Ⅰ 吸水泵有20米吸程的吗什么牌
没有。大气压强十一米多,能在空垂直距离9米吸上水来已经不错了,有人说自己的井二十米都能吸上来,那是他不懂。你把井打一百米,但是水位在井口下五米,那是你的水泵在五米出吸水,所以,我们所说的井深是按照空垂直空井筒的距离计算而不是你钻了多少米计算的。如果从深井取水,只能用潜水泵。
Ⅱ 离心泵
一、离心泵的工作原理
图2-1所示为一个安装在管路上的离心泵。主要部件有叶轮1与泵壳2等。具有若干弯曲叶片的叶轮安装在泵壳内,并紧固于泵轴3上。泵壳中央的吸水口4与吸水管路5相连接,侧旁的排出口8与排出管路9相连接。
离心泵一般用电动机带动,在启动前需向壳内灌满被输送的液体。启动电动机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着转动,在离心力的作用下,液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时也增大了流速,一般可达15~25m/s,即液体的动能也有所增加。液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽,液体的流速逐渐降低,又将一部分动能转变为静压能,使泵出口处液体的压强进一步提高,于是液体以较高的压强,从泵的排出口进入排出管路,输送至所需的场所。
当泵内液体从叶轮中心被抛向外缘时,在中心处形成了低压区,由于贮槽液面上方的压强大于泵吸入口处的压强,在压强差的作用下,液体便经吸入管路连续地被吸入泵内,以补充被排出液体的位置。只要叶轮不断地转动,液体便不断地被吸入和排出。由此可见,离心泵之所以能输送液体,主要是依靠高速旋转的叶轮。液体在离心力的作用下获得了能量以提高压强。
离心泵启动时,如果泵壳与吸入管路内没有充满液体,则泵壳内存有空气,由于空气的密度远小于液体的密度,产生的离心力小,因而叶轮中心处所形成的低压不足以将贮槽内的液体吸入泵内,此时虽启动离心泵也不能输送液体,此种现象称为气缚,表示离心泵无自吸能力,所以启动前必须向壳体内灌满液体。若离心泵的吸入口位于吸液贮槽液面的上方,在吸入管路的进口处应装一单向底阀6和滤网7。底阀是防止启动前所灌入的液体从泵内漏失,滤网可以阻拦液体中的固体物质被吸入而堵塞管道和泵壳。靠近泵出口处的排出管路上装有调节阀10,以供开车、停车及调节流量时使用。
图2-1离心泵装置简图
1-叶轮;2-泵壳;3-泵轴;4-吸入口;5-吸入管;6-底阀;7-滤网;8-排出口;9-排出管;10-调节阀
二、离心泵的主要部件
离心泵最主要的部件为叶轮、泵壳与轴封装置,下面分别简述其结构和作用。
(1)叶轮叶轮的作用是将原动机的机械能传给液体,使液体的静压能和动能均有所提高。
离心泵的叶轮如图2-2所示,叶轮内有6~12片弯曲的叶片1。图中(a)所示的叶片两侧有前盖板2及后盖板3的叶轮,称为闭式叶轮。液体从叶轮中央的入口进入后,经两盖板与叶片之间的流道流向叶轮外缘,在这过程中液体从旋转叶轮获得了能量,并由于叶片间流道的逐渐扩大,故也有一部分动能转变为静压能。有些吸入口侧无前盖的叶轮,称为半闭式叶轮,如图中(b)所示。没有前、后盖板的叶轮,称为开式叶轮,如图中(c)所示,半闭式与开式叶轮可用于输送浆料或含有固体悬浮物的液体,因取消盖板后叶轮流道不容易堵塞,但也由于没有盖板,液体在叶片间运动时容易产生倒流,故效率也较低。
图2-2离心泵的叶轮
(a)闭式;(b)半闭式;(c)开式
闭式或半闭式叶轮在工作时,有一部分离开叶轮的高压液体漏入叶轮与泵壳之间的两侧空腔中去,而叶轮前侧液体吸入口处为低压,故液体作用于叶轮前、后两侧的压力不等,便产生了指向叶轮吸入口方向的轴向推力,使叶轮向吸入口侧窜动,引起叶轮与泵壳接触处磨损,严重时造成泵的振动。为此,可在叶轮后盖板上钻一些小孔(见图2-3(a)中的1)。这些小孔称为平衡孔,它的作用是使后盖板与泵壳之间的空腔中一部分高压液体漏到低压区,以减少叶轮两侧的压力差,从而起到平衡一部分轴向推力的作用,但同时也会降低泵的效率。平衡孔是离心泵中最简单的一种平衡轴向推力的方法。
按吸液方式的不同,叶轮还有单吸和双吸两种。单吸式叶轮的结构简单,如图2-3(a)所示,液体只能从叶轮一侧被吸入。双吸式叶轮如图2-3(b)所示,液体可同时从叶轮两侧吸入。显然,双吸式叶轮具有较大的吸液能力,而且基本上可以消除轴向推力。
图2-3吸液方式(a)单吸式;(b)双吸式
(2)泵壳离心泵的泵壳又称蜗壳,因壳内有一个截面逐渐扩大的蜗牛壳形通道,如图2-4的1所示。叶轮在壳内顺着蜗形通道逐渐扩大的方向旋转,愈接近液体出口,通道截面积愈大。因此,液体从叶轮外缘以高速度被抛出后,沿泵壳的蜗牛形通道向排出口流动,流速便逐渐降低,减少了能量损失,且使部分动能有效地转变为静压能。所以泵壳不仅作为一个汇集由叶轮抛出液体的部件,而且本身又是一个转能装置。
为了减少液体直接进入蜗壳时的碰撞,在叶轮与泵壳之间有时还装有一个固定不动而带有叶片的圆盘。这个圆盘称为导轮,如图2-4中的3所示。导轮具有很多逐渐转向的流道,使高速液体流过时能均匀而缓和地将动能转变为静压能,从而减少能量损失。
图2-4泵壳与导轮1-泵壳;2-叶轮;3-导轮
(3)轴封装置泵轴与泵壳之间的密封称为轴封。轴封的作用是防止高压液体从泵壳内沿轴的四周漏出,或者防止外界空气以相反方向漏入泵壳内。常用的轴封装置有填料密封和机械密封两种。
普通离心泵所采用的轴封装置是填料函,俗称盘根箱,如图2-5所示。图中1是和泵壳连在一起的填料函壳;2是软填料,一般为浸油或涂石墨的石棉绳;4是填料压盖,可用螺钉拧紧,使填料压紧在填料函壳与转轴之间,以达到密封的目的;5是内衬套,用来防止填料挤入泵内。由于泵壳与转轴接触处可能是泵内的低压区,为了更好地防止空气从填料函不严密处漏入泵内,故在填料函内装有液封圈3。如图2-6所示,液封圈是一个金属环,环上开了一些径向的小孔,通过填料函壳上的小管可以和泵的排出口相通,使泵内高压液体顺小管流入液封圈内,以防止空气漏入泵内,所流入的液体还起到润滑、冷却填料和轴的作用。
图2-5填料函
1-填料函壳;2-软填料;3-液封圈;4-填料压盖;5-内衬套
图2-6液封圈
对于输送酸、碱以及易燃、易爆、有毒的液体,密封的要求就比较高,既不允许漏入空气,又力求不让液体渗出。近年来已广泛采用称为机械密封的轴封装置。它由一个装在转轴上的动环和另一个固定在泵壳上的静环所组成,两环的端面借弹簧力互相贴紧而作相对运动,起到了密封的作用,故又称为端面密封。图2-7是国产AX型机械密封装置的结构,该装置的左侧连接泵壳。螺钉1把传动座2固定于转轴上。传动座内装有弹簧3、推环4、动环密封圈5与动环6,所有这些部件都随轴一起转动。静环7和静环密封圈8装在密封端盖上,并由防转销9加以固定,所有这些部件都是静止不动的。这样,当轴转动时,动环6转动而静环7不动,两环间借弹簧的弹力作用而贴紧。由于两环端面的加工非常光滑,故液体在两环端面的泄漏量极少。此外,动环6和泵轴之间的间隙有动环密封圈5堵住,静环7和密封端盖之间的间隙有静环密封圈8堵住,这两处间隙并无相对运动,故很不易发生泄漏。动环一般用硬材料,如高硅铸铁或由堆焊硬质合金制成。静环用非金属材料,一般由浸渍石墨、酚醛塑料等制成。这样,在动环与静环的相互摩擦中,静环较易磨损,但从机械密封装置的结构看来,静环易于更换。动环与静环的密封圈常用合成橡胶或塑料制成。
图2-7机械密封装置
1-螺钉;2-传动座;3-弹簧;4-推环;5-动环密封圈;6-动环;7-静环;8-静环密封圈;9-防转销
机械密封装置安装时,要求动环与静环严格地与轴中心线垂直,摩擦面很好地研合,并通过调整弹簧压力,使端面密封机构能在正常工作时,于两摩擦面间形成一薄层液膜,以造成较好地密封和润滑作用。
机械密封与填料密封相比较,有以下优点:密封性能好,使用寿命长,轴不易摩损,功率消耗小。其缺点是零件加工精度高,机械加工较复杂,对安装的技术条件要求比较严格,装卸和更换零件较麻烦,价格也比填料函的高得多。
三、离心泵的主要性能参数与特性曲线
1.离心泵的主要性能参数
为了正确选择和使用离心泵,需要了解泵的性能。离心泵的主要性能参数有排量、工作压力(压头)效率和输入功率,这些参数标注在泵的铭牌上,现将各项意义分述于下。
(1)排量离心泵的排量,是指泵的送液数量能力,是指离心泵在单位时间内所排送的液体体积,以qv表示,单位常为1/s或m3/h。离心泵的排量取决于泵的结构、尺寸(主要为叶轮的直径与叶片的宽度)和转速。
(2)工作压力离心泵的工作压力又可用压头或泵的扬程表示,是指泵对单位重量的液体所能提供的有效能量,工作压力用kPa或MPa表示,压头用水柱高m表示。离心泵的工作压力取决于泵的结构(如叶轮的直径、叶片的变曲情况等)、转速和流量。对于一定的泵,在指定的转速下,工作压力与排量之间具有一定的关系。
泵工作时压力可用实验方法测定,如图2-8所示。在泵的进出口处分别安装真空表和压力表,真空表与压力表之间列柏努利方程式,即
非金属矿产加工机械设备
或
式中pM——压力表读出的压力(表压)(N/m2);
pv——真空表读出的真空度(N/m2);
