件式封裝
PQFP(Plastic Quad Flat Package)封裝的晶元引腳之間距離很小,管腳很細,一般大規模或超大型集成電路都採用這種封裝形式,其引腳數一般在100個以上。用這種形式封裝的晶元必須採用SMD(表面安裝設備技術)將晶元與主板焊接起來。採用SMD安裝的晶元不必在主板上打孔,一般在主板表面上有設計好的相應管腳的焊點。將晶元各腳對准相應的焊點,即可實現與主板的焊接。用這種方法焊上去的晶元,如果不用專用工具是很難拆卸下來的。
PFP(Plastic Flat Package)方式封裝的晶元與PQFP方式基本相同。唯一的區別是PQFP一般為正方形,而PFP既可以是正方形,也可以是長方形。
PQFP/PFP封裝具有以下特點:
1.適用於SMD表面安裝技術在PCB電路板上安裝布線。
2.適合高頻使用。
3.操作方便,可靠性高。
4.晶元面積與封裝面積之間的比值較小。
Intel系列CPU中80286、80386和某些486主板採用這種封裝形式。
三、PGA插針網格陣列封裝
PGA(Pin Grid Array Package)晶元封裝形式在晶元的內外有多個方陣形的插針,每個方陣形插針沿晶元的四周間隔一定距離排列。根據引腳數目的多少,可以圍成2-5圈。安裝時,將晶元插入專門的PGA插座。為使CPU能夠更方便地安裝和拆卸,從486晶元開始,出現一種名為ZIF的CPU插座,專門用來滿足PGA封裝的CPU在安裝和拆卸上的要求。
ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把這種插座上的扳手輕輕抬起,CPU就可很容易、輕松地插入插座中。然後將扳手壓回原處,利用插座本身的特殊結構生成的擠壓力,將CPU的引腳與插座牢牢地接觸,絕對不存在接觸不良的問題。而拆卸CPU晶元只需將插座的扳手輕輕抬起,則壓力解除,CPU晶元即可輕松取出。
PGA封裝具有以下特點:
1.插拔操作更方便,可靠性高。
2.可適應更高的頻率。
Intel系列CPU中,80486和Pentium、Pentium Pro均採用這種封裝形式。
四、BGA球柵陣列封裝
隨著集成電路技術的發展,對集成電路的封裝要求更加嚴格。這是因為封裝技術關繫到產品的功能性,當IC的頻率超過100MHz時,傳統封裝方式可能會產生所謂的「CrossTalk」現象,而且當IC的管腳數大於208 Pin時,傳統的封裝方式有其困難度。因此,除使用QFP封裝方式外,現今大多數的高腳數晶元(如圖形晶元與晶元組等)皆轉而使用BGA(Ball Grid Array Package)封裝技術。BGA一出現便成為CPU、主板上南/北橋晶元等高密度、高性能、多引腳封裝的最佳選擇。
BGA封裝技術又可詳分為五大類:
1.PBGA(Plasric BGA)基板:一般為2-4層有機材料構成的多層板。Intel系列CPU中,Pentium II、III、IV處理器均採用這種封裝形式。
2.CBGA(CeramicBGA)基板:即陶瓷基板,晶元與基板間的電氣連接通常採用倒裝晶元(FlipChip,簡稱FC)的安裝方式。Intel系列CPU中,Pentium I、II、Pentium Pro處理器均採用過這種封裝形式。
3.FCBGA(FilpChipBGA)基板:硬質多層基板。
4.TBGA(TapeBGA)基板:基板為帶狀軟質的1-2層PCB電路板。
5.CDPBGA(Carity Down PBGA)基板:指封裝中央有方型低陷的晶元區(又稱空腔區)。
BGA封裝具有以下特點:
1.I/O引腳數雖然增多,但引腳之間的距離遠大於QFP封裝方式,提高了成品率。
2.雖然BGA的功耗增加,但由於採用的是可控塌陷晶元法焊接,從而可以改善電熱性能。
3.信號傳輸延遲小,適應頻率大大提高。
4.組裝可用共面焊接,可靠性大大提高。
