⑴ 金属是怎样炼成的
(一)金属矿冶炼的历史沿革
金属冶炼作为一门生产技术,起源十分古老。人类从使用石器、陶器进入到使用金属,是文明的一次飞跃。人类使用天然金属(主要是自然铜)距今已 8000 多年。但自然铜资源稀少,要使用更多的铜必须从矿石中提取。世界上最早炼铜的是美索不达米亚地区,时间大致在公元前 38 世纪到前 36 世纪。最早的青铜是在苏米尔地区出现的,大约在公元前 30 世纪。在人类文明史中,大量使用青铜的时代称为青铜时代。铁器的使用是人类文明的又一大进步。最早炼铁的是在黑海南岸的山区,大约在公元前 14 世纪。到公元前 13 世纪,铁器的应用在埃及已占一定的比重,一般认为这是人类文明进入铁器时代的开端。在欧洲,公元前 11 世纪中欧开始用铁,但向西欧传播则极其缓慢,直到公元前 55 年,随着罗马人的入侵,铁才传入大不列颠。中世纪的一千多年内,冶金技术进展十分缓慢。直至 14 ~ 16 世纪欧洲才发展为采用水力鼓风,加大、加高炼铁炉,生产出铸铁。15 世纪的欧洲,尽管熟铁器已广泛应用,但铜和青铜仍是生产得最多的金属。16 世纪欧洲出现资本主义的萌芽,冶金企业转移到资本家手中,资本家互相竞争,推动了生产技术的发展。另一方面,机器、造船等工业的发展又为冶金业开辟了市场和提供了技术装备。在 1640 年以后的 250 年中,主要发生在英国以高炉炼铁、炼钢为主的冶金生产和技术变革,尤其是 1700 ~ 1890 年,一系列重要的技术发明创造使英国的炼铁、炼钢工业得到蓬勃发展。这些发明在炼铁方面有:1790 年 A. 达比用焦炭代替木炭炼铁成功,使冶铁业摆脱了木炭资源(森林)的限制;1828 年 J.B. 尼尔森采用热风使炼铁炼焦比降低,生产效率成倍提高。在炼钢方面有:1740 年 B. 亨茨曼首次采用坩埚炼钢法生产铸钢件;1856 年 H. 贝塞麦发明转炉炼钢法,开创了炼钢新纪元 ;1855 年 K.W. 西门子发明了蓄热室;1864 年 P.E. 马丁利用该原理创造平炉炼钢法,从而扩大了炼钢的原料来源;1879 年 S.G. 托马斯和 P.C. 吉尔克里斯特发明碱性转炉炼钢法,成功地解决了高磷生铁炼优质钢的问题。在轧钢方面有:1697 年J. 汉伯里用平辊轧制出熟铁板,供生产镀锡铁板之用 ;1783 年 H. 科特用孔型轧制生产熟铁棒,这种方法后来用于生产型材。这些发明创造使英国炼铁、炼钢工业在 18 ~ 19 世纪走在世界最前面。炼钢情况也是一样,铜资源并不充裕的英国,在 19 世纪 60 年代竟成了世界上产铜最多的国家。
中国古代冶炼技术比欧洲先进,尤其是铸铁技术比欧洲要早 2000 年。从鉴定中国古代的铁器表明,中国汉代生产的有些铸铁件中的石墨呈球絮状,具有一定的柔韧性,与近代可锻铸铁颇为相似。中国古代生产的铸铁和热处理技术已能适应制造农具的要求,从汉代起铁产量就已超过了铜。中国在春秋战国之际即已掌握金、银、铜、铁、锡、铅、汞等七种常用金属。欧洲直到罗马帝国末期才全部掌握上述金属。中国在 15 世纪已有金属锌,较欧洲早 300 多年。综观古代世界冶金业的发展,金属制品,特别是青铜器和铁器,对人类社会生产力的发展起着巨大作用。
(二)不同金属矿的冶炼方法
金属冶炼是根据各种金属的矿石的不同特性,采用不同的生产工艺和设备,经济地从矿石或其他原料中提取金属或金属化合物。目前大多数金属都采用火法冶炼方法,通过各种冶炼熔炼,加入还原剂还原出金属。随着技术水平的提高和环境保护的要求,湿法冶金逐步被用于许多金属制取工艺。如锌的湿法冶炼,黄金的浸出电解工艺等。以下简单介绍钢铁、铜、镍、铅锌、金冶炼方法。
1. 钢铁冶炼
现代炼铁绝大部分采用高炉炼铁,个别采用直接还原炼铁法和电炉炼铁法。高炉炼铁是将铁矿石在高炉中还原,熔化炼成生铁,此法操作简便,能耗低,成本低廉,可大量生产。生铁除部分用于铸件外,大部分用作炼钢原料。由于适应高炉冶炼的优质焦炭煤日益短缺,相继出现了不用焦炭而用其他能源的非高炉炼铁法。直接还原炼铁法,是将矿石在固态下用气体或固体还原剂还原,在低于矿石熔化温度下,炼成含有少量杂质元素的固体或半熔融状态的海绵铁、金属化球团或粒铁,作为炼钢原料(也可作高炉炼铁或铸造的原料)。电炉炼铁法,多采用无炉身的还原电炉,可用强度较差的焦炭(或煤、木炭)作还原剂。电炉炼铁的电加热代替部分焦炭,并可用低级焦炭,但耗电量大,只能在电力充足、电价低廉的条件下使用。
炼钢主要是以高炉炼成的生铁和直接还原炼铁法炼成的海绵铁以及废钢为原料,用不同的方法炼成钢。主要的炼钢方法:有转炉炼钢法、平炉炼钢法、电弧炉炼钢法 3 类。以上 3 种炼钢工艺可满足一般用户对钢质量的要求。为了满足更高质量、更多品种的高级钢,便出现了多种钢水炉外处理(又称炉外精炼)的方法。如吹氩处理、真空脱气、炉外脱硫等,对转炉、平炉、电弧炉炼出的钢水进行附加处理之后,都可以生产高级的钢种。对某些特殊用途,要求特高质量的钢,用炉外处理仍达不到要求,则要用特殊炼钢法炼制。如电渣重熔,是把转炉、平炉、电弧炉等冶炼的钢,铸造或锻压成为电极,通过熔渣电阻热进行二次重熔的精炼工艺。
2. 铜的冶炼
铜的冶炼有两种方法,即火法炼铜及湿法炼铜。目前铜的冶炼是以火法炼铜为主,其产量约占世界铜总产量的 85%,但湿法冶金具有成本低、环保等优点,此技术正在逐步推广。
火法炼铜方式适于高含量的硫化铜矿,通过选矿方法将铜矿石富集到 12% 以上,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉中进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得含量高达 99.9% 的电解铜。该法流程简短、适应性强,铜的回收率可达 95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。
湿法炼铜一般适于低含量的氧化铜,生产出的精铜称为电积铜。现代湿法冶炼有硫酸化焙烧—浸出—电积,浸出—萃取—电积,细菌浸出等法,适于低含量复杂矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出,酸浸应用较广,氨浸限于处理含钙镁较高的结合性氧化矿。处理硫化矿多用硫酸化焙烧—浸出或者直接用氨或氯盐溶液浸出等方法。
氧化铜矿酸浸法流程:氧化铜矿一般不易用选矿法富集,多用稀硫酸溶液直接浸出。所得含铜溶液,可用硫化沉淀、中和水解、铁屑置换以及溶剂萃取—电积等方法提取铜。
硫化铜精矿焙烧浸出法:硫化铜精矿经硫酸化焙烧后浸出,得到的含铜浸出液,经电积得电解铜。
3. 铅的冶炼
目前从铅精矿中生产铅金属的方法都是火法,湿法炼铅还处在试验研究阶段,工业上还未采用。火法炼铅按冶炼原理不同可分为三种。
反应熔炼法:此法是将硫化铅精矿通过反射炉或膛式炉使一部分 PbS 氧化成 PbO 和PbSO4,然后使之与未氧化的 PbS 相互反应而生产金属铅。该法适用于处理高含量的(含PbS65% ~ 70%)的铅精矿。
沉淀熔炼法:此法是将铁屑或氧化铁及炭质还原剂与硫化铅混合加热至适当高的温度,使铅的硫化物大部分被铁置换产生金属铅。此法很少单独应用,如在鼓风炉还原焙烧时,经常加入铁屑以降低铅冰铜中的含铅量,提高金属铅的回收率。
焙烧还原熔炼法:此法又称为常规炼铅法或标准炼铅法。目前世界上生产的粗铅约有 90%是用该法生产的。铅精矿和溶剂加入焙烧炉焙烧,使部分 PbS 氧化成 PbO 烧结块,然后通过鼓风炉与焦炭熔炼成粗铅,粗铅通过精炼得到含量在 99% 以上的铅锭。
4. 锌的冶炼
冶炼锌的方法分为火法炼锌和湿法炼锌两大类,目前湿法炼锌发展非常迅速,世界上锌产量有 80% 来源于湿法炼锌。
