当前位置:首页 » 资源管理 » 如何设置临界资源
扩展阅读
如何提高造假成本 2025-05-28 02:32:47
将来什么东西取代石油 2025-05-28 02:12:47
云顶一区钻石水平怎么样 2025-05-28 02:12:00

如何设置临界资源

发布时间: 2022-04-21 11:01:00

❶ .net 如何处理并发异常

并发和异常可不是一个概念。。最简单的就是lock关键字了, 如 lock(sharedObject){sharedObject.SomeProperty = "anything";} 当第一个线程执行到 lock 时, 就会设置锁定临界资源, 在其执行完 lock 所管辖的代码之前 , 其它线程要想锁定相同的临界资源, 就要等待。 注意, 这个锁定只是一种君子约定, 也就是说如果其它线程不执行锁定操作, 而直接访问临界资源,那是不会引起等待的。就像狗通过特殊方式划定自己的地盘后, 其它狗就不会擅闯了, 因为这是狗类的规矩, 但猫可不管这一套。

❷ 三个并发进程,一个临界资源,如何设互斥信号量

如果你确定是一个互斥问题的话,不管多少个进程都只需要一个互斥信号量,并且该互斥信号量的初值只需要设为1就可以了。
仔细考虑一下什么是互斥资源?不允许多个进程同时访问的资源才是互斥资源。

❸ 计算机操作系统关于进程的问题

选A,汤小丹的《计算机操作系统中》有提到这个。原话是“为使多个进程能互斥地访问某 临界资源,只需为该资源设置一互斥信号量mutex,并设其初始值为1”。简单来所,每个想要访问临界资源的进程都会先执行wait(mutex),第一个执行的进程是肯定可以获得该资源的,而此时同样想要获得该临界资源的进程肯定失败,因为wait(mutex)之后,mutex会减1,即0(0表示假),所以其他进程想要此时访问必然失败,从而实现互斥访问临界资源。

❹ 如何利用信号量机制实现多进程访问临界资源

进程互斥 定义:两个或两个以上的进程,不能同时进入关于同一组共享变量的临界区域,否则可能发生与时间有关的错误,这种现象被称作进程互斥.
在多道程序环境下,存在着临界资源,它是指多进程存在时必须互斥访问的资源。也就是某一时刻不允许多个进程同时访问,只能单个进程的访问。我们把这些程序的片段称作临界区或临界段,它存在的目的是有效的防止竞争条件又能保证最大化使用共享数据。而这些并发进程必须有好的解决方案,才能防止出现以下情况:多个进程同时处于临界区,临界区外的进程阻塞其他的进程,有些进程在临界区外无休止的等待。除此以外,这些方案还不能对CPU的速度和数目做出任何的假设。只有满足了这些条件,才是一个好的解决方案。
访问临界资源的循环进程可以这样来描述:
Repeat
entry section
Critical sections;
exit section
Remainder sectioni;
Until false
为实现进程互斥,可以利用软件的方法,也可以在系统中设置专门的同步机制来协调多个进程,但是所有的同步机制应该遵循四大准则:
1.空闲让进 当临界资源处于空闲状态,允许一个请求进入临界区的进程立即进入临界区,从 而有效的利用资源。
2.忙则等待 已经有进程进入临界区时,意味着相应的临界资源正在被访问,所以其他准备进 入临界区的进程必须等待,来保证多进程互斥。
3.有限等待 对要求访问临界资源的进程,应该保证该进程能在有效的时间内进入临界区,防 止死等状态。
4.让权等待 当进程不能进入临界区,应该立即释放处理机,防止进程忙等待。
早期解决进程互斥问题有软件的方法和硬件的方法,如:严格轮换法,Peterson的解决方案,TSL指令,Swap指令都可以实现进程的互斥,不过它们都有一定的缺陷,这里就不一一详细说明,而后来Kijkstra提出的信号量机制则更好的解决了互斥问题。