v1、v2——吸入管、压出管中液体的流速(m/s);
∑hf——两截面的压头损失(m)。
图2-8泵压测定安装图
1-流量计;2-压强表;3-真空计;4-离心泵;5-贮槽
由于两截面之间管路很短,其压头损失∑hf可忽略不计。若以hM及hv分别表示压力表和真空表上的读数,以液柱高m作计算,则(2-1)可改写为
非金属矿产加工机械设备
(3)效率在输送液体过程中,外界能量通过叶轮传给液体时,不可避免地会有能量损失,故泵轴转动所做的功不能全部都为液体所获得,通常用效率η来反映能量损失。这些能量损失包括容积损失、水力损失及机械损失,现将其产生原因分述如下:
容积损失容积损失是由于泵的泄漏造成的。离心泵在运转过程中,有一部分获得能量的高压液体,通过叶轮与泵壳之间的缝隙漏回吸入口,或从填料函处漏至泵壳外,因此,从泵排出的实际流量要比理论排出量为低,其比值称为容积效率η1。
水力损失水力损失是当流体流过叶轮、泵壳时,由于流速大小和方向要改变等原因,流体在泵体内产生冲击而损失能量,所以泵的实际压力要比泵理论上所能提供的压力为低,其比值称为水力效率η2。
机械损失机械损失是泵在运转时,泵轴与轴承之间、泵轴与填料函之间、叶轮盖板外表面与液体之间均产生摩擦,从而引起的能量损失。可用机械效率η3表示。
泵的总效率η(又称效率)等于上述三种效率的乘积,即
非金属矿产加工机械设备
对离心泵来说,一般小型泵的效率为50%~70%,大型泵可达90%。
(4)轴功率离心泵的功率是泵轴所需的功率。当泵直接由电动机带动时,也就是电动机传给轴的输出功率,以N表示,单位为W或kW。有效功率是排送到管道的液体从叶轮所获得的功率,以Ne表示。由于有容积损失、水力损失与机械损失,所以泵的轴功率大于有效功率,即
非金属矿产加工机械设备
而有效功率可写成
非金属矿产加工机械设备
式中qv——泵的排量(m3/s);
h——泵的压头(m);
ρ——被输送液体的密度(kg/m3);
g——重力加速度(m/s2)。
若式(2-5)中Ne用kW来计量,则
非金属矿产加工机械设备
泵的功率为
非金属矿产加工机械设备
p为泵的工作压力。
2.离心泵的特性曲线
前已述及离心泵的主要性能参数是排量、工作压力(压头)、泵功率及效率,其间的关系由实验测得,测出的一组关系曲线称为离心泵的特性曲线或工作性能曲线,此曲线由泵的制造厂提供,并附于泵样本或说明书中,供使用部门选泵和操作时参考。
图2-9为国产4B20型离心水泵在n=2900r/min时的特性曲线,由h-qv、N-qv及η-qv三条曲线所组成。特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都标明转速n的数值。
(1)h-qv曲线表示泵的压头与排量的关系。离心泵的工作压力普遍是随排量的增大而下降(在排量极小时可能有例外)。
(2)N-qv曲线表示泵的轴功率与排量的关系。离心泵的功率随排量的增大而上升,排量为零时轴功率最小。所以离心泵启动时,应关闭泵的出口阀门,使启动电流减少,以保护电机。
(3)η-qv曲线表示泵的效率与排量的关系。从图2-9所示的特性曲线看出,当qv=0时η=0,随着排量的增大,泵的效率随之而上升并达到一最大值;以后排量再增,效率便下降。说明离心泵在一定转速下有一最高效率点,称为设计点。泵在与最高效率相对应的排量及压头下工作最为经济,所以与最高效率点对应的qv、h、N值称为最佳工况参数。离心泵的铭牌上标出的性能参数就是指该泵在运行时效率最高点的状况参数。但实际上离心泵往往不可能正好在该条件下运转,因此一般只能规定一个工作范围,称为泵的高效率区,通常为最高效率的92%左右。选用离心泵时,应尽可能使泵在此范围内工作。
图2-94B20型离心水泵的特性曲线
3.离心泵的转速对特性曲线的影响
离心泵的特性曲线都是在一定转速下测定的,但在实际使用时常遇到要改变转速的情况,这时速度三角形将发生变化,泵压、排量、效率及泵功率也随之改变。当液体的粘度不大且泵的效率不变时,泵排量、泵压头、轴功率与转速的近似关系为:
非金属矿产加工机械设备
式中qv1、h1、N1——转速为n1时泵的性能参数;
qv2、h2、N2——转速为n2时泵的性能参数。
当转速变化小于20%时,可以认为效率不变,用上式进行计算误差不大。
4.叶轮直径对特性曲线的影响
如果只将叶轮切削而使直径变小,且变化不大,效率可视为基本上不变,则qv与D成正比。在固定转速之下,h与D2成正比,于是N与D3成正比。叶轮直径和泵排量、泵压头、轴功率之间的近似关系为:
非金属矿产加工机械设备
式中qv1、h1、N1——叶轮直径为D1时泵的性能参数;
qv2、h2、N2——叶轮直径为D2时泵的性能参数。
上述关系只有在直径的变化不超过20%时才是可用的。
属于同一系列的泵,其几何形状完全相似,叶轮的直径与厚度之比是固定的。这种几何形状相似的泵,因直径不同而引起的性能变化,qv与D3成正比,h与D2成正比,于是N与D5成正比。叶轮直径和排量、压头、功率之间的近似关系为:
非金属矿产加工机械设备
式中qv1、h1、N1——叶轮直径为D1时泵的性能;
qv2、h2、N2——叶轮直径为D2时泵的性能。
5.液体物理性质的影响
泵生产部门所提供的离心泵特性曲线一般都是在一定转速和常压下,以常温的清水为工质做实验测得的。当所输送的液体性能与水相差较大时,要考虑粘度及密度对特性曲线的影响。
(1)粘度的影响离心泵所输送的液体粘度愈大,泵体内能量损失愈多。结果泵的工作压力、排量都要减少,效率下降,而功率则要增大,所以特性曲线改变。
(2)密度的影响由离心泵的基本方程式看出,离心泵的压头、排量均与液体的密度无关,则泵的效率亦不随液体的密度而改变,所以,h-qv与η-qv曲线保持不变。但是泵的轴功率随液体密度而改变。因此,当被输送的密度与水不同时,原产品目录中对该泵所提供的N-qv曲线不再适用,此时泵的轴功率可按式(2-9)重新计算。
(3)溶质的影响如果输送的液体是水溶液,浓度的改变必然影响液体的粘度和密度。浓度越高,与清水差别越大。浓度对离心泵特性曲线的影响,同样反映在粘度和密度上。如果输送液体中含有悬浮物等固体物质,则泵特性曲线除受浓度影响外,还受到固体物质的种类以及粒度分布的影响。
四、离心泵的安装高度和气蚀现象
(一)气蚀现象
离心泵通过旋转的叶轮对液体作功,使液体能量(包括动能和静压能)增加,在叶轮运动的过程中,液体的速度和压力随之变化。通常离心泵叶轮入口处是压力最低的地方。如果这个地方液体的压力等于或低于在该温度下液体的饱和蒸汽压力pv,就会有蒸汽从液体中大量逸出,形成许多蒸汽和气体相混合的小气泡。这些小气泡随液体流到高压区时,由于气泡内为饱和蒸汽压,而气泡周围大于饱和蒸汽压,因而产生了压差。在这个压差作用下,气泡受压破裂而重新凝结。在凝结过程中,液体质点从四周向气泡中心加速运动,在急剧凝结的一瞬间,质点互相撞击,产生很高的局部压力。这些气泡如果在金属表面附近破裂而凝结,则液体就像无数小弹头一样,连续打击在金属表面上。在压力很大(几百大气压)频率很高(每秒几万次之多)的连续打击下,金属表面逐渐因疲劳而破坏,这种现象叫做汽蚀现象。离心泵在严重的汽蚀状态下运转时,发生汽蚀的部位很快就被破坏成蜂窝或海绵状,使泵的寿命大大地缩短。同时,因汽蚀引起泵体振动,泵的吸液能力和效率也大大下降。为了保证离心泵的正常操作,避免发生汽蚀,泵安装的吸水高度绝对不能超过规定,以保证泵入口处的压力大于液体输送温度下的饱和蒸汽压。
(二)离心泵的安装高度
我国的离心泵规格中,采用两种指标对泵的安装高度加以限制,以免发生汽蚀,现将这两个指标介绍如下。
1.允许吸上真空高度
允许吸上真空高度hs是指泵入口处压力p1可允许达到的最高真空度,其表达式为
非金属矿产加工机械设备
式中hs——离心泵的允许吸上真空高度,m液柱;
pa——大气压(N/m2);
ρ——被输送液体的密度(kg/m3)。
要确定允许吸上真空度与允许安装高度hg之间关系,可设离心泵吸液装置如图2-10所示。以贮槽液面为基准面,列出槽面0-0与泵入口1-1截面的柏努利方程式,则
非金属矿产加工机械设备
式中,∑hf为液体流经吸入管路时所损失的压头(m)。由于贮槽是敞口的,则p0为大气压pa。
上式可写成
非金属矿产加工机械设备
将式(2-10)代入上式,则
非金属矿产加工机械设备
此式可用于计算泵的安装高度。
图2-10离心泵吸液示意图
由上式可知,为了提高泵的允许安装高度,应该尽量减少
泵制造厂只能给出hs值,而不能直接给出hg值。因为每台泵使用条件不同,吸入管路的布置情况也各异,有不同的
在泵样本或说明书中所给出的hs是指大气压力为10mH2O,水温为20℃状态下的数值,如果泵的使用条件与该状态不同时,则应把样本上所给出的hs值,换算成操作条件下的h′s值,其换算公式为
非金属矿产加工机械设备
式中h′s——操作条件下输送液体时的允许上真空高度(mH2O);
hs——泵样本中给出的允许吸上真空度高(mH2O);
ha——泵工作处的大气压(mH2O);
hr——操作温度下液体的饱和蒸汽压(mH2O)。
泵安装地点的海拔越高,大气压力就越低,允许吸上真空度就小,若输送液体的温度越高,或液体越易挥发所对应的饱和蒸汽压就越高,这时,泵的允许吸上真空度也就越小。不同海拔高度时大气压如表2-1。