火法炼锌是将硫化锌矿煅烧生成氧化锌或氧化锌和硫化锌的混合物,然后加入炭质还原剂,使氧化锌在高温下被炭质还原剂还原,使锌挥发出来,形成锌蒸气,经冷凝成为液态金属锌。一般有平罐炼锌、竖罐炼锌、电法炼锌和密闭鼓风炉炼锌等火法炼锌方式。密闭鼓风炉是目前主要的火法冶炼方式。
湿法炼锌又叫电解沉积法炼锌,是将硫化锌氧化成氧化锌矿或氧化锌和硫酸锌的混合物溶于稀酸溶液与脉石分离,浸出液经过净化处理后进行电解作业。电解沉淀的结果是在阴极析出锌,在阳极上析出氧,并产生硫酸。沉淀在阴极上的锌,定期剥下,再进行溶化铸成锌锭。
5. 镍的冶炼
生产镍的方法主要有火法和湿法两种。根据含镍的硫化矿和氧化矿的不同,冶炼处理方法各异。含镍硫化矿目前主要采用火法处理,通过精矿焙烧反射炉(电炉或鼓风炉)冶炼铜镍硫吹炼镍精矿电解得金属镍。氧化矿主要是含镍红土矿,其含量低,适于湿法处理。主要方法有氨浸法和硫酸法两种。
火法冶炼:镍精矿经干燥脱硫后即送电炉(或鼓风炉)熔炼,目的是使铜镍的氧化物转变为硫化物,产出低冰镍(铜镍锍),同时脉石造渣。所得到的低冰镍中,镍和铜的总含量为8% ~ 25%(一般为 13% ~ 17%),含硫量为 25%。低冰镍的吹炼,吹炼的目的是为了除去铁和一部分硫,得到含铜和镍 70% ~ 75% 的高冰镍(镍含高硫),而不是金属镍。转炉熔炼温度高于 1230℃,由于低冰镍含量低,一般吹炼时间较长。 高冰镍细磨、破碎后,用浮选和磁选分离,得到含镍 67% ~ 68% 的镍精矿,同时选出铜精矿和铜镍合金分别回收铜和铂族金属。镍精矿经反射炉熔化得到硫化镍,再送电解精炼或经电炉(或反射炉)还原熔炼得粗镍再电解精炼。粗镍中除含铜、钴外,还含有金、银和铂族元素,需电解精炼回收。与铜电解不同的是这里采用隔膜电解槽。用粗镍做阳极,阴极为镍始极片,电解液用硫酸盐溶液、硫酸盐和氯化盐混合溶液。通电后,阴极析出镍,铂族元素进入阳极泥中,另行回收。电镍的纯度可达到99% 以上的“合质金”。
6. 金的冶炼
自然界的金大多以自然金的形式存在,根据其在不同矿物中的赋存状态不同,先通过物理和化学选矿的方法将金富集,然后通过火法或湿法火法联合法得到纯度超过 99.5% 以上的纯金。
一般砂金矿和岩金中的粗粒金通过重选和混汞法得到沙金和汞齐(一种汞和金的络合物),沙金和汞齐使用坩埚熔炼加入石英、等熔剂除杂后得到 99% 以上的“合质金”。
岩金中一般氧化矿石可以直接通过氰化浸出得到氰化金的络合物溶液,原生金矿一般采用浮选法将金富集得到金精矿,金精矿,再磨后,通过氰化浸出得到氰化金的络合物溶液。氰化浸的络合物溶液可通过两种方式得到合质金。一是通过锌粉、锌丝置换出金金属,通过坩埚熔炼得到合质金。二是经过活性炭吸附、解析、电解、坩埚熔炼得到“合质金”。
(三)金属冶炼在新疆的发展概况
1. 新疆钢铁冶金概况
新中国成立前,新疆没有现代钢铁工业。新中国成立后,驻疆人民解放军节衣缩食,艰苦奋斗,自筹资金,于 1951 年兴建了新疆第一家钢铁企业——新疆八一钢铁厂。1952 年,八一钢铁厂炼出了第一炉铁和钢,轧出了第一批合格钢材,结束了新疆没有钢铁工业的历史。1950 ~ 1957 年,新疆钢铁工业总投资 2307 万元(不包括更新改造资金),全部用于建设八一钢铁厂,形成固定资产 2096 万元。 至 1957 年,生产生铁 5.15 万吨、钢 4.23 万吨、钢材 3.82万吨,收回全部基建投资。
1958 ~ 1965 年,新疆钢铁工业基建投资累计 1.75 亿元(不包括更新改造资金),其中生产性投资 1.59 亿元。在全部基建投资中,八一钢铁厂为 7242 万元,占总投资的 41.4%。期间在“大炼钢铁”的号召下,投资 4754 万元建设了雅满苏铁矿、哈密钢铁厂、伊犁钢铁厂、乌鲁木齐第二钢铁厂、天龙钢铁厂、跃进钢铁厂以及库车、康苏等小钢铁厂和小矿山。1963 年,这批小钢铁企业在国民经济调整中先后关停,没有形成生产能力。仅保留了天龙钢铁厂等企业,企业经济效益不佳,多处于亏损状态。
“文化大革命”时期,新疆钢铁工业投资重点不突出,一些建设项目时上时下,时建时停,建设周期长,经济效益差,多数未能达到基建投资的预期效果。1966 ~ 1980 年,钢铁工业基建投资累计 3.5 亿元。其中八一钢铁厂投资 1.84 亿元,占总投资的 33.9%;矿山总投资 6060 万元,占总投资的17.3%;地方小钢铁厂投资1.49亿元,占总投资的41.4%;其他投资 2186万元,占总投资的 6.3%。地方小钢铁企业如哈密钢铁厂、伊犁钢铁厂、伊犁铁矿、和静钢铁厂、托里铬矿等恢复建设,并形成了一定的生产规模。1978 年,新疆钢产量达 8.46 万吨、钢材产量6.83 万吨。
党的十一届三中全会以后,新疆钢铁工业迅速发展。“六五”、“七五”、“八五”期间,新疆钢铁工业完成基建总投资 4.33 亿元(不包括更新改造资金),投资的重点为八一钢铁厂扩建工程,占总投资的 76.9%,矿山占总投资的 11.1%,地方小钢铁企业占总投资的 8%,其他投资占总投资的 4%。 1980 ~ 1994 年,八一钢铁厂钢产量由 9.28 万吨增至 61.7 万吨,增长 3.4 倍;钢材产量由 7.8 万吨增至 53 万吨,增长 5.8 倍。同期新疆钢产量增长 5 倍、铁产量增长 3.1 倍、钢材产量增长 5.5 倍。1997 年,新疆钢铁工业完成工业总产值 27.59 亿元,工业增加值 7.39 亿元;实现销售收入 25.96 亿元,利税总额 1.22 亿元。
目前,八一钢铁厂已成为全国实现全连铸和全一火成材的六家企业之一。许多技术指标达到国内先进水平,特别是两座 12 吨转炉的成功改造,使生产能力达到 100 万吨,创出了全国钢铁工业改造史上的奇迹。八一钢铁厂的技术、装备和效率均已达到了全国一流水平。其引进当代世界上最先进的工艺技术装备建成的连续式小型棒材轧机,不仅带动了产品结构和成本构成的深刻变化,而且提高了产品的质量和档次,增强了市场的竞争力。目前,加上从德国引进的电炉形成的生产能力,八一钢铁厂的炼钢生产能力已达 150 万吨,轧钢能力已达 130 万吨,分别占全区炼钢、轧钢生产能力的 80% 和 77% 以上。1999 年的钢和钢材产量分别达到 105 万吨和 117 万吨。近年来,钢铁生产迅速发展,2006 年,有铁矿山 125 个,其中大型 1 个,中型26 个,年开采矿石 1095 万吨;生产粗钢 362 万吨,生铁 270 万吨。2007 年生产粗钢约 445 万吨,钢材约 469 万吨,生铁约 387 万吨。
2. 新疆有色及稀有冶金概况
据史料记载,在先秦时期,新疆的铜冶炼技术就已达到了较高的水平。20 世纪 80 年代考古工作者在新疆尼勒克县城南奴拉赛和圆头山发现了多处冶炼场遗迹。
新中国成立前,新疆主要以炼铜为主,其次是铅锌。但规模不大,没有形成工艺体系。
新中国成立后,新疆冶金局从 1958 ~ 1961 年在乌鲁木齐先后建起了八一铜厂、电解铜厂、红旗冶炼厂(乌鲁木齐铝厂前身)等小型有色金属冶炼企业。由于当时新疆还没有发现大中型铜矿,铜资源没有保障,铝电解的成本又过高,致使这几家冶炼厂没能生存下来。
1978 年中共十一届三中全会后,新疆的有色金属工业有了较大的发展。1981 ~ 1989 年乌鲁木齐铝厂经过三期技术改造和扩建,形成 2 万吨 / 年铝锭的生产能力,另外,可可托海矿务局利用其充沛的水电资源,在 1987 年建成 2400 吨的铝锭的可可托海选厂。1989 年新疆有色公司和伊犁电力局合资的 5000 吨铝锭厂投产。1990 年新疆已形成 3 万吨 / 年铝锭生产能力。
1989 年,新疆有色金属公司新建的喀拉通克铜镍矿投产,形成 7285 吨高冰镍生产能力,新疆现代铜镍工业开始起步。1993 年底,建成阜康冶炼厂,采用先进的湿法精炼新工艺生产电解镍,形成了 2040 吨 / 年的电解镍生产能力。