❺ Java 什么是多线程对临界资源如何访问

一个进程可以有多个线程,多个线程可以共享公共数据,这样能提高运行速度。。临界资源使用线程同步,也就是只能一个线程运行。

❻ 关于3个进程共享一个临界资源

在操作系统理论中有一个非常重要的概念叫做P,V原语。在我们研究进程间的互斥的时候经常会引入这个概念,将P,V操作方法与加锁的方法相比较,来解决进程间的互斥问题。实际上,他的应用范围很广,他不但可以解决进程管理当中的互斥问题,而且我们还可以利用此方法解决进程同步与进程通信的问题。

[一]P,V原语理论

阐述P,V原语的理论不得不提到的一个人便是赫赫有名的荷兰科学家E.W.Dijkstra。如果你对这位科学家没有什么印象的话,提起解决图论中最短路径问题的Dijkstra算法应当是我们再熟悉不过的了。P,V原语的概念以及P,V操作当中需要使用到的信号量的概念都是由他在1965年提出的。

信号量是最早出现的用来解决进程同步与互斥问题的机制,包括一个称为信号量的变量及对它进行的两个原语操作。信号量为一个整数,我们设这个信号量为:sem。很显然,我们规定在sem大于等于零的时候代表可供并发进程使用的资源实体数,sem小于零的时候,表示正在等待使用临界区的进程的个数。根据这个原则,在给信号量附初值的时候,我们显然就要设初值大于零。

p操作和v操作是不可中断的程序段,称为原语。P,V原语中P是荷兰语的Passeren,相当于英文的pass, V是荷兰语的Verhoog,相当于英文中的incremnet。

P原语操作的动作是:

(1) sem减1;

(2) 若sem减1后仍大于或等于零,则进程继续执行;

(3) 若sem减1后小于零,则该进程被阻塞后进入与该信号相对应的队列中,然后转进程调度。

V原语操作的动作是:

(1) sem加1;

(2) 若相加结果大于零,则进程继续执行;

(3) 若相加结果小于或等于零,则从该信号的等待队列中唤醒一等待进程,然后再返回原进程继续执行或转进程调度。

需要提醒大家一点就是P,V操作对于每一个进程来说,都只能进行一次。而且必须成对使用。且在P,V愿语执行期间不允许有中断的发生。

对于具体的实现,方法非常多,可以用硬件实现,也可以用软件实现。我们采用如下的定义:

procere p(var s:samephore);
{
s.value=s.value-1;
if (s.value<0) asleep(s.queue);
}
procere v(var s:samephore);
{
s.value=s.value+1;
if (s.value<=0) wakeup(s.queue);
}
其中用到两个标准过程:
asleep(s.queue);执行此操作的进程控制块进入s.queue尾部,进程变成等待状态
wakeup(s.queue);将s.queue头进程唤醒插入就绪队列
对于这个过程,s.value初值为1时,用来实现进程的互斥。

虽软说信号量机制毕加锁方法要好得多,但是也不是说它没有任何的缺陷。由此我们也可以清晰地看到,这种信号量机制必须有公共内存,不能用于分布式操作系统,这是它最大的弱点。

[二]P,V原语的应用

正如我们在文中最开始的时候提到的,P,V原语不但可以解决进程管理当中的互斥问题,而且我们还可以利用此方法解决进程同步与进程通信的问题。

(1)用P V原语实现进程互斥

把临界区置于P(sem) 和V(sem)之间。当一个进程想要进入临界区时,它必须先执行P原语操作以将信号量sem减1,在进程完成对临界区的操作后,它必须执行V原语操作以释放它所占用的临界区。从而就实现了进程的互斥:

具体的过程我们可以简单的描述如下:

PA:

P(sem)

<S>;

V(sem)

PB:

P(sem)

<S>;

V(sem)

(2) 用P V原语实现进程同步

进程同步问题的解决同样可以采用这种操作来解决,我们假设两个进程需要同步进行,一个进程是计算进程,另一个进程是打印进程,那么这个时候两个进程的定义可以表示为:

PC(表示计算进程)

