当前位置:首页 » 价格行情 » 滁州片状海绵价格如何
扩展阅读
物质成本是什么 2025-08-04 11:24:29
广州哪里买汽修工具 2025-08-04 11:13:47

滁州片状海绵价格如何

发布时间: 2022-07-17 05:30:29

㈠ 海绵是动物吗

是啊
海绵”之名由此而来。我没有嘴,没有消化腔,也没有中枢神经系统,是一个最原始的动物。布满全身的小孔内长着许多鞭毛和一个筛子状的环状物,可用鞭的摆动收进海水,海水带进氧气、细菌、微小藻类和其它有机碎屑,再经环状物过滤,最后变为海绵维计生存的养料。

种类演化历程前世今生所有的动物都来自真菌生殖与发育用途饲养化工海绵生产工艺优劣挑选工业海绵
定型棉 发泡棉 橡胶棉 再生棉展开 编辑本段词典释义
]
海绵
英文名:Spongiatia or Sponge 拉丁文学名:Phylum Porifera 科属分类:真核生物域, 动物界,多孔动物门 海绵 人们通常所用的海绵与海里海绵不可相提并论。也许有人惊奇地问道:“海里还有海绵吗?”其实,生活在海里的海绵才是真正的海绵,人造“海绵”只是仿造了海绵的结构而已。倘若把海绵从水中捞取上来,在海滨挖坑埋藏,待等烂掉肉质,剩下纤维状交织的骨骼,再经过漂洗,才是我们日常所见的海绵。 生活在海水中的海绵,多数是灰黄色、褐色或黑色的块状物。它的体表有许多凸起,凸起的旁边有许多小孔,凸起的顶端有一个大孔。海水就从小孔流进去,又从大孔流出来,那些微小的生物随着水流进入海绵体内,成为“自投罗网”的食物。所以,海绵虽然被称为“海中的花和果实”,看上去似植物一般,实际上是一种动物。 海绵是最原始的多细胞动物,2亿年前就已经生活在海洋里,至今已发展到1万多种,占海洋动物种类的 海绵
绵的颜色也美丽多彩,有鲜红色的,有银灰色的,也有白色的。海绵的个体大小相差很大,小的几毫米,大则十几米。唯一简单的是我的内部结构:整个身体由内外两层细胞组成,体内没有分化的组织,只有些细胞在构造和机能上有差别,体表有4000亿个小孔与体腔相通,并由砂质纤维骨骼联系支撑,就好像千千万万水网密布的渠道系统。一个直径仅1厘米,高10厘米的海绵,一天能过滤20千克海水。 海绵自述:我一直被误认为是植物,因为海绵不会走动,随波逐流,或固定在水中的岩石、贝壳、水生植物或其它物体上。活在海水中的海绵,多数是灰黄色、褐色或黑色的块状物。它的体表有许多凸起,凸起的旁边有许多小孔,凸起的顶端有一个大孔。海水就从小孔流进去,又从大孔流出来,那些微小的生物随着水流进入海绵体内,成为“自投罗网”的食物。所以,海绵虽然被称为“海中的花和果实”,看上去似植物一般,实际上是一种动物。有趣的是,我的形状常和海绵的固着物相似,固定在珊瑚或甲壳的海绵,形状就如同珊瑚或甲壳。所以那种海绵看起来更显得琳琅满目:在灯光的探照下,有的像一串串大红灯笼,更多的则如精巧绝伦的花瓶和杯盏。海绵的这种特点更是叫人难辨真面目。直到近代,显微镜的出现,才揭开了争论整整2000年之久的我的归属之谜。 海绵喜欢和其它生物共生共栖。有些水藻长在海绵的身上使其全身变为绿色,乍看起来就像是一个美丽 海绵
的水藻。有些沙蟹喜欢把海绵撕成碎块贴在腿或壳上,让海绵在它们的身上生长起来,好似披上一层厚厚的铠甲,沙蟹以此来防御敌害。海绵常固定着在峨螺或牡蛎壳上,牡蛎和峨螺倒很乐意,因为海绵身上能分泌难闻的气味,帮助它们吓退敌害。 更有趣的是,在海绵的体内有时会发现一对活的小虾。这是一些成对的雌雄小虾,它们钻进海绵的体内居住,长大了就出不来,“困”在里面,一直到老死。我供应它们养料,而小虾则在海绵体内清理孔道内的污物,双方互惠互利,和谐共存。这种现象生物学上称之为“偕老同穴”。而海绵体内的成对小虾,由于过着这种“牢笼”生活,白头偕老,至死不渝,成为忠贞爱情的象征。日本人常把它们当做结婚礼物送给伉俪,小虾也美其名为“俪虾”。 不过,海绵也能分泌一种类似于毒液的物质,这是海绵的防御手段,用以反击敌害,或杀死周围海水中的有毒微生物,使海绵生活的周围海水变得比较洁净。 海绵对人们的好处可多了,不仅能用于日常生活,而且由于海绵含有天然抗生素,能杀死结核杆菌,可为人们治风湿及神经系统疾病。更叫人欣喜的是,海绵的体内有多种抗癌物质有些已被提取,正广泛应用于临床。
编辑本段简介
多孔动物门(Porifera)大约5,000种原始多细胞水生动物的统称。除针海绵属(Spongilla)约20种为淡水产 海绵
外,均分布在海洋的潮间带到8,500公尺(28,000余英尺)深处,营固着生活。由于海绵常呈分枝形,而且不会移动,从前被人们当做植物。1755年才有人记述它具有动物的特征。1765年观察到通过海绵的水流和入水孔的启闭,确证海绵为动物。海绵的结构、功能和发育与其他动物不同。许多动物学家认为它在动物界中的位置是孤立的,把它归入侧生动物亚界(Parazoa)。 海绵不具备执行各种机能的器官。其最重要的结构是水管系,主要由入水孔、领细胞和出水口组成。根据领细胞的排列方式和水管的发育程度,水沟系从简单到复杂,可分成单沟型、双沟型和复沟型3个基本型。无明显的组织,体表和内腔各有一层细胞;中间为中胶层,呈胶状,内有其他细胞和纤维。单沟系海绵的内层,由领细胞构成,领细胞有鞭毛,鞭毛周围有一圈由细胞质构成的领。领细胞的主要功能是引起水流,并捕捉食物粒。中胶层中的原细胞,又称变形细胞,细胞质中含有大量核糖核酸;能把领细胞摄取的食物送到身体各部;又能演变为多种细胞,在再生中起作用;必要时可生成雌、雄生殖细胞。 但钙质海绵纲(Calcispongiae)的生殖细胞(尤其是雄性生殖细胞)由领细胞变来。在海绵的体表和管道内壁有扁平细胞。钙质海绵类的外表还有孔细胞,上有进水的小孔,环境不良时,孔细胞收缩而关闭小孔。中胶层里还有芒状细胞,用以分泌纤维。冠细胞的一端有一长形细胞质突,因而外形似彗星,可分泌形成骨骼的海绵质。骨细胞产生骨质,形成骨针,又可分为钙质骨细胞和矽质骨细胞。肌细胞长形,能收缩,在出水口 海绵
旁最多,可控制其开闭。骨骼是海绵分类的重要依据,有的是无机质的,如钙质和矽质骨针,有的由蛋白质和其他成分组成,如海绵丝。骨针散布在体内或连成纤维,起支持和保护作用。多孔动物过滤取食,由领细胞攫取悬浮水中的食物粒,主要是细菌、有机碎屑,还可能吸收溶解的有机质。一个高10公分(4吋)、直径1公分(0.4吋)的海绵约有225万个鞭毛室,一天滤水约22.5升(约23夸脱)。由领细胞上鞭毛的摆动,引起水流。在组织和水之间直接交换气体。废物经出水口和体表排泄。 海绵一般雌雄同体,有时在同一个体上发生性逆转。受精方式特别,精子释出后随水流到另一海绵内,被领细胞攫住,领细胞变为变形细胞,并把精子送到卵处。胚胎发育有不同的途径,结果幼虫的型式不止一种。钙质海绵纲和某些寻常海绵纲(Demospongiae)的幼虫称两囊幼虫。寻常海绵纲约占全部海绵种类的80%,常见的幼虫是中实幼虫。幼虫游泳数小时至数天后,寻找适宜的场所固着,经变态而长成新个体。无性生殖方式有数种,芽球生殖,即由细胞(主要是原细胞)集聚起来形成芽球。在某些海产种类,这是一种正常生殖方式,有时作为度过不良环境的一种手段。 Spongia属的一种