表2-1不同海拔高度的大气压力
2.汽蚀余量
汽蚀余量△h是指离心泵入口处,液体的静压头
非金属矿产加工机械设备
式中△h——汽蚀余量(m);
pr——操作温度下液体饱和蒸汽压(N/m2)。
将式(2-11)与(2-14)合并可导出汽蚀余量△h与允许安装高度hg之间关系为
非金属矿产加工机械设备
式中p0为液面上方的压力,若为敞口液面,则
p0=pa
应当注意,泵性能表上△h值也是按输送20℃水而规定的。当输送其它液体时,需进行校正。
由上可知,只要已知允许吸上真空高度hs与汽蚀余量△h中的任一个参数,均可确定泵的安装高度。
五、离心泵的类型与选择
1.离心泵的类型
工业生产中被输送液体的性质、压强、流量等差异很大,为了适应各种不同要求,离心泵的类型也是多种多样的。按液体的性质可分为水泵、耐腐蚀泵、油泵、杂质泵等;按叶轮吸入方式可分为单吸泵与双吸泵;按叶轮数目又可分为单级泵与多级泵。各种类型的离心泵按照其结构特点各自成为一个系列,并以一个或几个汉语拼音字母作为系列代号,在每一系列中,由于有各种不同的规格,因而附以不同的字母和数字来区别。现对工厂中常用离心泵的类型作简要说明。
(1)水泵(B型、D型、Sh型)凡是输送清水以及物理、化学性质类似于水的清洁液体,都可以用水泵。
应用最广泛的为单级单吸悬臂式离心水泵,其系列代号为B,称B型水泵,其结构如图2-11所示。泵体和泵盖都是用铸铁制成,全系列扬程范围为8~98m,排量范围为4.5~360m3/h。
若所要求的压头较高而流量并不太大时,可采用多级泵,如图2-12所示,在一根轴上串联多个叶轮,从一个叶轮流出的液体通过泵壳内的导轮,引导液体改变流向,同时将一部分动能转变为静压能,然后进入下一个叶轮入口,液体从几个叶轮多次接受能量,故可达到较高的压头。我国生产的多级泵系列代号D,称为D型离心泵,一般自2级到9级,最多可到12级,全系列扬程范围为14~351m,排量范围为10.8~850m3/h。
若输送液体的流量较大而所需的压头并不高时,则可采用双吸泵。双吸泵的叶轮有两个入口,如图2-13所示。由于双吸泵叶轮的厚度与直径之比加大,且有两个吸入口,故输液量较大。我国生产的双吸离心泵系列代号为Sh,全系列扬程范围为9~140m,排量范围为120~12500m3/h。
(2)耐腐蚀泵(F型)输送酸、碱等腐蚀性液体时应采用耐腐蚀泵,其主要特点是和液体接触的部件用耐腐蚀材料制成。各种材料制造的耐腐蚀泵在结构上都要求简单,易更换零件,检修方便。都用F作为耐腐蚀泵的系列代号。在F后面再加一个字母表示材料代号,以作区别。我国生产的F型泵采用了许多材料制造,例如:
图2-11B型水泵结构图
1-泵体;2-叶轮;3-密封环;4-护轴套;5-后盖;6-泵轴;7-托架;8-联轴墨部件
图2-12多级泵示意图
图2-13双吸泵示意图
灰口铸铁——材料代号为H,用于输送浓硫酸;
高硅铸铁——材料代号为G,用于输送压强不高的硫酸或以硫酸为主的混酸;
铬镍合金钢——材料代号为B,用于常温输送低浓度的硝酸、氧化性酸液、碱液和其他弱腐蚀性液体;
铬镍钼钛合金钢-材料代号为M,最适用于硝酸及常温的高浓度硝酸;
聚三氟氯乙稀塑料-材料代号为S,适用于90℃以下的硫酸、硝酸、盐酸和碱液。
耐腐蚀泵的另一个特点是密封要求高。由于填料本身被腐蚀的问题也难彻底解决,所以F型泵根据需要采用机械密封装置。
F型泵全系列的扬程范围为15~105m,排量范围为2~400m3/h。
图2-14B型水泵系列特性曲线
表2-2B型水泵性能表(部分)
注:括号内数字是JO型电机功率。
(3)杂质泵(P型)输送悬浮液及粘稠的浆液等常用杂质泵。在非金属矿产加工过程中得到广泛地应用。系列代号为P,又细分为污水泵PW、砂泵PS、泥浆泵PN等。对这类泵的要求是:不易被杂质堵塞、耐磨、容易拆洗。所以它的特点是叶轮流道宽,叶片数目少,常采用半闭式或开式叶轮。有些泵壳内衬以耐磨的铸钢护板或橡胶衬板。
在泵的产品目录或样本中,泵的型号是由字母和数字组合而成,以代表泵的类型、规格等,现举例说明。
8B29A:
其中8——泵吸入口直径,英寸,即8×25=200mm;
B——单级单吸悬臂式离心水泵;
29——泵的扬程,m;
A——该型号泵的叶轮直径经切割比基本型号8B29的小一级。
为了选用方便,泵的生产部门常对同一类型的泵提供系列特性曲线,图2-14就是B型水泵系列特性曲线图。把同一类型的各型号泵与较高效率范围相对应的一段h-qv曲线,绘在一个总图上。图中扇形面的上方弧形线代表基本型号,下方弧形线代表叶轮直径比基本型号小一级的型号A。若扇形面有三条弧形线,则中间弧形线代表型号A,下方弧形线代表叶轮直径比基本型号再小一级的型号B。图中的符号与数字见图内说明。
2.离心泵的选择
离心泵的选择,一般可按下列的方法与步骤进行:
(1)确定输送系统的流量与工作压力(压头) 液体的输送量一般为生产任务所规定,如果流量在一定范围内变动,选泵时应按最大流量考虑。根据输送系统管路的安排,用柏努利方程式计算在最大流量下管路所需的压头。
(2)选择泵的类型与型号根据被输送液体的性质和操作条件确定泵的类型。按已确定的流量Qe和压头he或工作压力p从泵样本或产品目录中选出合适的型号。选出的泵能提供的排量Q和压头h不见得与管路所要求的Qe和压头he或工作压力p完全相符,而且考虑到操作条件的变化和应具备一定的潜力,所选的泵可以稍大一些,但在该条件下泵的效率应比较高,即点(Qe、he)坐标位置应靠近在泵的高效率范围所对应的h-qv曲线下方。
泵的型号选出后,应列出该泵的各种性能参数(表2-2是B型泵的性能表(部分))。
(3)核算泵的轴功率若输送液体的密度大于水的密度时,可按式(2-7)核算泵的轴功率。
Ⅲ 消防泵型号后面的BL AL分别是什么意思
XBD企业代号 4.5 -扬程45米 30--流量每秒30L 125--进出水口径125MM 200--叶轮直径 A--一次切割 L 立式。
液体泵分类:
1、按泵轴方向可分为卧式、立式、斜式。
2、按壳体剖分型式分为径向剖分式和轴向剖分式。
3、按级数分为单级和复级。
4、按吸入形式分为单吸和双吸。
5、按水泵形式分各中心支承式,管道式、共座式、分座式、可移式。
6、按驱动方式分为直接连接、齿轮传动式、液力偶合传动式、皮常传多式和共轴式。
7、按特殊结构分为液下式、筒式、双壁壳式、地坑筒式、抽出式、自吸式、潜液式和屏蔽式。
8、按轴向力平衡方式分为平衡鼓式、平衡盘式、自身平衡式和平衡孔式。
9、按用途不同主要分为锅炉给水泵、循环水泵、排污泵、杂质泵、砂泵、渣浆泵、泥浆泵、污水泵、清水泵、消防泵、流程泵、增压泵、耐腐蚀泵。
10、按材质不同分为:铸铁泵、不锈钢泵、塑料泵、氟塑料泵、工程塑料泵。
11、按结构形式分为离心泵,隔膜泵,齿轮泵,柱塞泵,往复泵,真空泵,喷射泵。
选泵基本数据:
1、介质的特性:介质名称、比重、粘度、腐蚀性、毒性等。
2、介质中所含固体的颗粒直径、含量多少。
3、介质温度:(℃)。
4、所需要的流量 一般工业用泵在工艺流程中可以忽略管道系统中的泄漏量,但必须考虑工艺变化时对流量的影响。农业用泵如果是采用明渠输水,还必须考虑渗漏及蒸发量。
5、压力:吸水池压力,排水池压力,管道系统中的压力降(扬程损失)。
6、管道系统数据(管径、长度、管道附件种类及数目,吸水池至压水池的几何标高等)。
如果需要的话还应作出装置特性曲线。 在设计布置管道时,应注意如下事项:
1、合理选择管道直径,管道直径大,在相同流量下、液流速度小,阻力损失小,但价格高,管道直径小,会导致阻力损失急剧增大,使所选泵的扬程增加,配带功率增加,成本和运行费用都增加。因此应从技术和经济的角度综合考虑。
2、排出管及其管接头应考虑所能承受的最大压力。
3、管道布置应尽可能布置成直管,尽量减小管道中的附件和尽量缩小管道长度,必须转弯的时候,弯头的弯曲半径应该是管道直径的3~5倍,角度尽可能大于90°。
4、泵的排出侧必须装设阀门(球阀或截止阀等)和逆止阀。阀门用来调节泵的工况点,逆止阀在液体倒流时可防止泵反转,并使泵避免水锤的打击。(当液体倒流时,会产生巨大的反向压力,使泵损坏)。
Ⅳ 潜污泵安装套什么定额
解释: 一般潜水排污泵可以套0.二吨以内的定额,因为一般潜水排污泵的重量都不会超过0.二吨。 简介: 潜水排污泵是一种泵与电机连体,并同时潜入液下工作的泵类产品,能将污水中长纤维、袋、带、草、布条等物质撕裂、切断,然后顺利排放,特别适合于输送含有坚硬固体、纤维物的液体以及特别脏、粘、滑的液体。AS、AV型潜水式排污泵。 主要用途: ①企业单位废水排放。 ②城市污水处理厂排放系统。 ③地铁、地下室、人防系统排水站。 ④医院、宾馆、高层建筑污水排放。 ⑤住宅区的污水排水站。 ⑥市政工程,建筑工地中稀泥浆的排放。 ⑦自来水厂的给水装置
Ⅳ 水力旋流器使用时应注意什么