新中国成立后,新疆黄金的生产也有了长足的发展,新疆境内已建成中小型金矿 32 个,其中阿希金矿、哈图金矿、哈巴河多拉纳萨依金矿、富蕴县萨尔布拉克金矿、鄯善康古尔金矿等岩金矿规模较大。尤其是阿希金矿采用国际先进的氰化树脂提金工艺,年产量达到 3 万两以上。
新疆是全国最早从事稀有金属开发冶炼的省区,经过 40 多年的努力,新疆已建成我国第一个,全国最大、产品质量最好、具有自主研发能力的稀有金属技术工业基地。目前能够提供30 多种稀有金属产品,包括锂、铷、铯金属及其化合物。
(四)金属冶炼的发展方向
在冶炼过程中的生产自动化,将是今后金属冶炼发展的重要方向。20 世纪下半叶以来,冶金生产工艺与自动化技术的结合日益紧密。氧气转炉炼钢、连续铸锭、轧钢高速化和连续化等新工艺,把钢冶金的生产效率不断推向新的高度,这在很大程度上,应归功于应用计算机的自动控制。倘若没有自动控制,氧气转炉就难以充分发挥它的快速炼钢能力,连续铸钢就难于保证质量并获得高效率,轧钢就难以实现高速化和连续化。
研究开发新的提取冶金技术也是今后冶金发展的一个方向。单纯从提取金属着眼,运用今天拥有的自然科学知识和技术手段,即使矿石含量再低,组成再复杂,都可以把金属提取出来,问题在于消耗的能源是否过大,花费的成本是否合算。因此,在提取冶金方面仍然有很多研究课题。例如:扩大资源范围,把在以往技术水平、经济条件下还不能利用的资源,通过新工艺、新装备变为可利用的资源;减少或消除生产过程对环境的污染,发展资源的综合利用,形成无公害工艺或无废料工艺;充分利用氧气等进一步强化冶炼过程,大大节约能源等。
图6-2-1 磁铁矿照片(肖昱摄)
图6-3-1 黄铜矿和孔雀石照片(肖昱摄)
图6-3-2 方铅矿与闪锌矿照片(肖昱摄)
图6-3-3 新疆尼勒克县阿吾拉勒环状铜矿带
图6-3-4 新疆西昆仑铁克列克-库斯拉甫矿产分布图
图6-3-5 环塔里木中新生代砂岩型铜铅锌矿带及矿产分布图
图6-4-1 自然金照片(张素兰摄)
图6-4-2 新疆民丰县南山巴西其其干河下游阶地砂金采坑(肖昱摄)
图6-4-3 细脉状自然金(张素兰摄)
图6-4-4 浸染状自然金(张素兰摄)
图6-5-1 阿尔泰山花岗伟晶岩稀有金属矿集区与地质构造关系略图(据新疆有色地质研究所)
图6-5-2 电气石和绿柱石
图6-5-3 锰钽铁矿和铌钽铁矿聚晶
图6-5-4 可可托海稀有金属矿3号脉露天采场(杨青山摄)
图6-5-5 3号脉立体示意图
图6-5-6 可可托海3号矿脉结构单元分布图
图6-6-1 清代察合奇铸币厂古铜币(杨青山摄)
图6-6-2 平硐(刘增仁摄)
图6-6-3 斜井(刘增仁摄)
图6-6-4 竖井(杨青山摄)
图6-7-1 选矿流程图
图6-7-2 康苏选矿厂优选浮选工艺流程图
图6-7-3 八一钢铁厂优选浮选工艺流程图
图6-7-4 喀拉通克铜镍矿简易选矿工艺流程图
图6-7-5 哈图金矿混汞浮选工艺流程图
图6-7-6 可可托海“87-66”选厂工艺流程图
⑵ 金属矿产资源
我国金属矿产品种比较齐全。黑色金属矿产中,铁锰矿资源较丰富,但以贫矿为主;钛、钒探明储量多,居世界前列;铬铁矿严重短缺。有色金属矿中,铝、铅、锌、钼、镍矿资源较丰富,铜矿以贫矿为主,铅锌矿分布较广泛,而镍矿却十分集中。钨、锡、钼、锑、汞等矿是我国传统出口的优势矿产,探明储量居世界前列。贵金属矿产中,金银矿探明储量较多,资源远景较大,铂族矿产十分短缺。稀有、稀土和分散金属品种很多,以稀土金属资源最为丰富,居世界首位。金属矿产几乎遍布全国各省区。
(一)铁矿
铁矿资源总量丰富,总保有储量居世界第5位,但贫矿占总储量的90%以上。铁矿全国各地均有分布,以东北、华北地区资源为最丰富,西南、中南地区次之。就省(区)而言,辽宁位居探明储量榜首,河北、四川、山西、安徽、云南、内蒙古次之。
从铁矿成因类型来看,主要有与铁质基性、超基性岩浆侵入活动有关的岩浆型铁矿床,如四川攀枝花铁矿床;与中酸性岩浆侵入活动有关的接触交代—热液铁矿床,如湖北大冶、福建马坑、内蒙古黄岗等;与中性钠质或偏钠质火山—侵入活动有关的铁矿,如江苏、安徽两省的宁芜铁矿、云南大红山铁矿等;沉积型赤铁矿和菱铁矿床如鄂西、赣西、湘东地区的赤铁矿;火山沉积变质铁矿,如鞍山铁矿、冀东铁矿等;风化淋滤残积型铁矿,如广东大宝山、贵州观音山等。铁矿成因类型以分布于东北、华北地区的火山沉积变质磁铁矿为最重要。该类型铁矿含铁量虽低(35%左右),但储量大,约占全国总储量的1/2,且可选性能良好,经选矿后可以获得含铁65%以上的精矿。
从成矿时代看,自元古宙至新生代均有铁矿形成,但以元古宙为最重要。
(二)锰矿
我国锰矿资源较多,分布广泛,在全国21个省(区)有产出。矿石总保有储量居世界第3位。从地区分布看,以广西、湖南为最丰富,占全国总储量的55%;贵州、云南、辽宁、四川等地次之。
从矿床成因类型来看,有沉积型、风化型及热液型,以沉积型锰矿为主,其次为火山—沉积矿床。从成矿时代来看,自元古宙至第四纪均有锰矿形成,以震旦纪和泥盆纪最为重要。
(三)铜矿
我国是世界上铜矿较多的国家之一,矿区几乎遍布全国各省(区、市),总保有储量铜居世界第7位。江西铜储量位居全国榜首,占20.8%;西藏次之,占15%;云南、甘肃、安徽、内蒙古、山西、湖北等省铜储量均在300万吨以上。
矿床类型以斑岩型铜矿为最重要,其次为铜镍硫化物矿床、矽卡岩型、火山岩型、沉积岩中层状型、陆相砂岩型铜矿以及少量热液脉状铜矿等。
从形成时代来看,从太古宙至第三纪皆有铜矿形成。但从储量规模和矿床数量来看,主要集中在中生代和元古宙。中生代铜矿多与侵位浅的中酸性岩浆活动有关,元古宙铜矿多与海相火山岩浆活动有关。
(四)铅锌矿
我国铅锌矿资源比较丰富,铅、锌保有储量均居世界第4位。
我国铅与锌矿比例为1:2.4,是一个突出的资源优势。铅锌矿产地广布全国,而探明储量的76%却集中于滇、蒙、湘、粤、甘、赣、桂、川等8省(区)。
矿床类型有花岗岩型、矽卡岩型、斑岩型矿床;有与海相火山、陆相火山有关的矿床;有产于海相碳酸盐、泥岩—碎屑岩系、海相或陆相砂岩和砾岩中的铅锌矿等。成矿时代从太古宙到新生代皆有,以古生代铅锌矿资源为最丰富。
(五)铝土矿
我国铝土矿资源属中等水平,总保有储量居世界第7位。山西铝资源最多,保有储量占全国41%;贵州、广西、河南次之,各占17%左右。
铝土矿类型主要是沉积型—水硬铝石,其储量占全国探明储量的95%以上,其余为堆积型和风化壳型铝土矿。
从成矿时代来看,铝土矿主要产于石炭纪和二叠纪地层之中,铝土矿的质量和厚度与地层沉积间断呈正相关关系。
(六)钨矿
我国是世界上钨矿资源最丰富的国家,分布于23个省(区),总保有储量居世界第1位。钨产量也居世界首位,是我国传统出口的矿产品。就产地来看,以湖南(白钨矿为主)、江西(黑钨矿为主)为多,储量分别占全国总储量的33.8%和20.7%;河南、广西、福建、广东等省(区)次之。
矿床类型有热液型、斑岩型、接触交代型。热液型以黑钨矿为主,接触交代型以白钨矿为主,斑岩钨矿集中分布于河南卢氏—架川一带。从成矿时代来看,最早为早古生代,晚古生代较少,中生代形成钨矿最多,新生代钨矿则罕见。
(七)锡矿
我国是世界上锡矿资源丰富的国家之一,总保有储量居世界第2位。矿产地分布于15个省(区),以广西、云南两省(区)储量最多,分别占全国的32.9%和31.4%,湖南、广东、内蒙古、江西次之,以上6省(区)共占全国储量的93%。
锡矿矿床类型主要有与花岗岩类、中酸性火山—潜火山岩类、沉积再造变质作用有关的矿床。成矿时代比较广泛,以中生代锡矿最为重要,前寒武纪次之。
(八)锑矿
我国是世界上锑矿资源最为丰富的国家,总保有储量居世界第1位。矿产地分布于18个省(区),以广西壮族自治区储量最多,占全国的41.3%,其次为湖南、云南、贵州、甘肃、广东等省。