淡水海绵的芽球外有保护膜,并有骨针加固。环境好转时,原细胞自小孔逸出,分化成不同的细胞而长成新个体。其他无性生殖如形成生殖根或个体断裂。小的海绵约可活一年,大的寿命较长。沐浴海绵7年后才达到商品用大小,寿命可能达20年。海绵再生能力极强,不只能恢复受损或失去的部分,而且能从碎片甚至单个细胞形成一个新成体。在环境不利时,海绵成为小碎片,由扁平细胞外包一团原细胞构成,条件好转时,再长成海绵。由于海绵没有中央调节器官(脑),体内细胞又能迁移,所以很难区分个体和群体,只能说凡是被一共同的外胚层包着的就是一个个体。 大多数海绵都附在他物,如岩石面,或泥沙中的一个坚实物体上,固着在其他生物时,有时会使这些生物(如藤壶)死亡。有时海绵与所固着的生物呈互利关系,如寄居蟹壳上的皮海绵(Suberitesdomuncula)被寄居蟹带着移动,而海绵的气味使鱼和其他动物退避。海绵的表面或水管和腔中也有各种动植物生活着,有时在一个海绵中生活的有几千个生物。俪虾属(Spongicola)的幼体可进入某些海绵(如偕老同穴〔Venus'sflowerbasket〕)内,成长后成对地生活其中而不能游出,日本人把这些虾视为白头偕老的象征。 多孔动物的共生物中最重要的是单细胞或多细胞藻类。海绵给藻类提供保护和代谢废物,而藻类供给海绵氧气,藻死亡后也可作为海绵的食物。有的动物寄生在海绵体表或体内,如剑水蚤是海产海绵最重要的寄生虫。轮虫寄生在淡水海绵体内,水螨在其中产卵,水蛉科(Sisyridae)幼虫生活在淡水海绵体内并以海绵为食。一般说来,肉食动物不吃海绵,因为海绵气味难闻,有硬骨针。但有的贝类(石鳖、帽贝)、甲壳类和鱼类以海绵为食。多孔动物门分3纲∶钙质海绵纲、寻常海绵纲及玻璃海绵纲(Hyalospongiae)。 海绵为多孔动物门生物的统称,包括了普通海绵纲(Demospongea)、玻璃海绵纲(Hyalospongea)、钙质海绵纲(Calcispongea)、硬海绵纲(Sclerospongea)四大纲。 海绵是世界上结构最简单的多细胞动物。说它简单,是因为它既没有头,也没有尾,没有躯干和四肢,更没有神经和器官。海绵虽然属于动物,但是它不能自己行走,只能附着固定在海底的礁石上,从流过身边的海水中获取食物。18世纪以前,海绵一直被当做植物对待,后来由于显微镜的发明,以及动物胚胎学研究的进展,人们得以认识海绵的真面目,终于确定了海绵的真正属性。海绵的种类众多,约有达1万到1.5万个种类。除了少数种类喜欢淡水外,绝大多数海绵一直生活在海底。从浅海到8000米的深海到处都有海绵的踪影。由于所处环境不同,条件多变,附着的基质类型各异,水流强弱不一,因此形成了海绵多姿多彩的形态。多数海绵生活在坚硬岩石的底质上。海流强的水域,海绵的高度普遍不到2.5厘米,而且海绵的表面形成许多流线型的纹路,这种进化可以避免被海浪和海流折断。有的海绵喜欢穴居,它们在鲍鱼和牡蛎的壳上到处钻洞,然后在它们的壳上寄居下来。海绵的体型多种多样,小的不过几克,大的却有45公斤。海绵的颜色同样是丰富多彩。它们的颜色主要是体内有不同种类的海藻共生,才使它们呈现不同的色彩。管状海绵的样子很象竖立的烟囱,所以又称为烟囱海绵。管状海绵的身体里有很多小孔。水不断地从小孔中流过,其中的营养物质就被管状海绵吸收了。同时,管状海绵产生的废物也会随着海水流走。海水从遍布海绵全身的小孔流入海绵的体内。每个小孔都通向一个小房间,叫做滤室。所有的滤室都通向一个像瓶子一样的腔里,这个腔叫做孔前腔。腔的上端是一个很大的出水孔。海绵的小孔作为氧气进入的通道既起到呼吸作用,又能摄取水中的营养物质,并且排泄废物,还能排出精子和卵子,完成生殖功能。 Spongia属的一种
海洋中有几十万种海绵整日把水吸进去再吐出来,它们以此从水中提取食物。最大的海绵生活在安第列斯海中。它形如一个空心花瓶,高有1 米,直径有90 米。最重的海绵像一个大球,里面可盛100 升水,这些水的重量至少是海绵的30 倍以上。所以,海绵其实只是个空壳。
编辑本段特征
海绵动物组织原始,无真正消化腔和神经系统。海绵动物的细胞虽有分工,但彼此合作甚微,如将海绵磨碎过筛,其中分离了的细胞仍能存活数天(相当于原生动物)。但若彼此不再结合,就不能继续生存下去,海绵动物这种即独立又合作的特征,表明其有机体结构仍属细胞级,显示了原始多细胞动物的特点。 海绵动物多为群体,单体较少。身体呈辐射对称或不对称。群体的外形变化很大。单体一般作角锥形、盘形、高脚杯形、球形等。大小变化由数毫米到2m之间。多数具有钙质、硅质或角质骨骼。海绵动物的骨骼有骨针(海绵针)、海绵丝(骨丝)和非骨针型的矿物质三种。骨针成分为钙质(方解石、文石)或硅质(蛋白石)。骨针按大小可分为大骨针和小骨针。海绵丝的成分是角质的有机化合物,呈丝状,分枝或交接在一起。海绵丝易腐烂,不易形成化石。 海绵的生殖有无性和有性两种。现代海绵除普通海绵纲中少数类型属淡水海绵外,多数是海生动物,营底栖固着生活。现代石海绵和钙质海绵多分布于浅海地带,但玻璃海绵可栖居在深达6000m的深海中。化石海绵也大体要求相似的水深。海绵在不同的地质时代常和层孔虫、苔藓虫和藻类在一起形成礁体。 海绵体壁上有许多小孔(称“入水孔”),故也称“多孔动物”。个体象瓶、壶、臼等,有时联成群体。多数海产,固着生活。游离的一端有大孔开口(称“出水口”)。体壁由内、外两层细胞构成,外层细胞扁平,内层细脑生有鞭毛,多数具原生质领,故称“领细胞”,主要行摄食和细胞内消化的作用。入水孔通入体内的沟道,与领细胞组成的鞭毛室和出水口组成复杂的沟道系统。含有食饵的海水由于内层细胞鞭毛的不断振动,从入水孔流入体内,不消化的东西随海水从顶端的出 Hippospongia Communis,海绵的一种。
水口流出体外。在内、外两层细胞间,还有一层中胶层,其中有象变形虫的游离细胞、生殖细胞、造骨细胞、海绵丝细胞等等。海绵动物体壁内多具支持的针状骨胳,称骨针。依骨针的性质,可分钙质海绵和非钙质海绵(Incalcarea)两大类。本门动物中有少数种类可供拭抹机器、枪炮及印刷业和沐浴用;某些种类能破坏介壳,为贝类养殖的敌害。
编辑本段海绵的形态结构特点:
(一)体型不对称 海绵的形状各种各样,有不规则的块状、球状、树枝状、管状等! (二)没有明确的组织和器官 海绵是一种两胚层(未发育完全)动物: 外层(皮层)有扁细胞和孔细胞组成 中胶层是没有成层的细胞,其中包括钙质或沙质的骨针和海绵丝:拥有原细胞、成骨针细胞和成海绵丝细胞! 内层有领细胞组成,组要是营养功能,起细胞内消化! (三)具有水沟性:根据类型科分为为1.单沟性2.复沟性3.双钩性!
编辑本段分布
海绵动物大多产于海水中,少数生活在淡水里,因身体比较柔软而得名。它不会游动,只能常年静卧海 海绵
底,像植物那样固着在原地不动。海绵动物的形状千姿百态,有片状、块状、圆球状、扇状、管状、瓶状、壶状、树枝状,姿态万般,惹人喜爱。例如白枝海绵呈扁管状的群体,枇杷海绵像一颗圆圆的枇杷,矮柏海绵似一串精巧的灯笼,佛子介则如同一个玻璃纤维球直立于柄上,寄居蟹皮海绵扁平如薄纸,偕老同穴则被称为“维纳斯的花篮”。有趣的是,通常水流流速的大小、波浪活动的强弱、底质的硬软程度,也常使同一个物种的海绵拥有不同的外部形态,例如在近岸破波带生活的通常喜欢包在岩石上,好似薄的茄皮或姜皮;在流急环境中生活的又大都像土墩,有着良好的流线形体型;而在缓流或风平浪静的环境中栖居的,体形又多呈高耸的烟囱状。 海绵动物总是形单影只地独处一隅,凡是海绵动物栖居的地方就很少有其它动物前去居住。科学家分析这种现象形成的原因首先是海绵动物对那些贪食的动物没有任何吸引力,它浑身的骨针和纤维使其它动物难以下咽,因此海绵动物的天敌不多。其次,海绵动物大多栖息在有海流流动的海底,而很多动物都难于在那样的环境中生活。因为在那里,它们的幼虫或被水流冲走,或被海绵动物滤食。此外,海绵动物身上通常都有一股难闻的恶臭,这也是可能是其他动物不愿与之为伍的原因之一。
编辑本段习性
捕食
海绵动物是怎样获得食物的呢?它的捕食方法十分奇特,是用一种滤食方式。单体海绵很像一个花瓶,瓶壁上的每一个小孔都是一张“嘴巴”。海绵动物通过不断振动体壁的鞭毛,使含有食饵的海水不断从这些小孔渗入瓶腔,进入体内。在“瓶”内壁有无数的领鞭毛细胞,由基部向顶端螺旋式地波动,从而产生同一方向的引力,起到类似抽水机的泵吸作用。当海水从瓶壁渗入时,水中的营养物质,如动植物碎屑、藻类、细菌等,便被领鞭毛细胞捕捉后吞噬。经过消化吸收,那些不消化的东西随海水从出水口流出体外。如果把石墨粉或几滴墨水滴在饲养在水族箱中的活海绵动物的一侧,过不了多久瓶口(出水孔)处就会流出黑色的细流。随着源源不断的水流,细菌、硅藻、原生动物或有机碎屑也被携入体内为领细胞俘获供作营养。这种取食方式充分证明了它属于滤食的异养动物。