水力旋流器使用时应注意:矿浆在给入水力旋流器之前,应用筛网将其中的过大矿粒、木渣、草根等杂质除去,对于小直径的旋流器和与磨矿机闭路工作的旋流器,尤为重要。给入旋流器的矿浆必须有一定的压力,并保持稳定不变,才能取得好的分级效果,在实际生产过程中,一般均用砂泵直接给矿,由于受砂泵本身运行状态的影响,经常会出现给矿压力的波动,由此造成给矿量的波动,为减少波动,需要安装变频器,以随时根据情况的变化来调整砂泵转数,以此来稳定给矿压力。如果您是分级机的客户,或者您在分级机的使用方面有什么问题,我们将为您免费提供分级机应用的专业解决方案!即刻拨打,了解更多,相信与“新兴”人的沟通一定会对您的选择有所帮助!您也可以登录我厂网站:
www.gyxxjx.com
巩义市新兴机械厂
Ⅵ 泥浆输送设备
在非金属矿产加工生产中,物料的湿法细磨、分级、压滤脱水等许多地方都要用泥浆输送设备。对于各种不同的用途,泥浆输送设备有离心式和容积式两种。前者如叶轮式泥浆泵、砂泵;后者如往复式隔膜泵、螺杆泵等。
一、离心式泥浆泵
(一)离心式泥浆泵的工作原理
离心式泥浆泵又名砂泵,其结构与离心式水泵相似,如图6-7所示。
图6-7离心式泥浆泵
1-联轴器;2-主轴;3-轴承座;4-轴承;5-填料压盖;6-轴套;7-水封填料箱;8-平衡盘;9-后衬套;10-叶轮;11-前衬套;12-前壳体;13-后壳体;14-机座
在泥浆泵的壳体内有一个叶轮10,被安装在直接与电动机轴相联或为传动装置带动的旋转主轴上。叶轮上有数片均匀分布的形状特殊的叶片,在叶片间形成了泥浆的通道。泵壳为螺旋形蜗壳。泥浆进口管安于壳体的轴心处,泥浆出口管装在壳体的切线方向上。
当叶轮随主轴高速旋转时,壳体内泥浆受叶片的推动,跟随旋转,产生了很大的离心力,这种离心力所具有的压强,即为叶轮处泥浆的动压头。当泥浆流到壳体出口处时,流道扩大流速降低,于是部分动压头转化为静压头,当此压头高于泵外系统的压头时,泥浆就被排出泵外。
随着泵内泥浆的排出,叶轮中部逐渐降为负压,于是机外的泥浆被吸入,砂泵就是这样把泥浆不断地吸入和排出,进行着输送工作。
由离心泵的工作原理可见,泵的压头是随着叶轮直径和转速的增加而增大的,但受到泵用材料强度、制造精度、耗用功率等方面的影响,离心泵叶轮直径不宜过大,转速不宜过高,因此,离心式泥浆泵的压力不能很高,单级泵的压力,一般不超过0.2MPa。
(二)主要结构部件和特点
1.叶轮
叶轮10是直接作用于泥浆的部件,要求它有足够的强度和耐磨性。它选用耐磨材料制造,如灰口铸铁、高硅铸铁、镍铬铸铁、铸钢、钛合金、天然橡胶和合成橡胶等。一般采用开式和半开式叶轮,为加强叶片的刚性和强度,也可采用闭式叶轮。叶轮内的流道宽大平滑,叶片短厚而片少(2~4片)。
在叶轮前后盖板上还制有径向或旋转方向凸出的付叶片,用于防止固体颗粒进入轴封装置。
在叶轮的后盖板上应开4~6个小孔,使叶轮后方与吸入口处的压力尽量一致,以达到平衡轴向力的目的。这种开平衡孔办法简单易行,但会引起泥浆回流,泵送效率降低,同时仍有10%~25%的轴向力得不到平衡。采用安装盘8的办法,可进一步平衡轴向力。
2.壳体
离心式泥浆泵的壳体,内部曲线平滑,流道宽大,壳体内密封环(图6-7中密封环已与前衬套整体制造)与叶轮进口处外缘的间隙较大。一般把壳体做成剖分式结构,即分成前壳体12和后壳体13,以便于清洗和处理阻塞事故。装配时,壳体的中心线与叶轮旋转中心线重合。在壳体内表面,还分别衬有前壳护板衬套11和后壳护板衬套9,这些橡胶质的护板衬套有较好的耐磨性,容易更换,对壳体起保护作用。
壳体内环形通道截面的变化较小,外形近似圆盘形,泵送的效率较低。
为了保证泥浆泵在整个使用期间不因部件的磨损而降低送浆效率,可装设叶轮与壳体间隙的调整机构。
为了在泵的使用过程中及时清除堵塞物,应在壳体的适当位置开设检修孔。在剖分式壳体上采用摇臂连接方式,有利于快速装拆。
3.主轴与轴承
主轴使用碳素钢等材料制成,有足够刚性和强度。如在它的轴封部位上加装耐磨材料制成的轴套,则可提高其使用寿命。主轴一端通过法兰式挠性联轴器1与电机转轴相联,主轴的另一端装着叶轮10。整个主轴用轴承4安装在泥浆泵的机座14上。
因为离心泵工作时有轴向力存在,所以安装主轴的轴承应选用止推滚动轴承。如果轴向力不大或泵的功率较少,也可以选用径向滚动轴承或巴氏合金衬里的滑动轴承。
4.轴封装置
在旋转主轴与固定壳体的交接处,必须有轴封装置,它对泵的使用情况和泵送效率有很大的影响,多数采用简单的压盖填料箱轴封装置。带水封环的填料箱结构效果较好。
填料箱安装在壳体上,或与壳体整体制造。填料又称盘根,是一种用浸透润滑油脂的棉麻纤维或合成纤维制成的软填料,或是在纤维中加入软金属的半金属填料,或在纤维中混入石墨、石棉等制成填料。轴封的严密性用松紧填料压盖的方法来保证。压盖常用青铜等耐磨材料制成。在水封环中注入干净的水,使填料箱得到经常的冲洗,这样即使有固体颗粒进入填料箱,也会被及时排出,以延长填料寿命,避免主轴表面的磨损。
(三)离心式泥浆泵的使用
1.这种泵是依靠叶轮带动泥浆旋转,使其产生离心力来工作的,泥浆在离心力作用下所产生的压力为
非金属矿产加工机械设备
式中ρ——泥浆密度(g/cm3);
ω——泥浆旋转角速度(rad);
r——泥浆旋转半径(m)。
可见,离心力所产生的压力与该流体的密度成正比。如果泥浆中含有较多空气,那末泵送这种泥浆时所产生的压力就很小,甚至难以送出去,这就是“气缚”现象。所以在开泵以前,泵内和吸入管内必须充满泥浆,排除空气。也可将泵体置于受吸液面之下,让泥浆自己流入泵内,免去了“灌泵”操作。
2.保证有良好的轴封,防止空气漏入泵体,调紧填料压盖可加强轴封的严密性。但调得过紧,会因填料与主轴摩擦阻力急剧增大而使主轴无法转动。
3.安装吸入管时应尽量少用弯管和接头,以免影响吸入高度,管道接口处要严密无缝,不能漏气,可用肥皂水作泄漏试验。吸入管上不能产生有留气体的“气袋”。
4.根据离心泵的特性曲线,泥浆输送量可用出浆管道上的阀门进行调节。
5.离心式泥浆泵是一种高速转动的机械,主轴可以与电机轴直联,但须注意两轴对中整个设备应在同一基础,不与其它基础相连,以免发生共振。
6.配管(吸入管,输浆管)应有其它构件支撑,避免壳体荷载过重。
(四)主要性能
现在我国此类泵产品有PN型泥浆泵,用来输送最大浓度按重量计不超过50%~60%浓度的泥浆或含砂浆;PS型砂泵,输送含固体物质按重量计不超过65%的含砂量或污浊液体。它们的规格、性能见表6-7、表6-8,性能曲线见图6-8、图6-9。
二、往复隔膜式泥浆泵
往复隔膜泥浆泵简称隔膜泵。
普通结构的隔膜泵能输出压力为0.8~1.2MPa的流体,在非金属矿产加工生产中常用隔膜泵为压滤机供浆。一般泵送的压力越高,过滤效率越高,榨取的泥料含水率越低。我国能制造输送压力为2MPa以上的隔膜泵。
(一)隔膜泵的结构
表6-7PN型泥浆泵规格性能(摘)
注:1、2、3、4为出口径毫米数被25除所得整数值;P为杂质泵;N为泥浆泵。
表6-8PS型砂泵性能(摘)
注:
图6-82PN型泥浆泵性能曲线图
非金属矿产加工机械设备
按缸体数目不同,隔膜泵有单缸泵、双缸泵和多缸泵。双缸泵比单缸泵的生产能力大,输浆的速度和压力较均匀,因此,电机的负荷也较均匀。多缸泵的性能则更好,如相位差为120。的三缸泵,其瞬间最小流量约为平均流量的87%,瞬时最大流量为平均流量的106%。但多缸泵结构比较复杂,造价较高。目前使用最广泛的是双缸隔膜泵,它的结构如图6-10所示。
双缸泵实质上是由二个单缸泵组合的,把二个泵送系统对称地安装在机架两侧,共用电动机、机械传动机构、进浆管道和出料管道。所以只要剖析其中一个泵送系统就可以了。
它的结构部件主要有机架、机械传动系统、柱塞和柱塞缸、隔膜和隔膜室、阀门和阀门室、空气室、压力调节器等。
1.机架
它是安装和支承机械传动系统和泥浆输送系统的构件,用铸铁或铸钢整体铸造而成,在其装配面上需经机械加工。也可用钢板焊接而成或用装配式结构。机架的形状有立式喇叭状(图6-10)和立式四棱柱状两种。通过地脚螺丝安装在混凝土基础上,要求机架的制造在保证有足够的刚性和强度前提下,减轻重量,节约材料,缩小外形尺寸。
图6-10双缸隔膜泵
1-曲柄;2-连杆;3-柱塞;4-压盖;5-填料;6-管道;7-柱塞缸;8-隔膜室;9-隔膜;10-进浆阀;11-阀门室;12-出浆阀;13-管道;14-空气室;15-出浆管;16-电动机;17、18-螺栓;19-贮油筒;20-保险阀;21-输油阀
2.机械传动系统
隔膜泵的送液作用,首先是由于泵体上柱塞3往复运动而获得。根据机械运动原理,柱塞在曲柄连杆机构带动下作往复运动时,往复的频率,或者说曲柄轴的转速是受到一定限制的。为不使这种往复运动产生过大的惯性冲击力,在负荷较大的情况下,通常要求曲柄轴的转速小于60r/min。所以隔膜泵的传动系统,在传递动力的同时还必须有一定的减速比。
隔膜泵上的机械传动系统有减速器传动和皮带传动两种形式。图6-10所示为减速器传动。电动机与减速器都安装在泵体的机架上。电动机16的主轴与减速器输入轴相联。减速器的输出轴上安装着曲柄1,当曲柄旋转时,连杆2和柱塞3作上下往复运动。这种形式使整个设备结构紧凑,外形美观;皮带传动机构,是电动机经二级皮带轮传动使曲柄旋转的机构,挠性皮带对设备有一定的保险作用,直径与重量较大的皮带轮有飞轮作用,使电机负荷比较均匀,且具有加工比较容易等优点。其缺点是设备笨重,外形尺寸和占地面积较大。