BGA封裝方式經過十多年的發展已經進入實用化階段。1987年,***西鐵城(Citizen)公司開始著手研製塑封球柵面陣列封裝的晶元(即BGA)。而後,摩托羅拉、康柏等公司也隨即加入到開發BGA的行列。1993年,摩托羅拉率先將BGA應用於行動電話。同年,康柏公司也在工作站、PC電腦上加以應用。直到五六年前,Intel公司在電腦CPU中(即奔騰II、奔騰III、奔騰IV等),以及晶元組(如i850)中開始使用BGA,這對BGA應用領域擴展發揮了推波助瀾的作用。目前,BGA已成為極其熱門的IC封裝技術,其全球市場規模在2000年為12億塊,預計2005年市場需求將比2000年有70%以上幅度的增長。
五、CSP晶元尺寸封裝
隨著全球電子產品個性化、輕巧化的需求蔚為風潮,封裝技術已進步到CSP(Chip Size Package)。它減小了晶元封裝外形的尺寸,做到裸晶元尺寸有多大,封裝尺寸就有多大。即封裝後的IC尺寸邊長不大於晶元的1.2倍,IC面積只比晶粒(Die)大不超過1.4倍。
CSP封裝又可分為四類:
1.Lead Frame Type(傳統導線架形式),代表廠商有富士通、日立、Rohm、高士達(Goldstar)等等。
2.Rigid Interposer Type(硬質內插板型),代表廠商有摩托羅拉、索尼、東芝、松下等等。
3.Flexible Interposer Type(軟質內插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也採用相同的原理。其他代表廠商包括通用電氣(GE)和NEC。
4.Wafer Level Package(晶圓尺寸封裝):有別於傳統的單一晶元封裝方式,WLCSP是將整片晶圓切割為一顆顆的單一晶元,它號稱是封裝技術的未來主流,已投入研發的廠商包括FCT、Aptos、卡西歐、EPIC、富士通、三菱電子等。
CSP封裝具有以下特點:
1.滿足了晶元I/O引腳不斷增加的需要。
2.晶元面積與封裝面積之間的比值很小。
3.極大地縮短延遲時間。
CSP封裝適用於腳數少的IC,如內存條和便攜電子產品。未來則將大量應用在信息家電(IA)、數字電視(DTV)、電子書(E-Book)、無線網路WLAN/GigabitEthemet、ADSL/手機晶元、藍芽(Bluetooth)等新興產品中。
六、MCM多晶元模塊
為解決單一晶元集成度低和功能不夠完善的問題,把多個高集成度、高性能、高可靠性的晶元,在高密度多層互聯基板上用SMD技術組成多種多樣的電子模塊系統,從而出現MCM(Multi Chip Model)多晶元模塊系統。
MCM具有以下特點:
1.封裝延遲時間縮小,易於實現模塊高速化。
2.縮小整機/模塊的封裝尺寸和重量。
3.系統可靠性大大提高。
❽ 為什麼相同的晶元,不同廠家報價差那麼多相同的封裝,相同的出廠……
進貨渠道不同,另外銷售商的心理也不同,有的人就是能宰一個算一個,有的是細水長流,我就遇上一哥們兒,我沒跟他做多少業務,但他是逢年過節,不是月餅就是茶葉的送,搞的我都不好意思
❾ 為什麼要重視晶圓級封裝
晶圓片級晶元規模封裝技術(WLCSP)
Wafer-Level Chip Scale Packaging Technology
WLCSP(Wafer Level Chip Scale Packaging)即晶圓級晶元封裝方式,不同於傳統的晶元封裝方式(先切割再封測,而封裝後至少增加原晶元20%的體積),此種最新技術是先在整片晶圓上進行封裝和測試,然後才切割成一個個的IC顆粒,因此封裝後的體積即等同IC裸晶的原尺寸。WLCSP的封裝方式,不僅明顯地縮小內存模塊尺寸,而符合行動裝置對於機體空間的高密度需求;另一方面在效能的表現上,更提升了數據傳輸的速度與穩定性。
WLCSP的特性優點
-原晶元尺寸最小封裝方式:
WLCSP晶圓級晶元封裝方式的最大特點便是有效地縮減封裝體積,故可搭配於行動裝置上而符合可攜式產品輕薄短小的特性需求。
-數據傳輸路徑短、穩定性高:
採用WLCSP封裝時,由於電路布線的線路短且厚(標示A至B的黃線),故可有效增加數據傳輸的頻寛減少電流耗損,也提升數據傳輸的穩定性。
散熱特性佳
由於WLCSP少了傳統密封的塑料或陶瓷包裝,故IC晶元運算時的熱能便能有效地發散,而不致增加主機體的溫度,而此特點對於行動裝置的散熱問題助益極大。