滤食和节能的本领
然而鞭毛的摆动是要耗能的。对营固着生活的海绵动物来说,从食物中获得化学能来之不易。因此,海绵动物总是生活在有海流经过的海底,在千百万年的进化过程中,完善了一套利用天然流体流动能的本领,从而节约了宝贵的食物化学能。一个高10厘米,直径1厘米的海绵,一天内能抽海水22.5升,出水口处的水流速度可达5米/秒。这种高速离去的水流保证了从体内排出的废物不再“回炉”。海绵动物正是有了滤食和节能的本领,才能在缺乏营养的热带珊瑚礁中和极地陆架区世代繁衍。
编辑本段海绵动物的类型
海绵动物身体的基本结构是由两层细胞围绕中央的一个空腔所组成。游离的一端有一个大的出水口(osculum)使中央腔(central cavity)与外界相通。构成海绵动物体壁的两层细胞在不同的种类组成复杂程度不同的沟系,根据沟系可以将海绵动物的身体结构分为三种类型。
单沟型
(ascon type)单沟型是最原始,也是最简单的体壁结构,种类很少,前述的白枝海绵就属于这一类。 海绵
单沟型海绵呈单体或群体,长度一般不超过10cm,群体中的个体轮廓明显,每个个体均呈小管状,出水口周围有骨针包围,中央腔宽阔,体壁由两层细胞中间夹有中胶质(mesoglea)所组成,外层细胞称皮层(dermal epithelium),主要是由一层扁平细胞(pinacocytes)组成,它不同于其他动物的表皮层细胞,因为它们的来源和其他多细胞动物的表皮层不同(见后),并且这种扁平细胞没有基膜,细胞的边缘可以收缩。许多扁平细胞同时收缩可以使身体变小。某些扁平细胞特化形成管状,称为孔细胞(porocyte),穿插在扁平细胞之间。孔细胞的外端与外界相通,内端与中央腔相通,孔细胞外端的小孔就是单沟型海绵动物体表的进水小孔(ostia)或称流入孔(incurrent pore),所以它是细胞内孔,水由流入孔进入中央腔。孔细胞的收缩及舒张可以控制水的流入量。体壁的内层也称胃层(gastral epithelium),是由领鞭毛细胞(也简称领细胞)组成,单沟型海绵的领细胞围绕着整个中央腔。领细胞呈卵圆形,其基部疏松的坐落在中胶层中,游离端伸出一根鞭毛,围绕鞭毛的基部有一可伸缩的原生质领,是由许多分离的微绒毛(microvilli)所组成。单沟型海绵通过领细胞鞭毛的摆动使水由孔细胞(或称入水小孔)流入,经中央腔再由出水口流出。领细胞在形态上非常相似于原生动物门的领鞭毛虫,因此有人认为海绵动物是由领鞭毛虫进化而来。体壁的皮层与胃层之间是中胶层,它是一种含有蛋白质的胶状透明基质,其中包括有游离的变形细胞(amoebocyte)及分散的骨针(spicule)。变形细胞可以分化成不同的形态,例如有的变形细胞伪足细长分枝,彼此相连形成网状,称为星芒细胞(collencyte),有人认为它是一种最原始的具有神经机能的细胞。另一种细胞较大,其细胞核也较大,有叶状伪足,称原细胞(archeocyte),这是一种未分化的细胞,除了本身具有吞噬及消化食物的机能外,它还可以转化成具生殖功能的生殖细胞(generative cell)、能分泌骨骼的造骨细胞(scleroblast)、贮藏营养物质的贮存细胞(thesocyte)、能分泌粘液的腺细胞(gland cell)等。从上述可以看出单沟型海绵动物最大特征是体壁结构简单,其两层细胞平直的包围中央腔。由于中央腔宽阔,靠领细胞的鞭毛打动使流过身体的水流速度是缓慢的,代谢较低,所以单沟型海绵动物一般都是小型的。海绵动物在进化过程中通过体壁的褶叠增加了领细胞的数量及分布的表面积,同时减少了中央腔的体积,其结果是形成了双沟型或复沟型的体壁,这样就加速了水流过身体的速度,提高了代谢的能力,使动物也增大了体积。
双沟型
(sycon type)是体壁褶叠的一种初步形式,例如樽海绵(Scypha)、毛壶(Grantia)等。双沟型海绵 海绵
皮层的扁平细胞褶向中胶层,形成多个平行排列的盲管,称为流入管(incurrent canal),流入管外端的开孔名为流入孔(incurrentpore)。胃层的领细胞由中央腔向外端突出也形成多个穿插于流入管之间的盲管,称为鞭毛管(flagellated canal)或鞭毛室,也称为放射管(radial canal),其内端的开孔称为后幽门孔(apopyle),结果流入管与鞭毛管相间排列形成了双沟型的体壁。相邻的流入管与鞭毛管之间也有小孔使两管相通,这种小孔称前幽门孔(prosopyle)。由于管道的出现,双沟型的体壁加厚了,也由于领细胞褶入到鞭毛管中,中央腔壁上不再有领细胞,而是由扁平细胞包围。双沟型海绵的水流途径是:水→流入孔→流入管→前幽门孔→鞭毛管→后幽门孔→中央腔→出水口→体外。双沟型海绵增加了领细胞层的面积,管道的增加及中央腔的缩小也加速了水流通过身体的速度。双沟型海绵中,有些种类其皮层细胞及中胶层更发达,以致遮盖了整个体表,形成了一层或薄厚不一的外皮(cortex),结果出现了更多的流入孔,这样可以增加体壁内的水压,加速水在体内的流动。
复沟型
(leucon type)体壁进一步的褶叠复杂化就形成了复沟型,大多数的海绵动物属于这种类型,例如淡水海绵。复沟型结构的变化表现在 (1)鞭毛管继续向中胶层内褶入,以致形成了多个圆形的鞭毛室,例如细芽海绵(Microciona)每平方毫米的体壁,鞭毛室可多达1000个; (2)中胶层更发达,并与表皮细胞一起构成了众多的皮层孔(dermal pore)或皮下腔(subdermal space); (3)流入管分成许多小枝,然后再进入鞭毛室; (4)中央腔进一步地缩小,最后被分枝的出水管(excurrent canal)所代替。复沟型海绵的水流途径是:水→皮层孔→皮下腔→流入管→前幽门孔→鞭毛室→后幽门孔→流出管→出水口→体外。在有些复沟型海绵,其前、后幽门孔延伸形成了前、后幽门管(prosos,aphos),结构更复杂。因此复沟型海绵动物具有更大的领细胞表面积,体内有纵横相通的管道,中央腔也进一步缩小变成了管状,因此流经体内的水流量增多,水流速度加快。复沟型海绵的体积也都是较大型的,特别是在群体大型海绵中,我们仅能从许多出水口判断出海绵个体的形态及大小,例如矶海绵(Reniera)。淡水海绵的群体成团状,已很难判断出个体的形态了。
编辑本段种类
海绵动物虽然是多细胞动物中最简单的一类,却有一个庞大的家族,种数达10000多种,占所有海洋动物种数的1/15。由于海绵动物的体壁内长着具有支持作用的针状骨骼,叫做骨针。通常根据骨针的性质,可以分为钙质海绵和非钙质海绵两大类。体形最大的海绵动物是1909年曾在巴哈马群岛捞获的一只,围长为183厘米,刚出水重40千克,晒干后的重量为5千多克。此外,在安的列斯群岛生活的一种海绵动物,身长106厘米,宽91.5厘米。海王星海绵也是体形较大的种类,剖面长120厘米,却不太宽。最小的种类是白枝海绵,身高不过3毫米,体重仅有几克,跟一粒芝麻一样小。海绵动物的寿命也比较长,有的种类据说可以活几百年。 海绵动物的色泽各个不同,有大红、鲜绿、褐黄、乳白、紫色等各种颜色,像花儿一样美丽。因此,人们一直相信它是植物,直到1825年,随着靠显微镜的发明和使用,以及生理学和胚胎学诸方面的工作,科学家才确定它是动物。事实上,海绵动物的色彩来源于共生藻或非活性的贮存色素,例如绿色是因其体内共生有绿色的虫绿藻,而红色、黄色、桔黄色等是因为细胞内含有脂溶性的胡罗卜素,其存在可产上各种颜色。由于它的体壁上有许多被称为“入水孔”的小孔,仿佛泡沫塑料,所以又叫多孔动物,是多细胞动物中最低等的一个类群。
编辑本段演化历程