3.柱塞和柱塞缸
圆柱形的柱塞3是一条钢柱(铸铁空心件),它可以在柱塞缸7内作上下往复运动,柱塞与柱塞缸的接触表面,按配合要求作了很好的精加工。为加强它们之间配合紧密度,在柱塞缸的上部安装有压盖填料箱式密封装置,调节紧固螺柱,可使压盖4压紧填料5,增加缸内密封性。柱塞缸下部稍有扩大,内贮液压油,一侧有孔径管道6与压力调节器的贮油筒19底部相通,另一侧有孔与隔膜室8的右半室相通。
4.隔膜和隔膜室
隔膜室8中的隔膜9是这种往复式泥浆泵的特有部件。隔膜通常是一块厚10~25mm的圆形橡皮。有很好的强度和柔软性,耐热、耐油。选用Ⅰ-1组低硬度耐油橡胶比较适宜,它的拉断力不小于8MPa,拉断伸长率不小于350%,拉断永久变形不大于30%。隔膜把隔膜室分成左右两室,右室径孔板通柱塞缸,左室径孔板通阀门室11。所以,隔膜把机械活动部分与泥浆输送部分隔离开来,使隔膜泵具有耐磨、使用寿命长、容易清洗、不易堵塞等优点。
5.阀门和阀门室
在阀门室11中有进浆阀10和出浆阀12。进浆阀下方与进浆管道相连;出浆阀上方与出浆管道13及空气室14相连,对阀门的要求是:①阀的流通面积较大,对液流的阻力较小;②阀的闭启灵活自如。关闭时,阀体与阀座之间的接触严密无泄漏,开启时,阀体离阀座的距离适当,容易复位;③阀体本身重量恰当,当依靠其自重落在阀座上时,冲击力小。同时,不会轻易离位,阀门闭合良好;④阀的强度、刚性耐磨性好,在承受相当大压力时,不会变形和破坏。在受泥浆多次冲击后,仍能保持原形;⑤进浆阀和出浆阀可以互换。
目前常用的有球形阀和平板阀两种,它们都是单向阀。依靠液压向上顶开,依靠自重落下复位。有些泵在阀座上方的阀门室里,装有挡盖,用以限制阀体离座的距离。为检修、安装、清洗的方便,阀门室上开有检修孔,平时用盖板封闭着。
6.空气室
空气室是一个圆球形(或圆柱形等)的中空壳体,内部充填着一定压力(一般为大气压)的空气。空气室底部与阀门室和出浆管相通,空气室顶部装有指示输浆压力的压力表。
由于柱塞在整个冲程中的往复运动是变速运动,所以隔膜泵送浆的瞬时压力与流量会随着时间有相应的起伏变化。这种不均匀的脉动输液情况,说明液体在通过泵体和配管时有加速度存在。由加速度所产生的阻抗,会增加泵用电机的消耗功率,并引起液流冲击,加剧管道磨损,缩短设备使用寿命,还使泵体和配管产生振动,发生噪音。为了缓和这种脉动情况,采取了一些措施,如将单缸泵改为双缸泵或多缸泵,安装弹簧式缓冲装置等,设置空气室则是一种最简单而有效的办法。
在泵的排出冲程、出浆管道中压力增大时,封闭在空气室中的空气被压缩,吸收部分压力能,贮存部分液体,使管道内的压力和流量不会上升得太高;在管道中压力逐步降低时,被压缩的气体膨胀,释放出压力能。贮存的液体补充到管道的液流中,使出浆管道内的压力和流量不会迅速减少。所以,空气室好似电路中的滤波器一样,对管道中的液流起到了缓冲脉动作用。
由于泵的脉动输液情况,使压力表指针时常摆动较大,影响压力表使用寿命。为了保护压力表,可安装压力表开关,只在读示压力时才将开关打开。压力表与空气室的连接管最好选用螺旋管,以免操作不慎时泥浆直接喷入表中,影响精度。
7.压力调节器
压力调节器由贮油筒19(图6-10)、保险阀20和输油阀21等组成。贮油筒内装满与柱塞缸中同样的液压油,它的底部经管道6与柱塞缸7相通。保险阀20被压力弹簧压在阀座上,压力大小可由螺旋18调节。输油阀被拉力弹簧拉紧在阀座上,拉力大小由螺旋17调节。
隔膜泵的压力调节过程是这样进行的:当柱塞3向上运动时,柱塞缸内压力降低,形成负压,在外界大气压与缸内压力差值大到足以克服拉力弹簧的拉力时,输油阀21便向下打开,贮油筒内的油液经管道6流入柱塞缸,于是缸内压力不再下降;当柱塞3向下运动时,缸内压力增加,形成正压,当正压值大到足以克服压力弹簧的压力时,保险阀20便被顶开,缸中的油液经管道6排向贮油筒,柱塞缸内压力不再增加。而柱塞缸内的压力是通过隔膜传递给阀门室中泥浆的,缸内压力大小反映了隔膜泵输液压力的大小。所以,只要调节压力弹簧的压力,就可控制泵送泥浆的压力。
由上述情况可见,压力调节器既有调压、保险作用,又有输油、补油作用。
拉力弹簧的正常拉力值按下述步骤调节:
先让柱塞处于冲程的中间位置,在柱塞缸及与缸相通的隔膜室右半部、管道和贮油筒中充满油液,关闭保险阀和输油阀。然后开动电机使柱塞向上运动,并调节输油阀上拉力弹簧的拉力,使柱塞向上运动到极限位置时,输油阀正好仍未打开。这样在以后运转中,若因泄漏等情况造成缸内油量减少而出现更大负压时,输油阀就会打开,向缸中补油,避免缸内压力过低,使隔膜向油缸一侧过分的弯曲变形。
压力弹簧的正常压力应以隔膜泵输液的额定最高压力为标准,或以输液系统所需最高压力为标准进行调节。
隔膜泵的实际输液压力是随负载的阻力而变化的,负载(例如压滤机)的阻力越大,它的输液压力也越大。在理论上,可以提供无限大的压力,可是实际上要受隔膜材料、泵体结构和泵用功率等多种因素的限制。所以,应把压力弹簧的压力调节到柱塞排液冲程时出浆管道压力(有压力表显示)达到规定数值时,柱塞缸内的液压油正好冲开保险阀、排向贮油筒。这样就可防止泵体因出现压力过高而损坏的情况,同时也保证输送的泥浆能达到一定的压力要求。
(二)隔膜泵工作原理
电动机经过机械传动曲柄连杆机构,使柱塞上下往复运动。在柱塞上升时,柱塞缸容积增大,产生部分真空,缸内压力下降,当缸内压力降低至小于阀门室11中的压力时,隔膜9向柱塞缸一侧弯曲变形,这时,阀门室容积逐渐增大,室内压力也随之降低,当出现较大负值时,泥浆在外界大气压作用下经过进浆管道,冲开进浆阀10,进入阀门室。当柱塞下压时,缸内容积减少,压力渐增,并通过油液传递给隔膜,当缸内压力大于阀门室中压力时,隔膜向阀门室一侧弯曲变形,充满在阀门室里的泥浆受到隔膜的推力,压住了单向进浆阀10,当推力大于出浆管道中压力时,泥浆冲开单向出浆阀12,进入输浆管道,排到其它系统去。
只要柱塞不断地上下往复运动,就使泥浆被隔膜泵不停地吸入和输出。
三、隔膜泵的设计计算
(一)生产能力
隔膜泵的生产能力是指泵送液体或泥浆的流量,可按下式计算:
非金属矿产加工机械设备
式中m——泵缸数目;
Q——单位时间的体积流量(m3/h);
A——柱塞断面积(m2),
d——柱塞直径(m);
s——柱塞冲程(m);等于曲柄长度的一倍;
n——曲柄轴回转速度(r/min);
ηr——隔膜泵容积系数,ηr=0.65~0.85。
隔膜泵容积系数的意义是实际排出量与理论排出量的比值。产生(1-ηr)的原因是:①因进浆阀没有完全关闭严密而引起的常时泄漏;②因出浆阀没有完全关闭严密而引起的常时泄漏;③由于进浆阀关闭的迟后,在柱塞排液冲程时,阀门室中的泥浆向进浆管倒流;④由于出浆阀关闭的迟后,在柱塞吸液冲程时,出浆管道中泥浆向阀门室倒流;⑤由于液体(或泥浆)的压缩性而使排液量减少,当用气流搅拌的泥浆被泵送时,由于泥浆中含有较多的空气,这种情况就较为严重;⑥管道及泵体连接处密封不良,造成液体向外部泄漏或空气向泵送系统侵入;⑦隔膜泵的设计、制造质量较差。
(二)功率
隔膜泵的功率主要消耗在泵送泥浆方面,其次消耗在机械传动的摩擦方面,可按下式计算:
非金属矿产加工机械设备
式中N——功率消耗(kW);
Q——生产能力(m3/h);
p——输浆压力(MPa);
η——机械传动总效率,η=0.65~0.8。
配用电机的功率较式(6-3)的计算值大20%~30%,再按标准选型。
(三)空气室的容积和壁厚
一般来说,空气室容积大一些,缓冲作用就强一些。但过大了,使设备体型庞大,而且也是不必要的。空气室适宜容积可按下式确定:
非金属矿产加工机械设备
式中V——空气室容积(m3);
i——隔膜泵排量变化率,其意义是瞬时最大排量与平均排量的差值和平均排量的比值,单缸为0.55;双缸为0.11;三缸为0.012;
A—柱塞的横断面积(m2);
s——柱塞冲程(m);
k——许用脉动变化率,其意义是脉动压力振幅与泵的输液平均压力之比。随工作性质的要求选取。一般取k=0.01~0.05。如对压滤机供浆时,对脉动要求不高,可取k=0.05。
空气室的壁厚可根据薄壁容器强度公式计算:
非金属矿产加工机械设备
式中δ——空气室壁厚(mm);
p——空气室承受的最高压力,按隔膜泵额定最高压力确定(MPa);
D——空气室内径,按空气室适宜容积确定(mm);
σ——制造空气室材料的许用应力,
C——考虑泥浆对空气室内壁的磨损、腐蚀等因素的放大尺寸,取C=2~6mm。
当用铸造法制造时,要求壁厚δ>6mm。
(四)曲柄连杆机构的设计
隔膜泵柱塞的往复运动,通常由电机经减速机构和曲柄连杆机构的传动来实现。
曲柄连杆机构的设计按下述步骤进行:
1.根据所选用电机型号和减速传动的速比,确定曲柄轴的转速n,并要求n<60r/min。
2.根据隔膜泵的缸数m、柱塞直径d和所需的生产能力Q,确定曲柄长度a(m)。
3.确定连杆长度b。
四、隔膜泵的使用
1.开机前先要检查各运动部件是否有故障,润滑情况是否良好,泵体与配管连接处是否有漏气现象。
2.在柱塞缸和贮油筒中应加满液压油。按输浆压力要求和正确的方法调节好压力调节器中弹簧的弹力。
