当前位置:首页 » 资源管理 » 因式分解资源在哪里找到
扩展阅读
在野外怎么做竹子工具 2025-07-26 15:20:36
工具栏声音怎么没了 2025-07-26 15:10:03
喵星大作战怎么做刷钻石 2025-07-26 15:08:55

因式分解资源在哪里找到

发布时间: 2022-05-04 21:51:09

‘壹’ 因式分解练习卷!!急急

看不了,明天做!好多题!晕!!5个积分少了,哈哈。。。

一、填空题(每题2分,共20分)
1.(a+x)m+1(b+x)n-1-(a+x)m(b+x)n的公因式是
=(a+x)^m*(b+x)^(n-1) *(a-b) .
2. a^2 +a+1/4 =( a+1/2 )2.
3.a2x2-4x+b2是一个完全平方式,则ab=2 .
4.已知x2-ax+16在整数范围内可以分解因式,则整数a的值是17 (只需填一个).
5.若2x2+2xy+y2-2x+1=0,则xy的值是 -1 .
6.若(x+y)2-6(x+y)+9=0,则x+y= 3 .
7.若|a-1|+a2-ab+ =0,
则a= 1 ,b= 1/2 .
8.若x2+mx+12=(x-2)(x-6),则m= -8 .
9.已知m+n=4,则 = 8 .
10.已知x+y=2,xy=-3,则xy2+x2y的值为 -6 .
11.已知a-b=3, a2-b2=9, 则a= 3 ,b= 0 .
12.若m+n=0,则多项式m3-m2n-mn2+n3的值为= 0 .
13.对于任何整数a,多项是(a+2)2-a2都能被整数 2 整除.
二、选择题(每题2分,共20分)
1.如果一个多项式的各项有公因式,则这个公因式一定是( )
A.数字 B.单项式 C.多项式 D.整式
2.下列各多项式中再有理数范围内,可用平方差公式分解因式的是( C )
A.a2+4 B.a2-2 C. -a2+4 D. -a2-4
3.下列各式的因式分解中,正确的是( C )
A.3m2-6m=m(3m-6m) B.a2b+ab+a=a(ab+b) C.-x2+2xy-y2=-(x-y)2 D.x2+y2=(x+y)2
4.在多项式① ;②-m2+14mn+49n2;③a2-10a+25;④ab2+2a2b-1;⑤y6-2y+1中,不能用完全平方公式分解因式的有( )
A.①②⑤ B.③④⑤ C.①②④ D.②④⑤

5.如图,已知R=6.75,r=3.25,则图中阴影部分的面积为(结果保留π)( )
A.3.5π B.12.25π C. 27π D.35π

6.若x4-64分解因式正确的是( A )
A.(x2+8) (x2-8) B. (x2+8) (x2+8)
C. (x2+4x+8) (x2-4x+8) D. 以上都不对
7.若x2+2(m-3)x+16时完全平方式,则m的值等于(D )
A.-5 B.3 C.7 D. 7或-1
8.若x2-x-m=(x-m) (x+1),则m的值为( B )
A.0 B.2 C. -1 D. 1
三、解答题(共56分)
1.把下列各式因式分解.(18分)
(1)36m2n2-(9m2+n2)2
(2)a2+(a+1)2+2(a+a2)
(3)9(x+a)2+30(x+a)(x+b)+25(x+b)2
www.1230.org 初中数学资源网 萧山朝晖
2.利用因式分解计算(6分)
⑷.992+1.99×0.01= .
⑸20032-2003×8+16= .

(1)1.2222×9-1.3332×4
(2)
(3)
3.解方程:(6分)
(1)4x2-(x+1)2=0
(2)(65x+63)2-(63-65x)2=260
4.已知a2-5a+1=0 (a≠0),求 的值(8分)
5.已知x2+x+1=0,求x8+x4+1的值.(6分)
6.已知(x-x2) (x2-y)=1,求代数式 的值(6分)

7.如图,已知E、F在线段AB上,AE=EF=FB=a, AD⊥AB,BC‖AD, AD=h1, BC=h2,
G到AB的距离为h3
(1)用代数式表示图中阴影部分的面积S;
(2)求当a=5.9, h1=6.2, h2=7.3, h3=6.5时,S的值 (12分)

‘贰’ 求Minecraft PE 1.1.0.X因式分解mod的资源!!!