㈡ 海绵为什么那么软绵绵

海绵动物大多产于海水中,少数生活在淡水里,因身体比较柔软而得名。它不会游动,只能常年静卧海底,像植物那样固着在原地不动。海绵动物的形状千姿百态,有片状、块状、圆球状、扇状、管状、瓶状、壶状、树枝状,姿态万般,惹人喜爱。例如白枝海绵呈扁管状的群体,枇杷海绵像一颗圆圆的枇杷,矮柏海绵似一串精巧的灯笼,佛子介则如同一个玻璃纤维球直立于柄上,寄居蟹皮海绵扁平如薄纸,偕老同穴则被称为“维纳斯的花篮”。有趣的是,通常水流流速的大小、波浪活动的强弱、底质的硬软程度,也常使同一个物种的海绵拥有不同的外部形态,例如在近岸破波带生活的通常喜欢包在岩石上,好似薄的茄皮或姜皮;在流急环境中生活的又大都像土墩,有着良好的流线形体型;而在缓流或风平浪静的环境中栖居的,体形又多呈高耸的烟囱状。

海绵动物的色泽各个不同,有大红、鲜绿、褐黄、乳白、紫色等各种颜色,像花儿一样美丽。因此,人们一直相信它是植物,直到1825年,随着靠显微镜的发明和使用,以及生理学和胚胎学诸方面的工作,科学家才确定它是动物。事实上,海绵动物的色彩来源于共生藻或非活性的贮存色素,例如绿色是因其体内共生有绿色的虫绿藻,而红色、黄色、桔黄色等是因为细胞内含有脂溶性的胡罗卜素,其存在可产上各种颜色。由于它的体壁上有许多被称为“入水孔”的小孔,仿佛泡沫塑料,所以又叫多孔动物,是多细胞动物中最低等的一个类群。

海绵动物的体壁由内、外两层细胞构成,外层细胞扁平,内层细胞长有鞭毛,多数是有原生质领,又叫“领细胞”。在内外两层细胞间,还有一层中胶层,其中有像变形虫的游离细胞、生殖细胞、造骨细胞、海绵丝细胞等等。它们只有构造和机能上的差别,没有组织分化。入水孔通入体内的沟道,同领细胞组成的鞭毛室和身体顶端的出水口组成海绵动物特有的复杂沟道系统。

海绵动物是怎样获得食物的呢?它的捕食方法十分奇特,是用一种滤食方式。单体海绵很像一个花瓶,瓶壁上的每一个小孔都是一张“嘴巴”。海绵动物通过不断振动体壁的鞭毛,使含有食饵的海水不断从这些小孔渗入瓶腔,进入体内。在“瓶”内壁有无数的领鞭毛细胞,由基部向顶端螺旋式地波动,从而产生同一方向的引力,起到类似抽水机的泵吸作用。当海水从瓶壁渗入时,水中的营养物质,如动植物碎屑、藻类、细菌等,便被领鞭毛细胞捕捉后吞噬。经过消化吸收,那些不消化的东西随海水从出水口流出体外。如果把石墨粉或几滴墨水滴在饲养在水族箱中的活海绵动物的一侧,过不了多久瓶口(出水孔)处就会流出黑色的细流。随着源源不断的水流,细菌、硅藻、原生动物或有机碎屑也被携入体内为领细胞俘获供作营养。这种取食方式充分证明了它属于滤食的异养动物。