A: local buf

repeat

buf=buf

until buf=空

计算

得到计算结果

buf=计算结果

goto A

PP:(表示打印进程)

B: local pri

repeat

pri=buf

until pri!=空

打印buf中的数据

清除buf中的数据

goto B

相应用P,V原语的实现过程为:

PA: deposit(data)

Begin local x

P(bufempty)

按FIFO方式选择一个空缓冲区buf(x)

buf(x)=data

buf(x)置满标记

V(buffull)

end

PB:remove(data)

Begin local x

P(buffull)

按FIFO方式选择一个装满

数据的缓冲区buf(x)

data=buf(x)

buf(x)置空标记

V(bufempty)

end

(3)用P V原语实现进程通信

我们以邮箱通信为例说明问题:

邮箱通信满足的条件是:

<1>;发送进程发送消息的时候,邮箱中至少要有一个空格能存放该消息。

<2>;接收进程接收消息时,邮箱中至少要有一个消息存在。

发送进程和接收进程我们可以进行如下的描述:

Deposit(m)为发送进程,接收进程是remove(m). Fromnum为发送进程的私用信号量,信箱空格数n。mesnum为接收进程的私用信号量,初值为0.

Deposit(m):

Begin local x

P(fromnum)

选择空格x

将消息m放入空格x中

置格x的标志为满

V(mesnum)

end

Remove(m)

Begin local x

P(mesnum)

选择满格x

把满格x中的消息取出放m中

置格x标志为空

V(fromnum)

end

笔者仅从最基本的进程问题上论述P,V原语的应用。当然关于这一部分的应用是十分广泛的。比如操作系统文化史上非常经典的哲学家就餐问题,生产-消费问题,读者-写者问题,理发师问题等等。大家不妨尝试一下用信号量的方法进行实现。

❼ 使用开关中断方法实施临界区互斥的缺点是什么如何克服该缺点

摘要 进入区:检查是否可以进入临界区,若可以则设置正在访问临界区的标志(加锁),以阻止其他进程同时进入临界区

❽ 设备控制器是临界资源吗

设备控制器是临界资源吗?设备控制器bu是临界资源。多道程序系统中存在许多进程,它们共享各种资源,然而有很多资源一次只能供一个进程使用。一次仅允许一个进程使用的资源称为临界资源。许多物理设备都属于临界资源,如输入机、打印机、磁带机等。
中文名
临界资源
硬件有
打印机、磁带机
软件有
消息缓冲队列、变量
含义
采取互斥的方式,实现共享的资源
快速
导航
事例
简介
各进程采取互斥的方式,实现共享的资源称作临界资源。
属于临界资源的硬件有打印机、磁带机等,软件有消息缓冲队列、变量、数组、缓冲区等。 诸进程间应采取互斥方式,实现对这种资源的共享。
进程中用于实现进程互斥的那段代码称为临界区。显然,若能保证诸进程互斥地进入自己的临界区,便可实现诸进程对临界资源的互斥访问。为此,每个进程在进入临界区之前,应先对欲访问的临界资源进行检查,看它是否正被访问。如果此刻该临界资源未被访问,进程便可进入临界区对该资源进行访问,并设置它正被访问的标志;如果此刻该临界资源正被某进程访问,则本进程不能进入临界区。
在操作系统中,有临界区的概念。临界区内放的一般是被1个以上的进程或线程(以下只说进程)共用的数据。
临界区内的数据一次只能同时被一个进程使用,当一个进程使用临界区内的数据时,其他需要使用临界区数据的进程进入等待状态。
操作系统需要合理的分配临界区以达到多进程的同步和互斥关系,如果协调不好,就容易使系统处于不安全状态,甚至出现死锁现象。进程的同步与互斥
进程的同步与互斥是指进程在推进时的相互制约关系。在多道程序系统中,由于资源共享与进程合作,这种进程间的制约称为可能。为了保证进程的正确运行以及相互合作的进程之间交换信息,需要进程之间的通信。进程之间的制约关系体现为:进程的同步和互斥。
·进程同步:它主要源于进程合作,是进程间共同完成一项任务时直接发生相互作用的关系。为进程之间的直接制约关系。在多道环境下,这种进程间在执行次序上的协调是必不可少的。
·进程互斥:它主要源于资源共享,是进程之间的间接制约关系。在多道系统中,每次只允许一个进程访问的资源称为临界资源,进程互斥就是保证每次只有一个进程使用临界资源。
临界资源和临界区:一次只允许一个进程使用的共享资源称为临界资源,如打印机、公共变量等;而在并发进程中与共享变量有关的程序段称为临界区。对临界区的访问必须是互斥进行。进程进入临界区要满足一定的条件,以保证临界资源的安全使用,系统的正常运行,即对临界区的管理就遵循以下三个原则:
(1)当有若干进程要求进入它们的临界区时,应在有限时间内使一进程进入临界区。换句话说,它们不应该相互等待而致使谁都不能进入。
(2)每次最多有一个进程处于临界区内。
(3)进程在临界区内逗留应在有限时间范围内。