矿床类型有层控热液型及热液型两种。层控热液型锑矿床含矿岩层多为碳酸盐岩,热液型锑矿床其含矿围岩多为碎屑岩,常与汞、金、钨共生。从成矿时代来看,除侏罗纪和白垩纪地层中尚未发现有工业矿床外,自前震旦纪到第四纪都有锑矿分布,但其改造成矿的时代主要集中在中生代的燕山期。
(九)金矿
我国金矿资源比较丰富,总保有储量居世界第7位。矿产地几乎分布于全国各地,以山东独立金矿床为最多,金矿储量占全国的14.37%;江西伴生金矿床最多,占总储量的12.6%;黑龙江、河南、湖北、陕西、四川等省,金矿资源也比较丰富。
金矿床分内生、外生两大类,内生矿床中以岩浆—热液破碎带蚀变岩型和石英脉型为最重要,沉积改造微细粒型具有较大的找矿潜力,砂金矿亦占有重要地位。成矿时代的跨度很大,从太古宙到第四纪皆有金矿形成,但56%的金矿集中在前寒武纪,其次为中生代和新生代,占总储量的36%,古生代金矿相对较少。
(十)稀土矿产
我国素有“稀土王国”之称,总保有储量居世界第一位,已探明的储量相当于世界总储量的43%。矿产分布于全国16个省(区),以内蒙古最多,储量占全国的95%,湖北、贵州、江西、广东省次之。我国稀土矿产不仅储量大,而且品种多、质量好,矿床类型独特。如内蒙古白云鄂博含铌—稀土铁矿,稀土储量规模巨大,为世界之冠,现已在包头建成我国最大的稀土原料基地。
稀土矿产多与其他矿产共生,南方以重稀土为主,而北方以轻稀土为主。稀土矿自元古宙至新生代均有矿床形成,尤以中生代的燕山期为盛。
⑶ 各种金属矿是如何形成的
原因:岩石风化并被流体运搬到某地,其中金属成分富集沉积形成。岩浆喷发或者岩石风化沉积形成的矿床,经过漫长地质岁月变质后形成。
1、黑色金属:铁、铬、锰三种。
2、有色金属:铝、镁、钾、钠、钙、锶、钡、铜、铅、锌、锡、钴、镍、锑、汞、镉、铋、金、银、铂、钌、铑、钯、锇、铱、铍、锂、铷、铯、钛。
3、常见金属:如铁、铝、铜、锌等。
4、稀有金属:如锆、铪、铌、钽等。
5、轻金属:密度小于4500千克/立方米,如钛、铝、镁、钾、钠、钙、锶、钡等。
扩资料:
金属矿物探按所承担的地质任务分为区测、普查、勘探3个阶段。
1、普查阶段:
在根据地质和物探方法划出的成矿远景区,用物探直接或间接地寻找和发现金属矿床。最常用的作图比例尺为 1:50000、1:25000和1:10000。金属矿普查常用的物探方法包括航空物探和地面磁法、电法、重力法、地震法等。
2、区测阶段:
研究深部和表层地质构造,进行构造分区和成矿远景的预测。通常采用小于1:200000的比例尺作图。区测中采用的物探方法,一般包括地震法(天然地震、人工地震)、磁法、重力法、大地电磁法和热流法等。
3、勘探阶段:
此阶段的物探任务是,探查矿体的产状和规模,追索已知矿体沿走向的延伸和向下延深,研究矿体间是否相连,圈定和发现钻孔打漏的矿体,探明钻孔或坑道间的隐伏矿体等。常用的作图比例尺为1:5000、1:2000或更大。
⑷ 金子是怎么提炼的
1、砂矿开采
砂矿开采经常用于贵金属矿床(尤其是金)和宝石,这两种矿床都经常出现在冲积矿床中——现代或古代河床中的沙子和砾石矿床,或偶尔的冰川矿床。金属或宝石被来自原始来源(如矿脉)的水流移动,通常仅占总矿床的极小部分。由于宝石和黄金等重金属比沙子密度大得多,因此它们往往会积聚在砂矿床的底部。
2、平移
淘金主要是一种将黄金与其他材料分离的手工技术。宽而浅的盘子里装满了可能含有黄金的沙子和砾石。将平底锅浸入水中并摇晃,从砾石和其他材料中分拣出黄金。
由于黄金的密度比岩石大得多,它很快就会沉淀到锅底。淘选材料通常从河床中取出,通常在溪流的内部转弯处,或从溪流的基岩架中取出,金的密度使其能够集中,这种类型称为砂金矿床。
淘金是寻找黄金的最实用、最快捷的技术,但在从大型矿床中提取黄金时在商业上不可行,除非劳动力成本非常低或黄金痕迹量很大。淘金区经常被宣传为以前金矿区的旅游景点。在使用大型生产方法之前,必须确定新的来源,并且淘选有助于确定要评估商业可行性的砂金矿床。
3、泄洪
长期以来,使用水闸箱从砂矿中提取黄金一直是勘探和小规模采矿中非常普遍的做法。水闸箱本质上是一个人造通道,底部设有浅槽。浅滩的设计目的是在水流中形成死区,让黄金从悬浮状态中脱离出来。盒子被放置在溪流中以引导水流。
含金材料放置在盒子的顶部。材料由电流携带通过伏特,其中金和其他致密材料沉淀在浅滩后面。密度较低的材料作为尾矿流出箱外。
较大的商业砂矿开采作业使用筛分设备或滚筒筛去除较大的冲积材料,如巨石和砾石,然后将剩余物浓缩到闸箱或跳汰机中。这些操作通常包括柴油动力的土方设备,包括挖掘机、推土机、轮式装载机和岩石卡车。
4、摇杆箱
也称为摇篮,它使用位于高壁盒子中的凹槽以类似于水闸盒的方式捕获黄金。摇杆箱比水闸箱使用更少的水,非常适用于水资源有限的地区。摇摆运动提供了砂金材料中黄金的重力分离所需的水运动。
5、硬岩开采
硬岩金矿开采提取包裹在岩石中的黄金,而不是松散沉积物中的碎片,并生产世界上大部分的黄金。有时使用露天采矿,例如在阿拉斯加中部的诺克斯堡矿。巴里克黄金公司在内华达州东北部的Goldstrike 矿区拥有北美最大的露天金矿之一。
其他金矿使用地下开采,通过隧道或竖井提取矿石。南非拥有世界上最深的硬岩金矿,地下深达 3,900 米(12,800 英尺)。在这样的深度,热量是人类无法忍受的,为了工人的安全需要空调。第一个安装空调的矿井是Robinson Deep是当时世界上任何矿物中最深的矿山。
开采污染
低品位金矿石可能含有少于 1ppm 的金金属;将这种矿石研磨并与氰化钠混合以溶解金。氰化物是一种剧毒化学品,微量暴露即可杀死生物。许多来自金矿的氰化物泄漏发生在发达国家和发展中国家,这些事故导致受灾河流长长的河流中的水生生物死亡。
环保主义者认为这些事件是重大的环境灾难。三十吨用过的矿石作为废料倾倒以生产一金衡盎司黄金。
金矿场是许多重元素的来源,如镉、铅、锌、铜、砷、硒和汞。当这些矿石堆中的含硫化物矿物暴露在空气和水中时,硫化物会转化为硫酸,硫酸又会溶解这些重金属,从而促进它们进入地表水和地下水。这个过程称为酸性矿山排水。这些金矿场是仅次于核废料场的长期、高度危险的废物。
⑸ 金属矿选矿奥秘
(一)金属矿选矿的定义和作用
1. 选矿的定义
选矿最早英文解释为 Ore Dressing 或 concentration,意为矿砂富集。随后延伸为矿物处理,英文为 Mining process。选矿是利用矿物的物理或物理化学性质的差异,借助不同的方法,将有用矿物同无用的矿物分离,把彼此共生的有用矿物尽可能地分离并富集成单独的精矿,排除对冶炼和其他加工过程有害的杂质,提高选矿产品质量,以便充分、合理、经济地利用矿产资源。
矿物是在地壳中由于自然的物理化学作用或生物作用,所产生的自然元素和自然化合物,如金、银、铜自然元素和黄铁矿、黄铜矿、方铅矿等自然化合物。这些元素和化合物都具有各自的物理性质,如粒度、形状、颜色、光泽、密度、摩擦系数、磁性、电性、放射性、表面润泽性等。这些不同的性质为不同的选矿方法提供了依据。
2. 选矿的作用和地位
自然界蕴藏着极为丰富的矿产资源,但是,除少数富矿外,一般含量都较低,例如,很多铁矿石含铁只有 20% ~ 30%;铜矿石含铜小于 0.5%;铅锌矿石中铅锌的含量不到 5%;铍矿石氧化铍含量 0.05% ~ 0.1%;这样的矿石直接冶炼,极不经济。一般冶金对矿石的含量有一定的要求。如铁矿石中铁的含量最低不得低于 45%;铜矿石中铜的含量最低不得低于 12%;铅矿石含铅不得小于 40%;锌矿石含锌不得小于 40%;氧化铍含量不小于 8%。对于采出的矿石在冶炼之前,必须经过选矿工艺,将主要金属矿物的含量富集几倍、几十倍乃至几百倍才能满足冶炼工艺的要求。