然而鞭毛的摆动是要耗能的。对营固着生活的海绵动物来说,从食物中获得化学能来之不易。因此,海绵动物总是生活在有海流经过的海底,在千百万年的进化过程中,完善了一套利用天然流体流动能的本领,从而节约了宝贵的食物化学能。一个高10厘米,直径1厘米的海绵,一天内能抽海水22.5升,出水口处的水流速度可达5米/秒。这种高速离去的水流保证了从体内排出的废物不再“回炉”。海绵动物正是有了滤食和节能的本领,才能在缺乏营养的热带珊瑚礁中和极地陆架区世代繁衍。

海绵动物的生殖方式与其他多细胞动物相似,也是卵细胞受精后经过卵裂、囊胚各发育阶段。但惊人的是海绵动物都具有非凡的再生能力。它比抛肠后能长新肠的海参、断肢后会重新长出完整个体的海星等动物的再生能力更为高强。有些海绵动物被磨成粉后再经过筛选,成了很细很细的小颗粒,却仍然具有顽强的生命力,将它们抛进大海中以后,不但不会死去,相反每一小块都会渐渐长大,变成了一个个新的海绵动物,这种情况就象孙悟空的毫毛会变出成百上千的小孙悟空来一样。有人还曾经把两种不同颜色的海绵动物放在一起,经挤压和细筛过滤,滤过的游离而分散的细胞,最初相互靠拢,过一段时间便分开,帮派分明地聚集、排列,在适宜的条件下,竟又不断生长成两个新个体。这个实验说明了海绵动物的细胞虽有所分化,但仍处于低级阶段。

海绵动物虽然是多细胞动物中最简单的一类,却有一个庞大的家族,种数达10000多种,占所有海洋动物种数的1/15。由于海绵动物的体壁内长着具有支持作用的针状骨骼,叫做骨针。通常根据骨针的性质,可以分为钙质海绵和非钙质海绵两大类。体形最大的海绵动物是1909年曾在巴哈马群岛捞获的一只,围长为183厘米,刚出水重40千克,晒干后的重量为5千多克。此外,在安的列斯群岛生活的一种海绵动物,身长106厘米,宽91.5厘米。海王星海绵也是体形较大的种类,剖面长120厘米,却不太宽。最小的种类是白枝海绵,身高不过3毫米,体重仅有几克,跟一粒芝麻一样小。海绵动物的寿命也比较长,有的种类据说可以活几百年。

海绵动物总是形单影只地独处一隅,凡是海绵动物栖居的地方就很少有其它动物前去居住。科学家分析这种现象形成的原因首先是海绵动物对那些贪食的动物没有任何吸引力,它浑身的骨针和纤维使其它动物难以下咽,因此海绵动物的天敌不多。其次,海绵动物大多栖息在有海流流动的海底,而很多动物都难于在那样的环境中生活。因为在那里,它们的幼虫或被水流冲走,或被海绵动物滤食。此外,海绵动物身上通常都有一股难闻的恶臭,这也是可能是其他动物不愿与之为伍的原因之一。

古希腊人、古罗马人和我国古代劳动人民很早就认识和采集海绵动物,特别是浴用海绵,网孔细,弹力强,吸水性好,可以用于洗澡擦身、洗碗等,后来又在工艺、医学和日常生活方面展现了越来越多的广泛用途,如做油漆刷子,用作钢盔的衬垫和其他垫子,烧成灰能治疗脚痛等。在地中海、红海和美洲沿海等地,人工养殖海绵动物业十分发达,人们将海绵切割成块,用绳系在架上,投入海中,2~3年就可收获大批海绵了。不过,随着人造海绵业的发展,已经使得海绵动物养殖业日趋衰落。但是随着科学技术的不断发展,人们又发现了海绵动物新的价值,例如有人正在研究用海绵净化海水,以达到维持海洋环境生态平衡的目的。
参考资料:http://www.bjkp.gov.cn/dwly/dwsy/k0925-03.htm

㈢ 滁州学院南校区附近哪里能买到睡觉用的海绵垫

有两个地方,一个是在二中那条路上,离南校区比较远。另外就是长江商贸城了,很近哦。

㈣ ·哪里有海绵厂

山东省 东营市久晟海绵厂

㈤ 海里生长的海绵能直接使用吗

【英文名】Spongiatia or Sponge
【拉丁文学名】Phylum Porifera
【科属分类】真核生物域, 动物界,多孔动物门

【简介】

海绵为多孔动物门生物的统称,包括了普通海绵纲(Demospongea)、玻璃海绵纲(Hyalospongea)、钙质海绵纲(Calcispongea)、硬海绵纲(Sclerospongea)四大纲。

海绵是世界上结构最简单的多细胞动物。说它简单,是因为它既没有头,也没有尾,没有躯干和四肢,更没有神经和器官。海绵虽然属于动物,但是它不能自己行走,只能附着固定在海底的礁石上,从流过身边的海水中获取食物。18世纪以前,海面一直被当作植物对待,后来由于显微镜的发明,以及动物胚胎学研究的进展,人们得以认识海绵的真面目,终于确定了海绵的真正属性。海绵的种类众多,约有达1万到1.5万个种类。除了少数种类喜欢淡水外,绝大多数海绵一直生活在海底。从浅海到8000米的深海到处都有海绵的踪影。由于所处环境不同,条件多变,附着的基质类型各异,水流强弱不一,因此形成了海绵多姿多彩的形态。多数海绵生活在坚硬岩石的底质上。海流强的水域,海绵的高度普遍不到2.5厘米,而且海绵的表面形成许多流线型的纹路,这种进化可以避免被海浪和海流折断。有的海绵喜欢穴居,它们在鲍鱼和牡蛎的壳上到处钻洞,然后在它们的壳上寄居下来。海绵的体型多种多样,小的不过几克,大的却有45公斤。海绵的颜色同样是丰富多彩。它们的颜色主要是体内有不同种类的海藻共生,才使它们呈现不同的色彩。管状海绵的样子很象竖立的烟囱,所以又称为烟囱海绵。管状海绵的身体里有很多小孔。水不断地从小孔中流过,其中的营养物质就被管状海绵吸收了。同时,管状海绵产生的废物也会随着海水流走。海水从遍布海绵全身的小孔流入海绵的体内。每个小孔都通向一个小房间,叫做滤室。所有的滤室都通向一个像瓶子一样的腔里,这个腔叫做孔前腔。腔的上端是一个很大的出水孔。海绵的小孔作为氧气进入的通道既起到呼吸作用,又能摄取水中的营养物质,并且排泄废物,还能排出精子和卵子,完成生殖功能。

【特征】

海绵动物组织原始,无真正消化腔和神经系统。海绵动物的细胞虽有分工,但彼此合作甚微,如将海绵磨碎过筛,其中分离了的细胞仍能存活数天(相当于原生动物)。但若彼此不再结合,就不能继续生存下去,海绵动物这种即独立又合作的特征,表明其有机体结构仍属细胞级,显示了原始多细胞动物的特点。