连高压电 mfsu,它就会自动生产uu物质

‘叁’ 因式分解有哪几种方法

1、提公因式法

几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

2、公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

平方差公式:a²-b²=(a+b)(a-b);

完全平方公式:a²±2ab+b²=(a±b)²;

注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数的积的2倍。

3、待定系数法

例如,将ax2+bx+c因式分解,可令ax2+bx+c=0,再解这个方程。如果方程无解,则原式无法因式分解;如果方程有两个相同的实数根(设为m),则原式可以分解为(x-m)2如果方程有两个不相等的实数根(分别设为m,n),则原式可以分解为(x-m)(x-n)。

4、十字相乘法

十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。



(3)因式分解资源在哪里找到扩展阅读:

因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。

对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。

如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

‘肆’ 因式分解有几种方法

因式分解 因式分解(factorization) 因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a \-----/b ac=k bd=n c /-----\d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。 经典例题: 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立 因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4) 参考资料: http://..com/question/36231611.html?ansup1

‘伍’ 怎么做因式分解

提公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。
公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式: (a+b)(a-b)=a^2-b^2 反过来为a^2-b^2=(a+b)(a-b) 完全平方公式:(a+b)^2=a^2+2ab+b^2 反过来为a^2+2ab+b^2=(a+b)^2 (a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2
分解因式技巧
1.分解因式技巧掌握: ①分解因式是多项式的恒等变形,要求等式左边必须是多项式 ②分解因式的结果必须是以乘积的形式表示 ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 2.提公因式法基本步骤: (1)找出公因式 (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数再确定字母 ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式 ③提完公因式后,另一因式的项数与原多项式的项数相同。

‘陆’ 我的世界因式分解在哪下载

在网络上搜索多玩我的世界盒子,然后在mod中的上面搜索因式分解,就可以了。

‘柒’ 百度网盘小绿刷题因式分解刷题免费链接资源求分享

链接: https://pan..com/s/1cYKqnG1mbDoKmHMgpEZuEw

提取码: i8e9
蘑菇网校小绿刷题因式分解刷题,主讲杨淳子、王娇,完结版网络网盘1.86G高清视频。

‘捌’ 求一个在线解答因式分解的网站

例如x^2-(a-b)x-ab 解答: =x^2+bx-ax-ab =x^2-(a-b)x-ab =(x-a)(x+b) z^2-(2y-1)^2 =z^2-(4y^2-4y+1) =z^2-4y^2+4y-1 解答: =[z+(2y-1)][z-(2y-1)] =(z+2y-1)(z-2y+1) 追问: 你是自己做的还是用网站做的啊 我有50道题呢 如果有网站请告诉我 谢谢 追问: 你是自己做的还是用网站做的啊 如果有网站请发给我 我有50道题呢 回答: 我自己做的 追问: 那你能帮我把50道都做了吗 我就这点分 不能再给你加分了 回答: 那你的那个网站在那里. 补充: http://www.dxstudy.com/information1/8000.htm 你到这个网站看一看,那里有因式分解的题目. 追问: 哎 以前找到一个在网站上能直接得答案的 忘存起来了 忘了 你那没有那种网站吗 回答: http://www.yh363.com/shitixitong/shuxue-2/8-2-017.doc 因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)^2(x+2)-(x+1)(x+2)^2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 我是在网上找到的,不知道湖符合你的要求不. 补充: 39.因式分解下列各式: (1)3ax2-6ax=3ax(x-2) (2)x(x+2)-x=x(x+1) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (5)36x2-60x+25=(6x-5)^2 (6)4x2+12x+9=(2x+3)^2 (7)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (9)12x2-50x+8=2(6x-1)(x-4) 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 补充: 因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2) 61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2) 63.因式分解下列各式: (1)3x2-6x=3x(x-2) (2)49x2-25=(7x+5)(7x-5) (3)6x2-13x+5=(2x-1)(3x-5) (4)x2+2-3x=(x-1)(x-2) (5)12x2-23x-24=(3x-8)(4x+3) (6)(x+6)(x-6)-(x-6)=(x-6)(x+5) (7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) (8)9x2+42x+49=(3x+7)^2 。 追问: 老师留的固定的题目 我把50道题都给你发过去 你帮我做好吗

‘玖’ 因式分解有哪些方法

因式分解的方法有:
提公因式法、公式法、分组分解法、十字相乘法、拆项补项法、配方法等