通过选矿手段为冶炼提供“精料”,减少冶炼的物料量,大大提高冶炼的技术经济指标。在选矿过程中大量的废石被排除,减少了炉渣量,一方面减低了能耗和运输成本,同时也相应地减少了炉渣中的金属损失,大大提高了冶炼的回收率。例如,某冶炼厂将铜精矿含量提高1%,每年可多生产粗铜 3135 吨。某钢铁公司将铁精矿含量提高 1%,高炉产量提高 3%,节约石灰石 4% ~ 5%,减少炉渣量 1.8% ~ 2%。目前,我国要求入炉炼铁磁铁矿含量在 65% 以上,如果铁精矿含量达到 68% 以上,可以采用直接炼钢工艺,大大简化冶炼流程。
通过选矿工艺可以减少冶炼原料中有害元素的危害,变害为利,综合回收金属资源。自然界中的矿石往往含有多种有用成分,例如,铜、铅、锌等有色金属往往共生或伴生于同一矿床中;铁既有单一的铁矿石,也有铁-铜、铁-硫、钒钛铁等共生矿石。冶炼过程中对原料中某些共生或伴生元素,常视为有害杂质。例如,炼铜的原料中含铅、锌都是有害杂质。炼铁原料中含硫、磷和其他有色金属都是有害杂质。但将这些杂质提前通过选矿工艺使之分离分别富集后,分别冶炼,变害为利。
选矿也作为冶炼工艺中的一个中间过程,用以提高选矿、冶炼两个过程的总的经济效益。例如,我国金川有色金属公司冶炼厂现有的生产流程是将铜-镍混合精矿用电炉熔炼、转炉吹炼,产出高冰镍,经过缓冷后,再破碎磨矿,用浮选法获得铜精矿和镍精矿,用磁选法得到合金。此后分别进入各自的冶炼系统提取金属铜、镍和贵金属。
选矿是冶金、化工、建材等工业部门必不可少的极其重要的一环。选矿技术的发展,大大地扩大了工业原料基地,从而使那些以前因为含量太低或成分复杂而不能在工业上应用的矿床变为有用矿床。
近 20 多年来,随着科学技术和经济建设的迅猛发展,对矿产资源的需求量与日俱增,矿产资源开采量翻番,周期愈来愈短,易采易选的单一富矿愈来愈少,嵌布粒度细、含量低的难选复合矿的开采量愈来愈大,对矿产品加工过程中的环保要求越来越高,这些都需要通过选矿方法来解决。
(二)选矿方法
目前常用的选矿方法主要是重选、浮选、磁选和化学选矿,除此而外还有电选、手选、摩擦选矿、光电选矿、放射性选矿等。
重力选矿法(简称重选法),是根据矿物密度的不同及其在介质(水、空气、重介质等)中具有不同的沉降速度进行分选的方法,它是最古老的选矿方法之一。这种方法广泛地用来选别煤炭和含有铂、金、钨、锡和其他重矿物的矿石。此外,铁矿石、锰矿石、稀有金属矿、非金属矿石和部分有色金属矿石也采用重选法进行选别。
磁选法,是根据矿物磁性的不同进行分选的方法。它主要用于选别铁、锰等黑色金属矿石和稀有金属矿石。
浮游选矿法(简称浮选法),是根据矿物表面的润泽性的不同选别矿物的方法。目前浮选法应用最广,特别是细粒浸染的矿石用浮选处理效果显着。对于复杂多金属矿石的选别,浮选是一种最有效的方法。目前绝大多数矿石可用以浮选处理。
化学选矿法,基于矿物和矿物组分的化学性质的差异,利用化学方法改变矿物组成,然后用相应方法使目的组分富集的矿物加工工艺。目前对氧化矿石的处理效果非常明显,也是处理和综合利用某些贫、细、杂等难选矿物原料的有效方法之一。
电选法是根据矿物电性的不同来进行选别的方法。
手选法是根据矿物颜色和光泽的不同来进行选别的方法。
摩擦选矿是利用矿物摩擦系数的不同对矿物进行分选的方法。
光电选矿是利用矿物反射光的强度不同对矿物进行选别的方法。
放射性选矿是利用矿物天然放射性和人工放射性对矿物进行选别的方法。
(三)选矿过程
选矿是一个连续的生产过程,由一系列连续的作业组成,表示矿石连续加工的工艺过程为选矿流程(图 6-7-1)。
矿石的选矿处理过程是在选矿厂里完成的。不论选矿厂的规模大小(小型选矿厂日处理矿石几十吨,大型选矿厂日处理矿石量高达数万吨以上),但无论工艺和设备如何复杂,一般都包括以下三个最基本的过程。
选别前的准备作业:一般矿石从采矿场采出的矿石粒度都较大,必须经过破碎和筛分、磨矿和分级,使有用矿物与脉石矿物、有用矿物和无用矿物相互分开,达到单体分离,为分选作业做准备。
选别作业:这是选矿过程的关键作业(或称主要作业)。它根据矿物的不同性质,采用不同的选矿方法,如浮选法、重选法、磁选法等。
产品处理作业:主要包括精矿脱水和尾矿处理。精矿脱水通常由浓缩、过滤、干燥三个阶段。尾矿处理通常包括尾矿的储存和尾水的处理。
有的选矿厂根据矿石性质和分选的需要,在选别作业前设有洗矿,预先抛废(即在较粗的粒度下预先排出部分废石)以及物理、化学与处理等作业,如赤铁矿的磁化焙烧等作业。
(四)选矿技术在新疆矿山的应用
新疆应用选矿技术可追溯到古代,新疆远在 300 年前,就在阿勒泰地区的各个沟内利用金的比重大的特点,从砂金矿中淘洗黄金,这就是重选的原始雏形。但在新中国成立之前,新疆没有一处正规的选矿厂,全部都是采用人工方式手选和手淘,生产效率极其低下,只能处理比重差异大的砂金矿和根据颜色手选出黑钨矿石。新中国成立后,新疆选矿技术有了长足的发展,磁选技术应用于铁矿山,建成年处理量 80 万吨的磁选矿厂,为钢铁企业源源不断地提供高品质的铁精粉。浮选应用于铅锌矿、铜矿、金矿山,先后建成康苏铅锌浮选厂、喀拉通克铜镍浮选厂、哈图金浮选厂,促进了新疆有色工业的发展。重选、浮选、磁选联合应用于新疆北部阿勒泰地区的稀有金属矿山,为我国的早期国防建设提供所需的锂、铍、钽、铌等稀有金属资源。以下是目前新疆有代表性的选矿厂。
1. 康苏铅锌矿浮选选矿
康苏选矿厂是新疆第一座机械化浮选厂,1952 年开始建设,设计生产规模为 250 吨 / 天,1954 年投产。该厂是由前苏联专家参与指导设计,前期主要处理喀什地区沙里塔什的方铅矿和闪锌矿,1961 年开始处理乌拉根氧化铅锌矿。康苏选厂最初投产时是采用苏联专家设计的流程和药剂制度进行浮选,流程采用氰化物与硫酸锌作闪锌矿的抑制剂,以苏打作 pH 值的调整剂,并添加了少量的硫化钠,先将铅矿优先选出后,再将锌矿物选出。该流程没有取得较好的经济指标,大部分锌矿被选入铅矿中。后经过我国工程技术人员和苏联专家的共同努力,通过几次技术改造,在流程结构、技术参数和生产管理方面进行了革新和改进。将部分德国式的浮选机改成苏式米哈诺贝尔 5A 型充气量大的浮选机,使用水力旋流器代替螺旋分级机,加强了中矿再磨循环,增加了锌浮选时间,降低了锌浮选矿浆碱度,合理控制破碎粒度和钢球装入量,严格贯彻技术操作规程和技术监督等。使各项指标得到稳步提升。铅回收率由 71% 提高到 90%,锌回收率由 13% 提高到 41%。其选矿过程见浮选工艺流程图(图 6-7-2)。
2. 新疆八一钢铁厂磁铁矿浮磁选选矿
新疆八一钢铁选矿厂与 1989 年建成投产,设计处理能力 80 万吨 / 年,主要处理高硫磁铁矿。矿石由矿山采出后,运输到选矿厂,经两段破碎一段磨矿后,矿浆进入浮-磁车间。选出的硫精矿销售给新疆境内的一些化工厂和化肥厂,铁精矿供球团和烧结使用。尾矿浓缩后,用水隔泵输送至尾矿库,晾干后,一部分尾矿成为八钢西域水泥厂铁质校正原料。新疆八一钢铁厂简易浮磁选流程图(图 6-7-3)。
3. 喀拉通克铜镍矿浮选选矿
喀拉通克铜镍矿是新疆目前最大的铜镍生产基地,矿山一期为采冶工程,采出的特富矿块直接进入鼓风炉熔炼成低冰镍,经过几年的生产特富矿逐渐减少。为充分利用矿产资源,在二期改造中增加了优先选铜-铜镍混合浮选流程,日处理原矿 900 吨。