海绵动物多为群体,单体较少。身体呈辐射对称或不对称。群体的外形变化很大。单体一般作角锥形、盘形、高脚杯形、球形等。大小变化由数毫米到2m之间。多数具有钙质、硅质或角质骨骼。海绵动物的骨骼有骨针(海绵针)、海绵丝(骨丝)和非骨针型的矿物质三种。骨针成分为钙质(方解石、文石)或硅质(蛋白石)。骨针按大小可分为大骨针和小骨针。海绵丝的成分是角质的有机化合物,呈丝状,分枝或交接在一起。海绵丝易腐烂,不易形成化石。

海绵的生殖有无性和有性两种。现代海绵除普通海绵纲中少数类型属淡水海绵外,多数是海生动物,营底栖固着生活。现代石海绵和钙质海绵多分布于浅海地带,但玻璃海绵可栖居在深达6000m的深海中。化石海绵也大体要求相似的水深。海绵在不同的地质时代常和层孔虫、苔藓虫和藻类在一起形成礁体。

海绵体壁上有许多小孔(称“入水孔”),故也称“多孔动物”。个体象瓶、壶、臼等,有时联成群体。多数海产,固着生活。游离的一端有大孔开口(称“出水口”)。体壁由内、外两层细胞构成,外层细胞扁平,内层细脑生有鞭毛,多数具原生质领,故称“领细胞”,主要行摄食和细胞内消化的作用。入水孔通入体内的沟道,与领细胞组成的鞭毛室和出水口组成复杂的沟道系统。含有食饵的海水由于内层细胞鞭毛的不断振动,从入水孔流入体内,不消化的东西随海水从顶端的出水口流出体外。在内、外两层细胞间,还有一层中胶层,其中有象变形虫的游离细胞、生殖细胞、造骨细胞、海绵丝细胞等等。海绵动物体壁内多具支持的针状骨胳,称骨针。依骨针的性质,可分钙质海绵和非钙质海绵(Incalcarea)两大类。本门动物中有少数种类可供拭抹机器、枪炮及印刷业和沐浴用;某些种类能破坏介壳,为贝类养殖的敌害。

【分布】

海绵动物大多产于海水中,少数生活在淡水里,因身体比较柔软而得名。它不会游动,只能常年静卧海底,像植物那样固着在原地不动。海绵动物的形状千姿百态,有片状、块状、圆球状、扇状、管状、瓶状、壶状、树枝状,姿态万般,惹人喜爱。例如白枝海绵呈扁管状的群体,枇杷海绵像一颗圆圆的枇杷,矮柏海绵似一串精巧的灯笼,佛子介则如同一个玻璃纤维球直立于柄上,寄居蟹皮海绵扁平如薄纸,偕老同穴则被称为“维纳斯的花篮”。有趣的是,通常水流流速的大小、波浪活动的强弱、底质的硬软程度,也常使同一个物种的海绵拥有不同的外部形态,例如在近岸破波带生活的通常喜欢包在岩石上,好似薄的茄皮或姜皮;在流急环境中生活的又大都像土墩,有着良好的流线形体型;而在缓流或风平浪静的环境中栖居的,体形又多呈高耸的烟囱状。

海绵动物总是形单影只地独处一隅,凡是海绵动物栖居的地方就很少有其它动物前去居住。科学家分析这种现象形成的原因首先是海绵动物对那些贪食的动物没有任何吸引力,它浑身的骨针和纤维使其它动物难以下咽,因此海绵动物的天敌不多。其次,海绵动物大多栖息在有海流流动的海底,而很多动物都难于在那样的环境中生活。因为在那里,它们的幼虫或被水流冲走,或被海绵动物滤食。此外,海绵动物身上通常都有一股难闻的恶臭,这也是可能是其他动物不愿与之为伍的原因之一。

【习性】

捕食

海绵动物是怎样获得食物的呢?它的捕食方法十分奇特,是用一种滤食方式。单体海绵很像一个花瓶,瓶壁上的每一个小孔都是一张“嘴巴”。海绵动物通过不断振动体壁的鞭毛,使含有食饵的海水不断从这些小孔渗入瓶腔,进入体内。在“瓶”内壁有无数的领鞭毛细胞,由基部向顶端螺旋式地波动,从而产生同一方向的引力,起到类似抽水机的泵吸作用。当海水从瓶壁渗入时,水中的营养物质,如动植物碎屑、藻类、细菌等,便被领鞭毛细胞捕捉后吞噬。经过消化吸收,那些不消化的东西随海水从出水口流出体外。如果把石墨粉或几滴墨水滴在饲养在水族箱中的活海绵动物的一侧,过不了多久瓶口(出水孔)处就会流出黑色的细流。随着源源不断的水流,细菌、硅藻、原生动物或有机碎屑也被携入体内为领细胞俘获供作营养。这种取食方式充分证明了它属于滤食的异养动物。

滤食和节能的本领

然而鞭毛的摆动是要耗能的。对营固着生活的海绵动物来说,从食物中获得化学能来之不易。因此,海绵动物总是生活在有海流经过的海底,在千百万年的进化过程中,完善了一套利用天然流体流动能的本领,从而节约了宝贵的食物化学能。一个高10厘米,直径1厘米的海绵,一天内能抽海水22.5升,出水口处的水流速度可达5米/秒。这种高速离去的水流保证了从体内排出的废物不再“回炉”。海绵动物正是有了滤食和节能的本领,才能在缺乏营养的热带珊瑚礁中和极地陆架区世代繁衍。

【种类】

海绵动物虽然是多细胞动物中最简单的一类,却有一个庞大的家族,种数达10000多种,占所有海洋动物种数的1/15。由于海绵动物的体壁内长着具有支持作用的针状骨骼,叫做骨针。通常根据骨针的性质,可以分为钙质海绵和非钙质海绵两大类。体形最大的海绵动物是1909年曾在巴哈马群岛捞获的一只,围长为183厘米,刚出水重40千克,晒干后的重量为5千多克。此外,在安的列斯群岛生活的一种海绵动物,身长106厘米,宽91.5厘米。海王星海绵也是体形较大的种类,剖面长120厘米,却不太宽。最小的种类是白枝海绵,身高不过3毫米,体重仅有几克,跟一粒芝麻一样小。海绵动物的寿命也比较长,有的种类据说可以活几百年。

海绵动物的色泽各个不同,有大红、鲜绿、褐黄、乳白、紫色等各种颜色,像花儿一样美丽。因此,人们一直相信它是植物,直到1825年,随着靠显微镜的发明和使用,以及生理学和胚胎学诸方面的工作,科学家才确定它是动物。事实上,海绵动物的色彩来源于共生藻或非活性的贮存色素,例如绿色是因其体内共生有绿色的虫绿藻,而红色、黄色、桔黄色等是因为细胞内含有脂溶性的胡罗卜素,其存在可产上各种颜色。由于它的体壁上有许多被称为“入水孔”的小孔,仿佛泡沫塑料,所以又叫多孔动物,是多细胞动物中最低等的一个类群。

【演化历程】

人类和所有动物的祖先是至少在地球上生活了5亿年的海绵,而海绵的祖先竟然是真菌!