❾ Linux系统中对临界资源进行互斥访问的手段是

自旋锁(Spin Lock)是一种典型的对临界资源进行互斥访问的手段,其名称来源于它的工作方式。为了获得一个自旋锁,在某CPU上运行的代码需先执行一个原子操作,该操作测试并设置(Test-AndSet)某个内存变量。由于它是原子操作,所以在该操作完成之前其他执行单元不可能访问这个内存变量。如果测试结果表明锁已经空闲,则程序获得这个自旋锁并继续执行;如果测试结果表明锁仍被占用,程序将在一个小的循环内重复这个“测试并设置”操作,即进行所谓的“自旋”,通俗地说就是“在原地打转”。当自旋锁的持有者通过重置该变量释放这个自旋锁后,某个等待的“测试并设置”操作向其调用者报告锁已释放。理解自旋锁最简单的方法是把它作为一个变量看待,该变量把一个临界区标记为“我当前在运行,请稍等一会”或者标记为“我当前不在运行,可以被使用。如果A执行单元首先进入例程,它将持有自旋锁;当B执行单元试图进入同一个例程时,将获知自旋锁已被持有,需等到A执行单元释放后才能进入。在ARM体系结构下,自旋锁的实现借用了ldrex指令、strex指令、ARM处理器内存屏障指令dmb和dsb、wfe指令和sev指令,这类似于代码清单7.1的逻辑。可以说既要保证排他性,也要处理好内存屏障。

自旋锁主要针对SMP或单CPU但内核可抢占的情况,对于单CPU和内核不支持抢占的系统,自旋锁退化为空操作。在单CPU和内核可抢占的系统中,自旋锁持有期间中内核的抢占将被禁止。由于内核可抢占的单CPU系统的行为实际上很类似于SMP系统,因此,在这样的单CPU系统中使用自旋锁仍十分必要。另外,在多核SMP的情况下,任何一个核拿到了自旋锁,该核上的抢占调度也暂时禁止了,但是没有禁止另外一个核的抢占调度。尽管用了自旋锁可以保证临界区不受别的CPU和本CPU内的抢占进程打扰,但是得到锁的代码路径在执行临界区的时候,还可能受到中断和底半部的影响。为了防止这种影响,就需要用到自旋锁的衍生。

❿ 什么是临界资源

临界资源是指每次仅允许一个进程访问的资源。
属于临界资源的硬件有打印机、磁带机等,软件有消息缓冲队列、变量、数组、缓冲区等。 诸进程间应采取互斥方式,实现对这种资源的共享。
每个进程中访问临界资源的那段代码称为临界区。显然,若能保证诸进程互斥地进入自己的临界区,便可实现诸进程对临界资源的互斥访问。为此,每个进程在进入临界区之前,应先对欲访问的临界资源进行检查,看它是否正被访问。如果此刻该临界资源未被访问,进程便可进入临界区对该资源进行访问,并设置它正被访问的标志;如果此刻该临界资源正被某进程访问,则本进程不能进入临界区。
请采纳,谢谢