3.检查阀门情况,并把泥浆灌入阀门室,以利及时送浆。
4.若在出浆管道上装有截止阀,在开机前必须将它打开。为避免产生操作不慎而造成的问题,可在出浆管道上安装安全阀。当管内压力过高时,安全阀自动打开,管内压力不再上升。
5.隔膜泵是一种往复泵,当柱塞往复次数n、冲程s一定时,泵的流量Q就一定。要想改变Q,就应改变n或s,在实际使用时要做到这一点会使泵的结构复杂化。所以,通常调节流量的方法是在出浆管道上安装旁路支管。切忌用出浆管道阀门来调节,否则将造成事故。
6.隔膜泵具有自吸能力,为了防止因泵停止工作时,进浆管内的泥浆自行沉降而发生堵住进浆管底阀,造成第二次起动困难的情况,允许不装底阀。
五、隔膜泵与砂泵的比较
隔膜泵与砂泵的比较如表6-9所列。
表6-9隔膜泵与砂泵的比较
隔膜泵的技术性能列于表6-10。
表6-10国产隔膜泵规格和技术性能
六、螺杆泵
螺杆泵又名莫诺泵,适用于输送泥浆悬浮液。按螺杆数不同,有单杆、双杆、三杆等多种结构形式。图6-11为单杆螺杆泵的结构。
螺杆泵的主要结构部件是带有双头螺纹内腔的定子1和带有单头螺纹表面的转子2。定子的螺距为转子螺距的1/2。
在由耐磨橡胶制成的定子内表面与转子外面之间形成了弯曲的孔腔7。当转子转动时,孔腔的形状不断地变化,使泥浆由进浆口A吸入,在转子挤压下,从出浆口B输出。
图6-11螺杆泵结构图
1-定子;2-转子;3-机体;4-销子;5-连接杆;6-空心转轴;7-孔腔
泵的空心转轴6与电动机直接相连。轴孔中间有一根连接杆5。连接杆的一端以活动铰链结构连接在转轴上,另一端用销子4和活动铰链结构与转子2的一端相接。当电机带动空心转轴旋转时,通过连接杆的传动,使转子2旋转。转速为1500~3000r/min。
这种泵的结构轻巧,外形小,送浆平稳,适应性强,可以与压滤机、喷雾干燥器、注浆成型生产线等配套使用,效果良好。按泵规格型号不同,单杆泵的生产能力为10~500L/min;输浆压力为0.14~1MPa,螺杆愈长,压力愈高。
国产单杆螺杆泵技术性能列于表6-11。
表6-11部分螺杆泵技术性能
Ⅶ 河南省泥浆泵厂家:泥浆泵和吸砂泵的区别
泥浆泵特点:PN型泥浆泵厂现在生产有:1PN、2PN、3PN、4PN、6PN、8PN等型号,品种齐全,具有使用寿命长,结构简单、运行可靠等特点。
泥浆泵优点:过流部分承磨件采用了耐磨铸铁,使用寿命长;
叶轮和护板的间隙可以及时调整,保持高效率工作;
4“以上泥浆泵轴承直接安装于水平中开托架内,拆检方便调整及时,关在油池内装有水冷蛇形管,改善了轴承的工作条件。
8”以上泥浆泵的泵体较大,采用了对开的结构形式,拆装检修方便。
渣浆泵结构:AH渣浆泵、杂质泵为悬臂、卧式双壳轴向吸入离心渣浆泵。
泵的吐出口位置可根据需要按45℃间隔,旋转八个不同的角度安装使用。
渣浆泵材质:AH渣浆泵、杂质泵的泵体具有可更换的耐磨金属内衬,叶轮、护套、护板等过流部件均采用耐磨金属。
渣浆泵使用:在小流量低扬程区域内,可以输送强磨蚀渣浆;
在高扬程大流量区域内输送轻磨蚀渣浆。
适用于冶金、矿山、煤炭、电力、建材等工业部门输送强磨蚀、高浓度渣浆,该类型泵也可以多级串联使用。
渣浆泵密封形式:AH渣浆泵、杂质泵的轴封可采用填料密封、副叶轮密封、填料加副叶轮密封、机械密封等型式。
渣浆泵传动型式:DC直联传动,CR平行皮带传动,ZVZ上下皮带传动,CV立式皮带传动等型式。
Ⅷ 离心水泵
一、离心泵的工作原理
图2-1所示为一个安装在管路上的离心泵。主要部件有叶轮1与泵壳2等。具有若干弯曲叶片的叶轮安装在泵壳内,并紧固于泵轴3上。泵壳中央的吸水口4与吸水管路5相连接,侧旁的排出口8与排出管路9相连接。
离心泵一般用电动机带动,在启动前需向壳内灌满被输送的液体。启动电动机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着转动,在离心力的作用下,液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时也增大了流速,一般可达15~25m/s,即液体的动能也有所增加。液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽,液体的流速逐渐降低,又将一部分动能转变为静压能,使泵出口处液体的压强进一步提高,于是液体以较高的压强,从泵的排出口进入排出管路,输送至所需的场所。
当泵内液体从叶轮中心被抛向外缘时,在中心处形成了低压区,由于贮槽液面上方的压强大于泵吸入口处的压强,在压强差的作用下,液体便经吸入管路连续地被吸入泵内,以补充被排出液体的位置。只要叶轮不断地转动,液体便不断地被吸入和排出。由此可见,离心泵之所以能输送液体,主要是依靠高速旋转的叶轮。液体在离心力的作用下获得了能量以提高压强。
离心泵启动时,如果泵壳与吸入管路内没有充满液体,则泵壳内存有空气,由于空气的密度远小于液体的密度,产生的离心力小,因而叶轮中心处所形成的低压不足以将贮槽内的液体吸入泵内,此时虽启动离心泵也不能输送液体,此种现象称为气缚,表示离心泵无自吸能力,所以启动前必须向壳体内灌满液体。若离心泵的吸入口位于吸液贮槽液面的上方,在吸入管路的进口处应装一单向底阀6和滤网7。底阀是防止启动前所灌入的液体从泵内漏失,滤网可以阻拦液体中的固体物质被吸入而堵塞管道和泵壳。靠近泵出口处的排出管路上装有调节阀10,以供开车、停车及调节流量时使用。
图2-1离心泵装置简图
1-叶轮;2-泵壳;3-泵轴;4-吸入口;5-吸入管;6-底阀;7-滤网;8-排出口;9-排出管;10-调节阀
二、离心泵的主要部件
离心泵最主要的部件为叶轮、泵壳与轴封装置,下面分别简述其结构和作用。
(1)叶轮叶轮的作用是将原动机的机械能传给液体,使液体的静压能和动能均有所提高。
离心泵的叶轮如图2-2所示,叶轮内有6~12片弯曲的叶片1。图中(a)所示的叶片两侧有前盖板2及后盖板3的叶轮,称为闭式叶轮。液体从叶轮中央的入口进入后,经两盖板与叶片之间的流道流向叶轮外缘,在这过程中液体从旋转叶轮获得了能量,并由于叶片间流道的逐渐扩大,故也有一部分动能转变为静压能。有些吸入口侧无前盖的叶轮,称为半闭式叶轮,如图中(b)所示。没有前、后盖板的叶轮,称为开式叶轮,如图中(c)所示,半闭式与开式叶轮可用于输送浆料或含有固体悬浮物的液体,因取消盖板后叶轮流道不容易堵塞,但也由于没有盖板,液体在叶片间运动时容易产生倒流,故效率也较低。
图2-2离心泵的叶轮
(a)闭式;(b)半闭式;(c)开式
闭式或半闭式叶轮在工作时,有一部分离开叶轮的高压液体漏入叶轮与泵壳之间的两侧空腔中去,而叶轮前侧液体吸入口处为低压,故液体作用于叶轮前、后两侧的压力不等,便产生了指向叶轮吸入口方向的轴向推力,使叶轮向吸入口侧窜动,引起叶轮与泵壳接触处磨损,严重时造成泵的振动。为此,可在叶轮后盖板上钻一些小孔(见图2-3(a)中的1)。这些小孔称为平衡孔,它的作用是使后盖板与泵壳之间的空腔中一部分高压液体漏到低压区,以减少叶轮两侧的压力差,从而起到平衡一部分轴向推力的作用,但同时也会降低泵的效率。平衡孔是离心泵中最简单的一种平衡轴向推力的方法。
按吸液方式的不同,叶轮还有单吸和双吸两种。单吸式叶轮的结构简单,如图2-3(a)所示,液体只能从叶轮一侧被吸入。双吸式叶轮如图2-3(b)所示,液体可同时从叶轮两侧吸入。显然,双吸式叶轮具有较大的吸液能力,而且基本上可以消除轴向推力。
图2-3吸液方式(a)单吸式;(b)双吸式
(2)泵壳离心泵的泵壳又称蜗壳,因壳内有一个截面逐渐扩大的蜗牛壳形通道,如图2-4的1所示。叶轮在壳内顺着蜗形通道逐渐扩大的方向旋转,愈接近液体出口,通道截面积愈大。因此,液体从叶轮外缘以高速度被抛出后,沿泵壳的蜗牛形通道向排出口流动,流速便逐渐降低,减少了能量损失,且使部分动能有效地转变为静压能。所以泵壳不仅作为一个汇集由叶轮抛出液体的部件,而且本身又是一个转能装置。
为了减少液体直接进入蜗壳时的碰撞,在叶轮与泵壳之间有时还装有一个固定不动而带有叶片的圆盘。这个圆盘称为导轮,如图2-4中的3所示。导轮具有很多逐渐转向的流道,使高速液体流过时能均匀而缓和地将动能转变为静压能,从而减少能量损失。
图2-4泵壳与导轮1-泵壳;2-叶轮;3-导轮
(3)轴封装置泵轴与泵壳之间的密封称为轴封。轴封的作用是防止高压液体从泵壳内沿轴的四周漏出,或者防止外界空气以相反方向漏入泵壳内。常用的轴封装置有填料密封和机械密封两种。
普通离心泵所采用的轴封装置是填料函,俗称盘根箱,如图2-5所示。图中1是和泵壳连在一起的填料函壳;2是软填料,一般为浸油或涂石墨的石棉绳;4是填料压盖,可用螺钉拧紧,使填料压紧在填料函壳与转轴之间,以达到密封的目的;5是内衬套,用来防止填料挤入泵内。由于泵壳与转轴接触处可能是泵内的低压区,为了更好地防止空气从填料函不严密处漏入泵内,故在填料函内装有液封圈3。如图2-6所示,液封圈是一个金属环,环上开了一些径向的小孔,通过填料函壳上的小管可以和泵的排出口相通,使泵内高压液体顺小管流入液封圈内,以防止空气漏入泵内,所流入的液体还起到润滑、冷却填料和轴的作用。
图2-5填料函