今天,大多数生物学家相信地球上的生命最早起源于一种非常简单的生物,但是这种简单的古老生物到底是什么?与今天的人类和动物有什么关系?却很长时间没有找到答案。不过,在美国国家卫生研究院和美国航天局的资助下,美国微生物进化学专家米切尔·索金(MichellSogin)运用自动DNA排列技术和计算机程序,在最近找到了这个问题的答案:人类和所有动物的祖先是至少在地球上生活了5亿年的海绵,而海绵的祖先是真菌!索金说,了解动物是怎样进化的,很有意义—不仅能够帮助我们了解未来生命将发生什么变化,甚至能帮助我们了解在宇宙中其他生命存在的可能性。

凶猛、多情、好动———海绵的性格并不“绵”

索金在了解真菌之前先了解了海绵。

在地球上的海洋里,至少有9000种海绵。有的海绵甚至生活在淡水中。它们靠身上的小孔,从成吨的海水中过滤到几克微薄的营养物质维持生命。海绵是多细胞(multicellular)生物,虽然有些海绵有玻璃一样的骨骼。但是总体上看,海绵没有组织、肌肉、器官、神经、大脑这些要件。

海绵细胞的主要成分是碳酸钙或碳酸硅以及大量的胶原质。在海绵的管壁上,长有摆动的长须(cilia),长须能从海水中滤掉废物,留下营养。不论海绵的体积多大,所需要的食物只要能满足每一个细胞就够了,并不贪婪。当然,海绵中也有“凶猛”者。在夏威夷生长的火海绵能够分泌毒液,给其它动物造成剧痛;生长在地中海的一种海绵,则具备诱骗小甲壳类动物的能力,能够伸出锋利的刺把它们团团围住,饱餐一顿。

海绵也是最早的有性繁殖生物,大多数的海绵都是雌雄同体的,能够同时产生卵子和精子并排入水中。精子会一直在海水中遨游,直到找到另一个海绵管道的接收入口。

海绵的多情还表现在:它还有另外一种生殖方式———如果一块海绵遭受外力破坏,被拆散了的细胞会在海水中寻找同伴,然后重新聚在一起,仿制出一块与它们父母辈相同的海绵。海绵受伤以后,不会用新细胞代替旧细胞的方式愈合伤口,而是调动旧的细胞到创伤处,阻止伤口进一步蔓延。

就这样,海绵很潇洒地生活在水下,并为周围成千上万种生物提供庇护所。此外,海绵其实很好动。1986年美国北卡罗来纳州大学的生物学家卡尔汗·邦德(CalhounBond)就发现,海绵并不是静止不动的,他通过精密仪器观察到,海绵的边缘会像肢体一样帮助自己移动,有的一天能移动4毫米,有的居然能爬上玻璃容器壁。

从一百五十万分之一概率中找答案———遗传因子分析像大海捞针

以往,科学家判断动物之间的联系主要依赖于观察动物外观,包括化石来判断。如果两种生物拥有共同的特征,比如爪子,就会被认为具有某种亲属关系。随着基因技术的突飞猛进,利用基因分析寻找生物源头开始了实际应用。上世纪70年代,索金的导师卡尔·乌伊斯(CarlWoese)就开始了这方面的研究。1989年索金成立了实验室,接过导师的课题继续研究。索金把研究方向集中在基因的进化以及寄生虫方面,他希望通过这些研究,回答导师提出的问题:生命最重要的单位,细胞是如何形成的。

基因分析并不是比较某些生物的全部基因构成,而是通过比较某些生物共有的基因段,分析其中的差异来判断两者之间的关系,如果两者有相似的基因排列,并且带有同样的基因特征,那么就可以推论两种生物具有同一个祖先。如果基因排序非常不同,那就可以知道它们在很早以前就分叉,朝着不同的方向进化了。

索金希望在这种理论指导下,采用核糖体RNA手段,建立一个客观的动物进化结构方程式,他从极为罕见的古菌(archaea)的基因排序入手,从浮游生物、真菌、海绵、水母、海葵、软体动物中提取DNA,比较它们的基因排列顺序,比较核糖体RNA,并且应用十进位计数法,来计算它们与昆虫、鱼类、鸟类、哺乳动物之间的关系。

20多年前,基因技术还刚刚起步,这样的计划在当时是非常有远见的。在上世纪80年代初,科学家确定红海绵的一个遗传因子就要消耗一年的时间,所有的工作都是手工操作。几年之后,他们能在一年内分析10~15个因子。今天,索金已经能在一夜之间做1000个因子分析了。但即便是今天,一段特定的染色体组也可能包含着30亿对基础对,要找出2000对的关系,概率为一百五十万分之一,因此,要找到答案仍然像是大海捞针。

前世今生

索金查遍了所有的最古老生物,如水母、海葵、海绵、软体动物、海星等的基因后,终于得出结论:海绵毫无疑问是今天所有动物最直接的祖先。在索金以前,一些生物学家怀疑海绵实际上是一种植物,另一些生物学家怀疑海绵是独立于动物进化链之外的一种生物,和今天的进化结果没有联系。

他的发现还显示,在海绵之后的“晚辈”是刺丝胞动物(cnidarians)类,比如水母、海葵、珊瑚等等,它们和海绵一样拥有袋状体形,它们都具有触角,并且在触角的末端都有像嘴巴一样张开的口。但是海绵的细胞形状具有环形细胞的特点,它带有非常小的长须,这些须又被一群更小的(毛状)微绒毛包围着。成千上万的须在水中不停地挥动着,将新鲜的海水送入“口中”。

索金相信海绵最直接的祖先是领鞭虫,领鞭虫也是单个细胞的生物,有着长鞭一样的须,而包围着须的是一系列微绒毛。它们当中的一些甚至靠得很近结成了群落,几乎快要发展成动物了。

虽然,今天已经无从知道最早的海绵是什么样子,但是至少仍然具备一些今天海绵的特征,今天我们能发现硅藻属、马蹄蟹这些动物都和它们进化之前的样子几乎一样。

所有的动物都来自真菌

索金更重要的发现是,在进化坐标上,比领鞭虫更早的祖先是真菌,海绵和所有的动物包括人类都来自真菌。在此之前,很多科学家都将真菌错误地归类于植物。但是索金的研究发现,植物和真菌是完全不同的两类生物。真菌和动物最早来自同一个家族,这一点不仅对认识生命来源具有意义,对认识真菌对人体的入侵更具有现实意义。

索金说,真菌导致的疾病包括癣菌病,香港脚,心肌炎。真菌导致的疾病之所以难治是因为真菌和人类有很多共同点,只有当两种生物具有不同的特点,或者说在治疗的同时不伤及主体时,治疗才更容易,这一点,相信会对将来的生物医学研究有启发。另外,每年成千上万的艾滋病病人死于卡式肺囊虫肺炎。直到最近,很多人都还相信这是一种与疟疾有关的寄生原生动物引起的,但是索金研究小组最近发现,卡式肺囊虫肺炎实际上是一种与真菌管型密切的生物,用对抗真菌的药物就可以有效地抑制卡式肺囊虫肺炎。

索金说,在海绵和刺丝胞动物之后,才出现了昆虫这种两边对称的生物,此后,生物发生了一次爆炸性的进化革命,从此,生物有目的的活动能力大大加强,具备了以往任何生物所没有的优越性

【生殖与发育】

海绵动物的生殖为无性生殖与有性生殖两种方式。无性生殖是以出芽生殖为主,多发生在海产种类中。出芽时亲本的变形细胞,特别是一些原细胞由中胶层迁移到母体的顶端表面聚集成团,然后发育成小的芽体,随后脱落到底部发育成新海绵,或与母体相连形成群体。淡水海绵及少数海产种类在一定条件下可以形成芽球(gemmule),也被认为是一种无性生殖,个体中的原细胞摄食了大量的物质之后聚集成团,外面包围一层造骨细胞。在原细胞团之外自行分泌一层保护膜,其成分类似于海绵丝,以保护内部的芽球细胞,之后造骨细胞分泌一层双盘状或针状的骨针,使芽球具有很强的抵抗恶劣环境的能力。一个海绵动物可以形成许多的芽球。以后当外界条件适当时,芽球内的细胞通过微孔(micropyle)释放出来,再形成一个新个体。海产种类的芽球外面包有海绵丝,具有或不具有骨针。少数种类的芽球不具有海绵丝。