原矿直接从采场经竖井提升到地面,通过窄轨输送到原矿仓,原矿仓的矿石经群式给矿机由带式输送机送至中间矿仓。经重型板式给矿机、带式输送机,送至自磨机进行一段磨矿,自磨机排矿给入与格子型球磨机闭路的高堰式双螺旋分级机,进行二段磨矿。分级机溢流经砂泵扬送至水力旋流器组,沉砂进入溢流型球磨机,进行三段磨矿。三段磨矿排矿与第一段分级机溢流合并,经砂泵扬送至水力旋流器组,旋流器溢流,自流至浮选厂房的搅拌槽内,加药后进入浮选作业。浮选采用一次铜粗选、一次铜精选、一次铜镍混合浮选、一次铜镍扫选、三次铜镍精选后,产出铜精矿、铜镍混合精矿及尾矿,分别送至脱水厂房。铜精矿、铜镍混合精矿经过脱水后分别送入铜精矿库和冶炼厂原料库。浮选尾矿经高效浓密机脱水后,用泵杨送至采矿场充填站,作为充填原料。喀拉通克铜镍矿简易选矿工艺流程图(图 6-7-4)。
4. 哈图金矿黄金混汞-浮选选矿
哈图矿区是新疆历史上有名的岩金产地,早在干隆年间便开始开采,主要采用的是土法重选法,将采出的矿石用石碾盘碾碎,通过淘洗的方式回收比重大的金粒。大量的细粒金无法回收,致使许多淘金者亏损严重。
1983 年通过实验研究,采用“混汞—浮选—部分焙烧—氰化”原则流程,哈图金矿建成了新疆第一座现代化的黄金生产矿山,日处理原矿 100 吨。1986 年通过改进破碎工艺,新增 100吨 / 天的浮选系列,使产能达到 200 吨 / 天。哈图金矿混汞浮选工艺流程图(图 6-7-5)。
原矿由采厂通过汽车运到原矿仓,原矿经颚式破碎机进行一段破碎。然后经皮带运输机运到圆锥破碎机,进行二段破碎,破碎产物由圆振筛筛分后,筛下矿物由皮带运输机运送至粉矿仓,筛上矿物返回圆锥破碎机再破。粉矿仓经给矿机和皮带运输机送至格子型球磨机磨矿,磨矿排矿自流通过镀银铜板(俗称汞板)进行混汞作业,通过汞板表面粘附的汞吸附单体解理的金形成汞齐,通过冶炼回收部分黄金。矿浆经过汞板后,用高堰式螺旋分级机,溢流进入浮选工序,返砂进入球磨机再磨。浮选工序采用一次粗选、二次精选、一次扫选流程选的浮选精矿。浮选精矿脱水经过焙烧和进行冶炼后得到金锭。
5. 可可托海稀有金属矿重、磁、电、浮联合选矿
可可托海以稀有金属储量大,品种多而闻名中外,铍、锂、钽、铌、铷、铯、锆、铪等稀有元素在许多矿带中均有不同程度的分布,因而造成选矿上的复杂性和难度。经过众多科技人员 10 年的反复实验研究,从手工选矿到单一矿物选矿,发展到最后的重磁浮联合选矿流程,分选出锂精矿、铍精矿、钽铌精矿,突破了这一世界性的难题,促进了选矿技术的发展。
1953 年,为回收绿柱石和钽铌矿在 3 号矿脉小露天采场东北角兴建了一座简易的 30 多米长的手选室,改善了手选的工作环境,提高了手选效率。另外,在 3 号矿脉尾矿堆附近兴建了一座 20 吨 / 天的钽铌重选厂,采用对滚一段破碎、跳汰、摇床、溜槽进行重选,回收钽铌矿。1957 ~ 1958 年,将手选筛下的尾矿,用方螺旋溜槽进行富集,每年产出的氧化锂精矿接近万吨。
1963 年,经过科研院所近 8 年的选矿试验研究,国家计委批准兴建 750 吨 / 天的选矿厂(“87 - 66”机选厂),综合回收氧化锂精矿和钽铌精矿。选厂工艺流程简图(图 6-7-6)。根据可可托海矿伟晶岩体分带开采的特点,选厂采用三个系统分别对三种类型的矿石(铍矿石、锂矿石、钽铌矿石)进行选别。采用联合选矿工艺综合回收矿石中的锂铍钽铌矿物。先利用重力-磁法-电磁法选矿,从原矿含量只有 0.01% ~ 0.02%(Ta、Nb)203 的原矿中选50% 以上的(Ta、Nb)203 钽铌精矿,然后再用碱法锂铍优先浮选,先优浮选锂再选铍。
可可托海选厂选矿工艺的不断改进,使我国花岗伟晶岩类型矿石钽铌、锂、铍选矿工艺水平进入世界先进行列。
6. 选矿技术的发展方向
在美国、日本、德国等国家对选矿技术的发展非常重视,选矿技术的不断进步和创新,促进了这些国家矿产资源的开发和综合利用沿着可持续发展前进。在矿物破碎方面,美国开发了超细破碎机和高压对滚机,降低球磨机入料粒度,节约了能耗。同时在不断研究外加电场、激光、微波、超声、高频振荡、等离子处理矿石对粉碎和分选的影响。在矿物分选方面,已经或正在研究“多种力场”联合作用的分选设备,并不断将高技术引入选矿工程领域,诸如将超导技术引入磁选,将电化学及控制技术引入浮选等。在选矿工艺管理方面,将工艺控制过程自动化,并将“专家控制系统”与“最优适时控制”相结合,以达到根据矿石性质调整控制参数,使选矿生产工艺流程全过程保持最优状态。
随着我国国民经济的快速发展,对矿产品的需求不断增长,选矿工程技术面临着资源、能源、环保的严峻挑战和发展机遇。以下领域的技术创新将是今后选矿的发展方向:
一是研究开发高效预选设备、高效节能新型破磨与分选设备,以及固液分离新技术与装备,大幅降低矿石粉碎固液分离过程的能耗。
二是研究各种能场的预处理对矿物粉碎和分选行为的影响,开发利用各种能场的预处理新技术,以提高粉碎效率和分选精度。
三是开发高效分选设备、高效无毒的新药剂,重点研究复合力场分选新设备、多种成分协同作用的新药剂以及处理贫、细、杂难选矿石的综合分选新技术。
四是在矿石综合利用研究中,开发无废清洁生产工艺,加强尾矿中矿物的分离、提纯、超细、改性的研究,使其成为市场需要的产品,为矿物物料工业向矿物材料工业转化提供新技术。
五是大力将高新技术引进矿物工程领域,重点开展矿物生物工程技术、电化学调控和电化学控制浮选技术、过程自动寻优技术,以及高技术改造传统产业的新技术研究。
六是加强基础理论与选矿技术相结合的新型边缘科学研究,促进新一代矿物分选理论体系的形成,并派生出新兴的矿物分选和提纯技术。
⑹ 金属是如何开采的
(一)新疆金属矿开采历史回顾
新疆金属矿产开采,远可追溯到距今 2400 ~ 2600 年前的青铜器时代,尼勒克县奴拉赛铜矿就是本期开采的对象,这里古采坑和深达 20 米竖井十余处,沿奴拉赛小溪两岸阶地分布,可见木炭与冰铜多次重叠,冰铜厚度 1 ~ 5 厘米,铜含量大于 60%。在昭苏县洪那海铜矿古开采坑道,比比皆是,河谷草原上炼渣成堆。查布察尔县乌孙山北麓合抱松树长在炉渣堆之上。尼勒克北山松树中,炉渣广布,松树长于其中。从上述简单列举可以看出伊犁地区在远古时期,先民们已介入铜矿业的开采与冶炼。
新疆金矿开采也有 2000 年的历史,据史书记载,唐代采金业明显发展,设有金山都督府。明代仍有采金记录,清代为新疆采金业全盛时期。干隆年间,和田砂金开采点有 12 处,干隆三十六年(1771 年)设奎屯金厂,后相继在乌苏、玛纳斯、呼图壁、昌吉和乌鲁木齐到吐鲁番间设金厂 10 余处,屯兵采金,采金业一直延续到光绪年间,道光到咸丰时哈图山金矿曾设五厂十区,金夫达数万人。据《新疆图志》记载,清代阿尔泰山采金最盛时,年采金5万~6万两,民国时代曾达 10 万两。《新疆志稿》称光绪年间和田每年产金 2 万~ 3 万两,到民国采金业才衰败。
阿尔泰砂金开采几起几落,最大井深可达 150 米,在西岔河曾采出 240 克重的“骆驼金”。据说还曾有 64 两的狗头金出现。
据古书记载,龟兹国(库车)、姑墨国(拜城)铜山十数,矿脉延长百余十里,铜色苍翠,柔润如脂,堪称上品。焉耆铜矿苗上下宽 30 丈,长 1 里许。汉代库车产红铜,官督民办,省官钱局铸钱全赖此山之铜,其质柔粹良美,一岁交铜 10 万斤上下,所炼之铁恒充三十国用。清代从采到炼并铸造钱币取自滴水铜矿。“察合奇”据传这里是清代在新疆的重要铸币厂(图 6-6-1)。
(二)开采方式
现代金属矿产开采,依据其矿体出露与埋藏程度而分为露天开采和地下开采两种。露天开采适用于地表出露的矿体,一般较大者多用机械开采,利用多功能装载汽车或电动火车运输。地下开采矿山较多,开采方式与方法多样,机械化程度差异较大,当前新疆地下金属矿开采基本上可归为三种形式:
平峒开采:即利用水平坑道运输出矿。将矿石装入矿车,通过铺设铁轨的坑道,直接将矿车推出地面(图 6-6-2)。
斜井开采:即利用斜井运输出矿。将采出的矿石装入矿车,通过地下铺设铁轨的坑道,将矿车推向斜井下口(石门区),再利用钢缆绳通过卷扬机牵引矿车,沿着斜井斜坡轨道,将矿车斜向拉向地面(图 6-6-3)。