1-填料函壳;2-软填料;3-液封圈;4-填料压盖;5-内衬套
图2-6液封圈
对于输送酸、碱以及易燃、易爆、有毒的液体,密封的要求就比较高,既不允许漏入空气,又力求不让液体渗出。近年来已广泛采用称为机械密封的轴封装置。它由一个装在转轴上的动环和另一个固定在泵壳上的静环所组成,两环的端面借弹簧力互相贴紧而作相对运动,起到了密封的作用,故又称为端面密封。图2-7是国产AX型机械密封装置的结构,该装置的左侧连接泵壳。螺钉1把传动座2固定于转轴上。传动座内装有弹簧3、推环4、动环密封圈5与动环6,所有这些部件都随轴一起转动。静环7和静环密封圈8装在密封端盖上,并由防转销9加以固定,所有这些部件都是静止不动的。这样,当轴转动时,动环6转动而静环7不动,两环间借弹簧的弹力作用而贴紧。由于两环端面的加工非常光滑,故液体在两环端面的泄漏量极少。此外,动环6和泵轴之间的间隙有动环密封圈5堵住,静环7和密封端盖之间的间隙有静环密封圈8堵住,这两处间隙并无相对运动,故很不易发生泄漏。动环一般用硬材料,如高硅铸铁或由堆焊硬质合金制成。静环用非金属材料,一般由浸渍石墨、酚醛塑料等制成。这样,在动环与静环的相互摩擦中,静环较易磨损,但从机械密封装置的结构看来,静环易于更换。动环与静环的密封圈常用合成橡胶或塑料制成。
图2-7机械密封装置
1-螺钉;2-传动座;3-弹簧;4-推环;5-动环密封圈;6-动环;7-静环;8-静环密封圈;9-防转销
机械密封装置安装时,要求动环与静环严格地与轴中心线垂直,摩擦面很好地研合,并通过调整弹簧压力,使端面密封机构能在正常工作时,于两摩擦面间形成一薄层液膜,以造成较好地密封和润滑作用。
机械密封与填料密封相比较,有以下优点:密封性能好,使用寿命长,轴不易摩损,功率消耗小。其缺点是零件加工精度高,机械加工较复杂,对安装的技术条件要求比较严格,装卸和更换零件较麻烦,价格也比填料函的高得多。
三、离心泵的主要性能参数与特性曲线
1.离心泵的主要性能参数
为了正确选择和使用离心泵,需要了解泵的性能。离心泵的主要性能参数有排量、工作压力(压头)效率和输入功率,这些参数标注在泵的铭牌上,现将各项意义分述于下。
(1)排量离心泵的排量,是指泵的送液数量能力,是指离心泵在单位时间内所排送的液体体积,以qv表示,单位常为1/s或m3/h。离心泵的排量取决于泵的结构、尺寸(主要为叶轮的直径与叶片的宽度)和转速。
(2)工作压力离心泵的工作压力又可用压头或泵的扬程表示,是指泵对单位重量的液体所能提供的有效能量,工作压力用kPa或MPa表示,压头用水柱高m表示。离心泵的工作压力取决于泵的结构(如叶轮的直径、叶片的变曲情况等)、转速和流量。对于一定的泵,在指定的转速下,工作压力与排量之间具有一定的关系。
泵工作时压力可用实验方法测定,如图2-8所示。在泵的进出口处分别安装真空表和压力表,真空表与压力表之间列柏努利方程式,即
非金属矿产加工机械设备
或
式中pM——压力表读出的压力(表压)(N/m2);
pv——真空表读出的真空度(N/m2);
v1、v2——吸入管、压出管中液体的流速(m/s);
∑hf——两截面的压头损失(m)。
图2-8泵压测定安装图
1-流量计;2-压强表;3-真空计;4-离心泵;5-贮槽
由于两截面之间管路很短,其压头损失∑hf可忽略不计。若以hM及hv分别表示压力表和真空表上的读数,以液柱高m作计算,则(2-1)可改写为
非金属矿产加工机械设备
(3)效率在输送液体过程中,外界能量通过叶轮传给液体时,不可避免地会有能量损失,故泵轴转动所做的功不能全部都为液体所获得,通常用效率η来反映能量损失。这些能量损失包括容积损失、水力损失及机械损失,现将其产生原因分述如下:
容积损失容积损失是由于泵的泄漏造成的。离心泵在运转过程中,有一部分获得能量的高压液体,通过叶轮与泵壳之间的缝隙漏回吸入口,或从填料函处漏至泵壳外,因此,从泵排出的实际流量要比理论排出量为低,其比值称为容积效率η1。
水力损失水力损失是当流体流过叶轮、泵壳时,由于流速大小和方向要改变等原因,流体在泵体内产生冲击而损失能量,所以泵的实际压力要比泵理论上所能提供的压力为低,其比值称为水力效率η2。
机械损失机械损失是泵在运转时,泵轴与轴承之间、泵轴与填料函之间、叶轮盖板外表面与液体之间均产生摩擦,从而引起的能量损失。可用机械效率η3表示。
泵的总效率η(又称效率)等于上述三种效率的乘积,即
非金属矿产加工机械设备
对离心泵来说,一般小型泵的效率为50%~70%,大型泵可达90%。
(4)轴功率离心泵的功率是泵轴所需的功率。当泵直接由电动机带动时,也就是电动机传给轴的输出功率,以N表示,单位为W或kW。有效功率是排送到管道的液体从叶轮所获得的功率,以Ne表示。由于有容积损失、水力损失与机械损失,所以泵的轴功率大于有效功率,即
非金属矿产加工机械设备
而有效功率可写成
非金属矿产加工机械设备
式中qv——泵的排量(m3/s);
h——泵的压头(m);
ρ——被输送液体的密度(kg/m3);
g——重力加速度(m/s2)。
若式(2-5)中Ne用kW来计量,则
非金属矿产加工机械设备
泵的功率为
非金属矿产加工机械设备
p为泵的工作压力。
2.离心泵的特性曲线
前已述及离心泵的主要性能参数是排量、工作压力(压头)、泵功率及效率,其间的关系由实验测得,测出的一组关系曲线称为离心泵的特性曲线或工作性能曲线,此曲线由泵的制造厂提供,并附于泵样本或说明书中,供使用部门选泵和操作时参考。
图2-9为国产4B20型离心水泵在n=2900r/min时的特性曲线,由h-qv、N-qv及η-qv三条曲线所组成。特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都标明转速n的数值。
(1)h-qv曲线表示泵的压头与排量的关系。离心泵的工作压力普遍是随排量的增大而下降(在排量极小时可能有例外)。
(2)N-qv曲线表示泵的轴功率与排量的关系。离心泵的功率随排量的增大而上升,排量为零时轴功率最小。所以离心泵启动时,应关闭泵的出口阀门,使启动电流减少,以保护电机。
(3)η-qv曲线表示泵的效率与排量的关系。从图2-9所示的特性曲线看出,当qv=0时η=0,随着排量的增大,泵的效率随之而上升并达到一最大值;以后排量再增,效率便下降。说明离心泵在一定转速下有一最高效率点,称为设计点。泵在与最高效率相对应的排量及压头下工作最为经济,所以与最高效率点对应的qv、h、N值称为最佳工况参数。离心泵的铭牌上标出的性能参数就是指该泵在运行时效率最高点的状况参数。但实际上离心泵往往不可能正好在该条件下运转,因此一般只能规定一个工作范围,称为泵的高效率区,通常为最高效率的92%左右。选用离心泵时,应尽可能使泵在此范围内工作。
图2-94B20型离心水泵的特性曲线
3.离心泵的转速对特性曲线的影响
离心泵的特性曲线都是在一定转速下测定的,但在实际使用时常遇到要改变转速的情况,这时速度三角形将发生变化,泵压、排量、效率及泵功率也随之改变。当液体的粘度不大且泵的效率不变时,泵排量、泵压头、轴功率与转速的近似关系为:
非金属矿产加工机械设备
式中qv1、h1、N1——转速为n1时泵的性能参数;
qv2、h2、N2——转速为n2时泵的性能参数。
当转速变化小于20%时,可以认为效率不变,用上式进行计算误差不大。
4.叶轮直径对特性曲线的影响
如果只将叶轮切削而使直径变小,且变化不大,效率可视为基本上不变,则qv与D成正比。在固定转速之下,h与D2成正比,于是N与D3成正比。叶轮直径和泵排量、泵压头、轴功率之间的近似关系为:
非金属矿产加工机械设备
式中qv1、h1、N1——叶轮直径为D1时泵的性能参数;
qv2、h2、N2——叶轮直径为D2时泵的性能参数。
上述关系只有在直径的变化不超过20%时才是可用的。
属于同一系列的泵,其几何形状完全相似,叶轮的直径与厚度之比是固定的。这种几何形状相似的泵,因直径不同而引起的性能变化,qv与D3成正比,h与D2成正比,于是N与D5成正比。叶轮直径和排量、压头、功率之间的近似关系为:
非金属矿产加工机械设备
式中qv1、h1、N1——叶轮直径为D1时泵的性能;
qv2、h2、N2——叶轮直径为D2时泵的性能。
5.液体物理性质的影响
泵生产部门所提供的离心泵特性曲线一般都是在一定转速和常压下,以常温的清水为工质做实验测得的。当所输送的液体性能与水相差较大时,要考虑粘度及密度对特性曲线的影响。
(1)粘度的影响离心泵所输送的液体粘度愈大,泵体内能量损失愈多。结果泵的工作压力、排量都要减少,效率下降,而功率则要增大,所以特性曲线改变。
(2)密度的影响由离心泵的基本方程式看出,离心泵的压头、排量均与液体的密度无关,则泵的效率亦不随液体的密度而改变,所以,h-qv与η-qv曲线保持不变。但是泵的轴功率随液体密度而改变。因此,当被输送的密度与水不同时,原产品目录中对该泵所提供的N-qv曲线不再适用,此时泵的轴功率可按式(2-9)重新计算。
(3)溶质的影响如果输送的液体是水溶液,浓度的改变必然影响液体的粘度和密度。浓度越高,与清水差别越大。浓度对离心泵特性曲线的影响,同样反映在粘度和密度上。如果输送液体中含有悬浮物等固体物质,则泵特性曲线除受浓度影响外,还受到固体物质的种类以及粒度分布的影响。