竖井开采:即利用竖井运输出矿。将采出的矿石装入矿车,通过地下铺设铁轨的坑道,运往竖井下口(石门区),把矿车(一般为 2 辆)推入罐笼,由地面卷扬机的钢缆绳牵引,垂直将矿车提升到地面(图 6-6-4)。
(三)开采方法
鉴于金属矿的成矿多样性,空间状态的差异性,矿石质量与围岩条件的不固定性,致使金属矿的开采方法具多样性。当前运用最多的开采方法,是崩落-充填法,该方法的优点是能保持开采安全高度,利于安全生产,减少废石转送量,低开采成本投入,故而得到开矿者的普遍利用。
矿石爆破:金属矿属于固体矿产,需要打眼放炮爆破开采,一般多用压风机带动风枪打眼,用硝酸铵炸药,电爆破作业,而获得有用矿石。
坑道开掘与维护:地下矿山建设之初,首先施工的是运输工程(坑道、斜井、竖井)和地下坑道,为了安全起见,并要对已经开掘的坑道利用快干水泥喷涂护壁,在坑道底面两侧开掘排水沟,铺设轨道,以及安装通风管和照明电线等。
矿石运输:当外部运输(坑道、斜井、竖井)建设完毕后,内部运输坑道(由采场到石门)是矿山运输的关键和安全的关键。一般矿山的矿石多由人工装卸,地下机械化装卸很少;运输设备在新疆多用矿车,关内不少的正规矿山多用电动机车。
通风:矿山开采处于地下,因此施工必须保证在有充裕新鲜空气的环境条件下进行。同时,由于爆破烟尘、生产粉尘也要及时排除,故均需要通风。矿山采用的通风量要视矿山生产量与矿石性质而定,合理地选择与匹配通风机及应铺设风管的规格与数量。并及时检查送风量以及采场、坑道、矿仓的空气质量。
排水:地下开采,尤其是较深部的地下开采,地下涌水量大是必然的,需要购置排水设备,设计合理而科学的排水系统,准确而及时地将矿坑积水导入储水仓,并视地下水的流速和流量制定出定期和经常性向地面泵水的方案。金属矿山除要注意冒顶偏帮的生产事故外,透水也是金属矿山的一大安全生产隐患。
照明:地下生产矿山,照明是生产的第一要素。矿山照明多由坑口电站供电,并与地区电网连通。矿山根据自身的生产需要而铺设电缆,确定照明点及照明度,属于生产系统的如采场、运输坑道、石门区、地面矿石堆积场等地段必须保证合乎生产要求的能见度。为保证 24小时照明,矿山也要采取持续照明的应急措施。
安全:矿山生产属于高危行业,要牢固树立安全第一的思想,要配备一定数量的安全人员(含管理人员),配置充裕的安全设备,制定一系列行之有效的安全生产规章制度,不断地对生产有关人员进行持续性地安全生产教育。对安全要警钟长鸣,常抓不懈。
(四)矿山建设
新疆金属矿产采掘业,是在新中国成立之后逐步建设起来的。
铁矿围绕着八一钢铁厂开发而建立起硫磺沟、大黄山菱铁矿开采矿山,继而又建设雅满苏铁矿、蒙库铁矿、磁海铁矿。由于莫托沙拉铁锰矿勘探完毕,跃进钢铁厂和静钢铁厂也相继建立。新源铁厂是利用预须开普铁矿作为矿山资源而生产。另如天龙钢铁厂等出现使新疆钢铁业有了一个竞争建设环境和良好的生产氛围。
铜矿生产起步很早,在 1958 年时就有布伦口、尼勒克、木垒等铜选厂建立,并生产出冰铜行销国内。20 世纪末有色金属采掘业得到系统发展,先后有喀拉通克和黄山铜镍矿生产,21世纪初阿舍勒铜矿、哈密铜镍矿又得到进一步发展,新疆有色集团公司的工业园建设把有色金属生产提高了一个新的生产台阶,形成阿舍勒、喀拉通克、黄山、鄯善县、阿克陶县、乌恰县等,铜铅锌集中生产基地。
金矿目前在新疆仅阿希一处具有较大的生产能力,“西准”、“东准”、“北山”、“金窝子-马庄山”,乃是卫星式矿山进行一定的规模生产。
稀有金属矿产的生产布局,仍是可可托海和阿尔泰两个基地。
⑺ 有谁可以告诉我金属怎么形成的有什么用途
金属的用途
“大地之子”-----钛
钛是一种银白色的金属,早在1791年,英国科学家威廉姆·格里戈尔在英国密那汉郊区找到这种神奇的元素时,首先发现了这种新元素。过了4年,德国化学家克拉普洛特又从匈牙利布伊尼克的一种红色矿石中,发现了这种元素,便以希腊神话中的英雄来命名。钛的意思是“地球的儿子”。钛的外形很像钢铁,但远比钢铁坚硬,且体重只有铁的一半。在常温下,钛可以安然无恙地“躺”在各种强酸、强碱中;就连最凶猛的酸------ 王水,也不能腐蚀它。有人曾把一块钛片扔进大海,经过5年以后取出来,仍然闪闪发亮,没有半点锈斑。俗话说:“真金不怕火炼”。可是钛的熔点比黄金还高出600多摄氏度。正因为钛的本领非凡,所以有着广泛用途。现在,钛是制造飞机、坦克、军舰、潜艇不可缺少的金属。在宇宙飞船和导弹中,也大量用钛代替钢铁。钛与氮、碳结合生成的氮化钛、碳化钛,也是非常坚硬的化合物,它们的耐热本领甚至还比钛高1倍。这样坚硬而耐热的材料,可以代替超级钢,制造高速切削刀具。钛的许多特殊性能,还在化工、超声波和超导技术中得到应用。然而,钛有个最大的缺点,就是提炼比较困难。这主要是因为钛在高温下可以与氧、碳、氮以及其他许多元素化合。所以人们曾把钛当作“稀有金属”,其实,钛的含量约占地壳重量的6‰,比铜、锡、锰、锌的总和还要多10多倍。在世界上,我国钛的储藏量最多,四川的攀枝花,钛的储藏量占全国90%以上,是世界上罕见的大钛矿。
铝的外衣
将银白色的铝放在空气中,没有多久,便穿上了一件极薄的、近乎透明的白色外衣——氧化膜。
真使人难以相信,铝的这件外衣,同光彩夺目的红、蓝宝石的主要成分竟是一个东西,都是氧化铝(A1203)。它们的区别,只是晶体的结构不同。然而,你可别瞧不起铝的这件貌不惊人的外衣,它对于铝的使用却作出了杰出的贡献哩!
大家都知道,钢铁是具有多种宝贵性能的材料。将钢铁放在空气中,也会穿上一件外衣——铁锈(主要成分是氧化铁)。可是钢铁的这件外衣结构很疏松,大气中的氧、水蒸气、二氧化碳分子都能穿过这件外衣的无数孔隙,深入到钢铁内部,继续把钢铁变成铁锈,直至整块钢铁都变成无用的“烂铁”为止。所以,为了保护钢铁不被锈蚀,人们常让钢铁制品另外穿上一件保护衣——防锈物质。
铝的外衣与钢铁的外衣不同,它虽然非常薄,但是却“天衣无缝”,非常致密。即使把铝块拉长、压扁、扭转或弯曲,它也不会松掉、脱落,仍能牢牢地裹在铝的表面。氧气、水蒸气、二氧化碳分子对它都无可奈何,钻不过去。
铝的外衣——氧化铝不溶于水,熔点高达2050℃。把铝制品加热到660℃时,金属铝已熔化成为液体,可是氧化铝仍然覆盖在液态铝表面,防止氧气与铝接触。
铝的外衣称得上是一副不怕水浸、火烧,能够保护自己免受大气腐蚀的盔甲。
但是,铝的外衣也有关中不足之处:一是天然形成的这件防护衣太薄了,厚度只有万分之二到万分之四毫米,一张普通的纸也比它厚五百倍,因此经不起机械的损伤;二是怕酸、怕碱。如果这件外衣能够再厚一些,能更坚硬、耐磨损、耐腐蚀,就更好了。
为了使铝的外衣增厚,人们想到,铝的外衣——氧化铝膜,是锅与空气中的氧发生氧化反应生成的。如果用比氧具有更强的氧化性物质来和铝发生氧化反应,那末,生成的氧化铝膜岂不是可以更厚实一些了吗?
于是,人们先用磷酸钠(Na3PO4)、氢氧化钠(NaOH)、硅酸钠(Na2SiO3)等溶液洗去铝制品表面的油污,再让它在热水中洗个澡,然后浸在铬酸钠(Na2CrO4)、碳酸钠(Na2CO3)及氢氧化钠混和液中进行氧化处理。由于铬酸钠是一种强氧化剂,铝的外衣一—氧化铝膜果然大大增厚了。
在工业上,人们将铝制品浸在电解质溶液中作阳极,通入直流电使铝氧化,也生成了较厚的氧化铝膜。人工加厚的氧化铝膜比天然形成的厚八十多倍,达0.015—0.017毫米。
有趣的是,人工加厚的铝制品外衣,还真象人穿的衣服一样可以染上各种颜色。这样,铝制品就不再是一律穿银白色的外衣了,而是可以穿上金黄、大红、宝蓝、翠绿等五光十色的漂亮衣服。你们看到的逗人喜爱的金黄色笔套、彩色金属钮扣、打火机等等铝制品,它们穿的就是染了色的氧化铝外衣。
灯泡的化学
当我们轻轻一按开关,亮起书桌上的台灯来温习时,我们又对这个助手有多少认识呢?
想一想 你知道一个普通灯泡怎样发光吗?
灯泡所以能够发光,是因为电流经过钨的金属丝(又称钨丝)时产生高热所引致的。我 们所以选用钨丝,是因为它是熔点最高的金属(其熔点为3422oC),在摄氏1000多度的环境下仍旧保持不变,而其他金属在这环境下早已熔掉了。
钨和很多金属一样,在高温时很快便会被氧化和烧断,所以灯泡里不能存有氧气。但如果抽出所有空气令灯泡真空,高温的钨又很容易蒸发成为气体,缩减了灯泡的寿命。那怎么办呢?为了延长灯泡的寿命,灯泡里会载满氩这种惰性气体,并且加了点压力,以减低蒸发的机会。此外,灯泡里还加点碘,同样是为了减慢钨蒸发的速度。这是因为钨和碘在约1000oC 的环境下会变成碘化钨,但当碘化钨再接触高热的钨丝时,又再变回钨和碘。这样,便可以使灯泡的寿命延长一点了。
水不能扑救哪些物质造成的火灾
当火灾发生时,很多人会习惯的用水去灭火,但事实上有些时候却不能这么做,下面这些着火的情况便不能用水去灭火,否则变成了“火上浇油”。
(1)碱金属不能用水扑救。因为水与碱金属(如金属钾、钠)作用后能使水分解而生成氢气和放出大量热,容易引起爆炸。
(2)碳化碱金属、氢化碱金属不能用水扑救。如碳化钾、碳化钠、碳化铝和碳化钙以及氢化钾、氢化镁等遇水能发生化学反应,发出大量热,可能引着火和爆炸。
(3)密度小于水的和不溶水的易燃液体,原则上不可以用水扑救。
(4)熔化的铁水、钢水不能用于扑救。因为铁水、钢水温度约在1 600 ℃,而水蒸气在1 000 ℃以上时便能分解出氢气和氧气,有引起爆炸危险。
(5)高压电器装置火灾,在没有良好接地设备或没有切断电流的情况下,一般不能用水扑救。
钢铁和合金
钢铁和合金统称为金属材料。金属材料一般利用它们的物理性质,如延展性、硬度、抗拉强度、导热性、导电性等。有时也利用它们的化学性质,如抗氧化、抗酸碱性等。除了作导线、仪器仪表的零部件、厨房用具等外,很少用金属单质,常用的是它们的合金,因为合金的性能和使用价值都比单质高。
通常所指的合金是有色合金的泛称,如铜合金、铝合金等。实际上钢也是合金,普通的钢材是铁和碳的合金,所以也叫碳素钢。钢里除铁、碳外,加入其他的元素,就叫合金钢。另加入一种元素的合金钢,即是三元合金钢。如锰钢、硅钢(也叫矽钢,矽是硅过去的中文名称)等。另外加入两种或两种以上元素的叫多元合金钢。合金钢还常按用途命名,如工具钢、高速钢、不锈钢等。
我国的钢铁工业发展较快,特别是一些大型钢铁厂的建成投产,钢的年产量迅速增加(目前宝钢的年产量为600万吨,到1999年可达1000万吨),1993年已达8688万吨,居世界第三位。
下面介绍一些重要的钢种。
在碳素钢中有一般碳素钢和优质碳素钢。前者含碳量在0.4%以下的用作铁丝、铆钉、钢筋等建筑材料,含碳量0.4~0.5%的用作车轮、钢轨等,含碳量0.5~0.6%的用来制造工具、弹簧等。后者含硫、磷等杂质比一般碳素钢低,常用作机械零件,在机械制造业中应用最多。
在合金钢中有锰钢、硅钢等。锰钢一般含锰1.4~1.8%,用于制造汽车、柴油机上的连杆螺栓、半轴、进汽阀和机床的齿轮等。硅钢是含硅量高的钢,具有很高的电阻,在电气工业中有广泛应用。例如,变压器用的钢即是含碳量小于0.02%、含硅3.8~4.5%的硅钢。
在按用途命名的钢中,常见的有工具钢、高速钢和不锈钢。
工具钢是用作车刀、刨刀、锉刀、锯条、拉丝工具等的合金钢。常用的有铬铝工具钢(含铬1.2~1.5%、含铝1.0~1.5%)、铬钼钒工具钢(含铬11~12%、含钼0.4~0.6%、含钒0.15~0.3%)、铬锰钼工具钢(含铬0.6~0.9%、含锰1.2~1.6%、含钼0.15~0.3%)等。
高速钢也叫锋钢,是含钨的合金钢,用于制造高速运转的切削工具。它一般含钨8.5~19%、含铬3.8~4.4%、含钒1~4%。
不锈钢主要指含铬、镍的合金钢,品种很多,常见的有含铬17~20%、含镍8~11%。如果再加入钛(1%左右),钢的耐酸能力更强。
重要的有色金属合金中,铜合金较多,下面介绍其中的5种。铝青铜含铜90~95%、铝5~10%,用作装饰品和用具。
青铜含铜67~89%、锌2~33%、锡0~9%(不含锡的也叫无锡青铜)、铅0~2%,用作制造机械零件。此外还有特种青铜,如磷青铜、铍青铜、硅青铜等,具有耐腐蚀、高导电性能,用于仪表工业。
黄铜含铜66~73%、锌27~34%,常用于制造船舶机械零件。
铝黄铜含铜68~70%、锌27~31%、铝1~3%,用于制造船的推进机翼、舵等。
德国银含铜45~62%、锌20~30%、镍15~18%,呈银色、硬度高、电阻大,用来制作装饰品和电热器。
铝合金中主要有坚铝和铝镁合金。坚铝含铝95.5%、铜3%、锰1%、镁0.5%,坚硬而轻,用于制造汽车和飞机。
铝镁合金含铝90~94%、镁6~10%,可制作仪器及天平梁。
易熔合金有铸字合金、巴比特合金、伍德合金和焊锡等。铸字合金(也称活字金)含铅70%、锑18%、锡10%、铜2%,用于制造铅字。
巴比特合金含锡70~90%、锑7~24%、铜2~22%,它是包含坚硬晶体的过冷液体,受到压力时会自动调整而减少磨损,用于制造机械的轴承。
伍德合金含铋38~50%、铅25~31%、锡12.5~15%、镉12.5~16%,熔点低(60~70℃),用于制作汽锅的安全阀等。
焊锡含铅67%、锡33%,熔点为275℃,用于熔接金属。
此外,含镍60~75%、铁12~26%、铬11~15%、锰1~2%的镍铬合金,电阻大、耐腐蚀,常用作电热丝(镍铬丝)。
返回
新型金属材料
新型金属材料种类繁多,它们都属合金。
形状记忆合金 形状记忆合金是一种新的功能金属材料,用这种合金做成的金属丝,即使将它揉成一团,但只要达到某个温度,它便能在瞬间恢复原来的形状。形状记忆合金为什么能具有这种不可思议的“记忆力”呢?目前的解释是因这类合金具有马氏体相变。凡是具有马氏体相变的合金,将它加热到相变温度时,就能从马氏体结构转变为奥氏体结构,完全恢复原来的形状。
最早研究成功的形状记忆合金是Ni-Ti合金,称为镍钛脑(Nitanon)。它的优点是可靠性强、功能好,但价格高。铜基形状记忆合金如 Cu-Zn-Al和 Cu-Al-Ni,价格只有Ni-Ti合金的10%,但可靠性差。铁基形状记忆合金刚性好,强度高,易加工,价格低,很有开发前途。表7-3列出一些形状记忆合金及其相变温度。
形状记忆合金由于具有特殊的形状记忆功能,所以被广泛地用于卫星、航空、生物工程、医药、能源和自动化等方面。
在茫茫无际的太空,一架美国载人宇宙飞船,徐徐降落在静悄悄的月球上。安装在飞船上的一小团天线,在阳光的照射下迅速展开,伸张成半球状,开始了自己的工作。是宇航员发出的指令,还是什么自动化仪器使它展开的呢?都不是。因为这种天线的材料,本身具有奇妙的“记忆能力”,在一定温度下,又恢复了原来的形状。
多年来,人们总认为,只有人和某些动物才有“记忆”的能力,非生物是不可能有这种能力的。可是,美国科学家在五十年代初期偶然发现,某些金属及其合金也具有一种所谓“形状记忆”的能力。这种新发现,立即引起许多国家科学家的重视。研制出一些形状记忆合金,广泛应用于航天、机械、电子仪表和医疗器械上。
为什么这些合金不“忘记”自己的“原形”呢?原来,这些合金都有一个转变温度,在转变温度之上,它具有一种组织结构,面在转变温度之下,它又具有另一种组织结构。结构不同性能不同,上面提及美国登月宇宙飞船上的自展天线, 就是用镍钛型合金作成的,它具有形状记忆的能力。这种合金在转变温度之上时,坚硬结实,强度很大;而低于转变温度时,它却十分柔软,易于冷加工。科学家先把这种合金做 成所需的大半球形展开天线,然后冷却到一定温度下,使它变软,再施加压力,把它弯曲成一个小球,使之在飞船上只占很小的空间。登上月球后,利用阳光照射的温度,使天线重新展开,恢复到大半球的形状。
形状记忆合金问世以来,引起人们极大的兴趣和关注,近年来发现在高分子材料、铁磁材料和超导材料中也存在形状记忆效应。对这类形状记忆材料的研究和开发,将促进机械、电子、自动控制、仪器仪表和机器人等相关学科的发展。
高温合金 涡轮叶片是飞机和航天飞机涡轮喷气发动机的关键部件,它在非常严酷的环境下运转。涡轮喷气发动机工作时,从大气中吸入空气,经压缩后在燃烧室与燃料混合燃烧,然后被压向涡轮。涡轮叶片和涡轮盘以每分钟上万转的速度高速旋转,燃气被喷向尾部并由喷筒喷出,从而产生强大的推力。在组成涡轮的零件中,叶片的工作温度最高,受力最复杂,也最容易损坏。因此极需新型高温合金材料来制造叶片。
贮氢合金 氢是21世纪要开发的新能源之一。氢能源的优点是发热值高、没有污染和资源丰富。贮氢合金是利用金属或合金与氢形成氢化物而把氢贮存起来。金属都是密堆积的结构,结构中存在许多四面体和八面体空隙,可以容纳半径较小的氢原子。如镁系贮氢合金如MgH2,Mg2Ni等;稀土系贮氢合金如LaNi5,为了降低成本,用混合稀土 Mm代替La,推出了MmNiMn, MmNiAl等贮氢合金;钛系贮氢合金如TiH2,TiMn1.5。贮氢合金用于氢动力汽车的试验已获得成功。随着石油资源逐渐枯竭,氢能源终将代替汽油、柴油驱动汽车,并一劳永逸消除燃烧汽油、柴油产生的污染。
非晶态合金 非晶态合金又称为金属玻璃,具有拉伸强度大,强度、硬度高,高电阻率、高导磁率、高抗腐蚀性等优异性能。适合做变压器和电动机的铁芯材料。采用非晶态合金做铁芯,效率为97%,比用硅钢高出10%左右,所以得到推广应用。此外,非晶态合金在脉冲变压器、磁放大器、电源变压器、漏电开关、光磁记录材料、高速磁泡头存储器、磁头和超大规模集成电路基板等方面均获得应用。