四、离心泵的安装高度和气蚀现象
(一)气蚀现象
离心泵通过旋转的叶轮对液体作功,使液体能量(包括动能和静压能)增加,在叶轮运动的过程中,液体的速度和压力随之变化。通常离心泵叶轮入口处是压力最低的地方。如果这个地方液体的压力等于或低于在该温度下液体的饱和蒸汽压力pv,就会有蒸汽从液体中大量逸出,形成许多蒸汽和气体相混合的小气泡。这些小气泡随液体流到高压区时,由于气泡内为饱和蒸汽压,而气泡周围大于饱和蒸汽压,因而产生了压差。在这个压差作用下,气泡受压破裂而重新凝结。在凝结过程中,液体质点从四周向气泡中心加速运动,在急剧凝结的一瞬间,质点互相撞击,产生很高的局部压力。这些气泡如果在金属表面附近破裂而凝结,则液体就像无数小弹头一样,连续打击在金属表面上。在压力很大(几百大气压)频率很高(每秒几万次之多)的连续打击下,金属表面逐渐因疲劳而破坏,这种现象叫做汽蚀现象。离心泵在严重的汽蚀状态下运转时,发生汽蚀的部位很快就被破坏成蜂窝或海绵状,使泵的寿命大大地缩短。同时,因汽蚀引起泵体振动,泵的吸液能力和效率也大大下降。为了保证离心泵的正常操作,避免发生汽蚀,泵安装的吸水高度绝对不能超过规定,以保证泵入口处的压力大于液体输送温度下的饱和蒸汽压。
(二)离心泵的安装高度
我国的离心泵规格中,采用两种指标对泵的安装高度加以限制,以免发生汽蚀,现将这两个指标介绍如下。
1.允许吸上真空高度
允许吸上真空高度hs是指泵入口处压力p1可允许达到的最高真空度,其表达式为
非金属矿产加工机械设备
式中hs——离心泵的允许吸上真空高度,m液柱;
pa——大气压(N/m2);
ρ——被输送液体的密度(kg/m3)。
要确定允许吸上真空度与允许安装高度hg之间关系,可设离心泵吸液装置如图2-10所示。以贮槽液面为基准面,列出槽面0-0与泵入口1-1截面的柏努利方程式,则
非金属矿产加工机械设备
式中,∑hf为液体流经吸入管路时所损失的压头(m)。由于贮槽是敞口的,则p0为大气压pa。
上式可写成
非金属矿产加工机械设备
将式(2-10)代入上式,则
非金属矿产加工机械设备
此式可用于计算泵的安装高度。
图2-10离心泵吸液示意图
由上式可知,为了提高泵的允许安装高度,应该尽量减少
和∑hf。为了减少
,在同一流量下,应选用直径稍大的吸入管以外,吸入管应尽可能地短,并且尽量减少弯头和不安装截止阀等。
泵制造厂只能给出hs值,而不能直接给出hg值。因为每台泵使用条件不同,吸入管路的布置情况也各异,有不同的
和∑hf值,所以只能由使用单位根据吸入管路具体的布置情况,由计算确定hg。
在泵样本或说明书中所给出的hs是指大气压力为10mH2O,水温为20℃状态下的数值,如果泵的使用条件与该状态不同时,则应把样本上所给出的hs值,换算成操作条件下的h′s值,其换算公式为
非金属矿产加工机械设备
式中h′s——操作条件下输送液体时的允许上真空高度(mH2O);
hs——泵样本中给出的允许吸上真空度高(mH2O);
ha——泵工作处的大气压(mH2O);
hr——操作温度下液体的饱和蒸汽压(mH2O)。
泵安装地点的海拔越高,大气压力就越低,允许吸上真空度就小,若输送液体的温度越高,或液体越易挥发所对应的饱和蒸汽压就越高,这时,泵的允许吸上真空度也就越小。不同海拔高度时大气压如表2-1。
表2-1不同海拔高度的大气压力
2.汽蚀余量
汽蚀余量△h是指离心泵入口处,液体的静压头
与动压头
之和超过液体在操作温度下的饱和蒸气压头
的某一最小指定值,即
非金属矿产加工机械设备
式中△h——汽蚀余量(m);
pr——操作温度下液体饱和蒸汽压(N/m2)。
将式(2-11)与(2-14)合并可导出汽蚀余量△h与允许安装高度hg之间关系为
非金属矿产加工机械设备
式中p0为液面上方的压力,若为敞口液面,则
p0=pa
应当注意,泵性能表上△h值也是按输送20℃水而规定的。当输送其它液体时,需进行校正。
由上可知,只要已知允许吸上真空高度hs与汽蚀余量△h中的任一个参数,均可确定泵的安装高度。
五、离心泵的类型与选择
1.离心泵的类型
工业生产中被输送液体的性质、压强、流量等差异很大,为了适应各种不同要求,离心泵的类型也是多种多样的。按液体的性质可分为水泵、耐腐蚀泵、油泵、杂质泵等;按叶轮吸入方式可分为单吸泵与双吸泵;按叶轮数目又可分为单级泵与多级泵。各种类型的离心泵按照其结构特点各自成为一个系列,并以一个或几个汉语拼音字母作为系列代号,在每一系列中,由于有各种不同的规格,因而附以不同的字母和数字来区别。现对工厂中常用离心泵的类型作简要说明。
(1)水泵(B型、D型、Sh型)凡是输送清水以及物理、化学性质类似于水的清洁液体,都可以用水泵。
应用最广泛的为单级单吸悬臂式离心水泵,其系列代号为B,称B型水泵,其结构如图2-11所示。泵体和泵盖都是用铸铁制成,全系列扬程范围为8~98m,排量范围为4.5~360m3/h。
若所要求的压头较高而流量并不太大时,可采用多级泵,如图2-12所示,在一根轴上串联多个叶轮,从一个叶轮流出的液体通过泵壳内的导轮,引导液体改变流向,同时将一部分动能转变为静压能,然后进入下一个叶轮入口,液体从几个叶轮多次接受能量,故可达到较高的压头。我国生产的多级泵系列代号D,称为D型离心泵,一般自2级到9级,最多可到12级,全系列扬程范围为14~351m,排量范围为10.8~850m3/h。
若输送液体的流量较大而所需的压头并不高时,则可采用双吸泵。双吸泵的叶轮有两个入口,如图2-13所示。由于双吸泵叶轮的厚度与直径之比加大,且有两个吸入口,故输液量较大。我国生产的双吸离心泵系列代号为Sh,全系列扬程范围为9~140m,排量范围为120~12500m3/h。
(2)耐腐蚀泵(F型)输送酸、碱等腐蚀性液体时应采用耐腐蚀泵,其主要特点是和液体接触的部件用耐腐蚀材料制成。各种材料制造的耐腐蚀泵在结构上都要求简单,易更换零件,检修方便。都用F作为耐腐蚀泵的系列代号。在F后面再加一个字母表示材料代号,以作区别。我国生产的F型泵采用了许多材料制造,例如:
图2-11B型水泵结构图
1-泵体;2-叶轮;3-密封环;4-护轴套;5-后盖;6-泵轴;7-托架;8-联轴墨部件
图2-12多级泵示意图
图2-13双吸泵示意图
灰口铸铁——材料代号为H,用于输送浓硫酸;
高硅铸铁——材料代号为G,用于输送压强不高的硫酸或以硫酸为主的混酸;
铬镍合金钢——材料代号为B,用于常温输送低浓度的硝酸、氧化性酸液、碱液和其他弱腐蚀性液体;
铬镍钼钛合金钢-材料代号为M,最适用于硝酸及常温的高浓度硝酸;
聚三氟氯乙稀塑料-材料代号为S,适用于90℃以下的硫酸、硝酸、盐酸和碱液。
耐腐蚀泵的另一个特点是密封要求高。由于填料本身被腐蚀的问题也难彻底解决,所以F型泵根据需要采用机械密封装置。
F型泵全系列的扬程范围为15~105m,排量范围为2~400m3/h。
图2-14B型水泵系列特性曲线
表2-2B型水泵性能表(部分)
注:括号内数字是JO型电机功率。
(3)杂质泵(P型)输送悬浮液及粘稠的浆液等常用杂质泵。在非金属矿产加工过程中得到广泛地应用。系列代号为P,又细分为污水泵PW、砂泵PS、泥浆泵PN等。对这类泵的要求是:不易被杂质堵塞、耐磨、容易拆洗。所以它的特点是叶轮流道宽,叶片数目少,常采用半闭式或开式叶轮。有些泵壳内衬以耐磨的铸钢护板或橡胶衬板。
在泵的产品目录或样本中,泵的型号是由字母和数字组合而成,以代表泵的类型、规格等,现举例说明。
8B29A:
其中8——泵吸入口直径,英寸,即8×25=200mm;
B——单级单吸悬臂式离心水泵;
29——泵的扬程,m;
A——该型号泵的叶轮直径经切割比基本型号8B29的小一级。
为了选用方便,泵的生产部门常对同一类型的泵提供系列特性曲线,图2-14就是B型水泵系列特性曲线图。把同一类型的各型号泵与较高效率范围相对应的一段h-qv曲线,绘在一个总图上。图中扇形面的上方弧形线代表基本型号,下方弧形线代表叶轮直径比基本型号小一级的型号A。若扇形面有三条弧形线,则中间弧形线代表型号A,下方弧形线代表叶轮直径比基本型号再小一级的型号B。图中的符号与数字见图内说明。
2.离心泵的选择
离心泵的选择,一般可按下列的方法与步骤进行:
(1)确定输送系统的流量与工作压力(压头) 液体的输送量一般为生产任务所规定,如果流量在一定范围内变动,选泵时应按最大流量考虑。根据输送系统管路的安排,用柏努利方程式计算在最大流量下管路所需的压头。
(2)选择泵的类型与型号根据被输送液体的性质和操作条件确定泵的类型。按已确定的流量Qe和压头he或工作压力p从泵样本或产品目录中选出合适的型号。选出的泵能提供的排量Q和压头h不见得与管路所要求的Qe和压头he或工作压力p完全相符,而且考虑到操作条件的变化和应具备一定的潜力,所选的泵可以稍大一些,但在该条件下泵的效率应比较高,即点(Qe、he)坐标位置应靠近在泵的高效率范围所对应的h-qv曲线下方。
泵的型号选出后,应列出该泵的各种性能参数(表2-2是B型泵的性能表(部分))。
(3)核算泵的轴功率若输送液体的密度大于水的密度时,可按式(2-7)核算泵的轴功率。