海绵动物的再生也被认为是一种无性生殖,许多种类的海绵都有很强的再生能力,例如白枝海绵,它的身体碎片只要大于0.4mm,并带有一些领细胞,就能再生成一个新个体,这是由于海绵动物的细胞具有较强的聚合能力与识别能力。也有人将海绵动物的身体用机械方法压碎,将细胞分离,再用纱布过滤,其滤液中的分散细胞再放入海水中培养,结果分离的细胞又重新聚合,并分别迁移到正确的位置上,最后形成一个或几个新的个体。还有一个经典的实验是由Galtsoff(1925)所进行的,他用两种不同属的海绵做实验,即一种是细芽海绵(Microciona),其细胞具红色素;另一种是Haliclona,其细胞内具黄色素,他将两种预先分离成悬液的海绵细胞混合在一起,起初两种细胞随机聚合,但很快两种细胞按种彼此分开,分别形成红色细胞群及黄色细胞群,以后两种不同的细胞群各自分化,最后形成细芽海绵(红色素细胞)和Haliclona(黄色素细胞)两种新个体。以后也发现许多淡水海绵及海产的海绵都有此特性。后来有人用实验证实了海绵细胞表面的一种大分子量的糖蛋白是海绵细胞的识别分子,它具有种的特异性,所以同种的细胞能聚合,不同种的细胞相分离。同种细胞的聚合能力使它能再生及组成新的个体。

除了四射海绵(Tetractinellida)之外,海绵动物均能行有性生殖。大多数种类为雌雄同体(hermaphordite),但精子与卵常不在同一时期成熟。少数种类为雌雄异体(dioecism)。生殖细胞由中胶层中的原细胞形成,有时领细胞也可以失去鞭毛及原生质领而变成精原细胞(spermatogonia),再分裂形成精子。精子成熟后随水流排出体外,并随水流进入其他个体的鞭毛室。有人观察到某些热带地区的海绵能突发性的释放精子于海水中,形成一条乳白色的云雾状的精子带,其长度可达2—3m。一个海绵释放了精子常可诱导周围海绵也释放精子。释放出的精子随水流进入其他个体的鞭毛室之后,再进入领细胞。这时领细胞失去领及鞭毛,携带着精子到中胶层与卵融合而成受精卵。大多数海绵动物的受精卵是在体内发育。一些海绵动物的胚胎发育由于胚层的逆转而有很大的特殊性,不同纲的海绵胚胎发育过程也不尽相同,这主要表现在海绵动物可以形成两种不同类型的幼虫。在钙质海绵中,形成中空的两囊幼虫(amphiblastula),在寻常海绵纲中形成实心的实胚幼虫(parenchymula)。

钙质海绵,例如白枝海绵或毛壶的受精卵在母体的中胶层中发育,当受精卵经细胞分裂形成16个细胞时,构成动物极的为8个小细胞,构成植物极的为8个大细胞。动物极的小细胞分裂较迅速,分裂到一定数目的细胞之后,形成了一个具有囊胚腔的囊胚,小细胞面向囊胚腔的一端都长出一根鞭毛,以后小细胞经大细胞间的开口向外翻出,结果小细胞的鞭毛移到表面,形成了一个一端有鞭毛、一端无鞭毛的两囊幼虫。两囊幼虫随水流离开母体,在水中游泳一段时间之后经过小细胞的内陷、或大细胞的外包,或两种方法的联合而形成了两层细胞的原肠胚状,并固着在底部。原来动物极的具鞭毛的小细胞形成了成体的胃层(领细胞层),原来植物极的大细胞形成了成体的皮层(扁平细胞层),再由两层细胞共同形成中胶层及变形细胞。海绵动物的这种细胞分化与分层,与所有其他多细胞动物的胚层分化不同。在除海绵动物之外的其他后生动物中,动物极的小细胞发育成成体的外层(即外胚层),植物极大细胞发育成内层(即内胚层)。钙质海绵动物的这种动物极与植物极细胞相反的分化现象称为逆转现象(inversion),因此它的两层细胞不称为外胚层与内胚层,而分别称为皮层与胃层。发育中的逆转现象是将海绵动物列为侧生动物的原因之一。

钙质海绵中特别是复沟型海绵在发育中也经过一个原始阶段的重演,即发育中经过一个单沟型的原海绵(Olynthus)阶段,再经过一个双沟型的发育阶段之后,最后才形成一复沟型的成体。 大多数六放海绵及寻常海绵发育中经过一个实胚幼虫,实胚幼虫的外表面除后端外均为具鞭毛的小细胞,以后具鞭毛的外层细胞移入内部,形成胃层,内部的变形细胞移到外面形成皮层。寻常海绵纲中,许多复沟型种类,发育时直接来自一个复沟型幼虫(rhagon),这种幼虫具有宽阔的基部、狭小的顶端、很大的海绵腔、很小的鞭毛室,经过体壁褶叠后发育成复沟型成体。

【用途】

古希腊人、古罗马人和我国古代劳动人民很早就认识和采集海绵动物,特别是浴用海绵,网孔细,弹力强,吸水性好,可以用于洗澡擦身、洗碗等,后来又在工艺、医学和日常生活方面展现了越来越多的广泛用途,如做油漆刷子,用作钢盔的衬垫和其他垫子,烧成灰能治疗脚痛等。在地中海、红海和美洲沿海等地,人工养殖海绵动物业十分发达,人们将海绵切割成块,用绳系在架上,投入海中,2~3年就可收获大批海绵了。不过,随着人造海绵业的发展,已经使得海绵动物养殖业日趋衰落。但是随着科学技术的不断发展,人们又发现了海绵动物新的价值,例如有人正在研究用海绵净化海水,以达到维持海洋环境生态平衡的目的。

科学家还发现海绵体内的毒素可以用来制药,治疗肿瘤、心血管和呼吸系统等疾病。目前,海绵是发现海洋活性物质最丰富的海洋生物,已经成为海洋药物开发的重要资源。

此外,美国科学家近日表示,他们已经确认了一种生长在黑暗的海底深处的海绵体可以产生细细的玻璃纤维,这种纤维能够至少像通信工业使用的光纤电缆一样传输光能。这种天然产生的玻璃纤维还较之人工制造的光纤电缆更有柔韧性。这种海绵体生长在热带的海底深处,其高约1英尺半,带有一个复杂的硅网结构,玻璃纤维在海绵体的底部形成一个冠状物。纤维大约2~7英寸长,每根与人体毛发差不多粗。

由于海绵具有降解海水污染物的能力,也展示了在海洋污染方面的应用价值。近年来,已经有科学家提出“海绵生物技术”的概念。可以预见,海绵在海洋药物、海洋生物材料、海洋环境保护中将发挥重大作用。

【饲养】

饲养难度 : 因在捕捉后及鱼店处理不当, 或没有足够的食物提供, 所以饲养困难, 在缸中难以长久饲养.
温度: 22-28C
水流 : 中至稍强水流
光度 : 大部份海绵没有共生藻, 对光照没有要求. (但放在强光处, 有可能引致苔生长于海绵上, 所以放在暗位比较适合.)
食物 : 必须喂饲. 可喂浮游食物.

【化工海绵】

聚氨酯软发泡橡胶,聚氨酯是生活中最常见的一种高分子材料,广泛应用于制作各种“海绵”制品。以及避震,抗摩擦用途的弹性材料,例如鞋底,拖拉机坦克履带衬底。

生产工艺

将发泡树脂,发泡助剂和粘合剂树脂(使成品具有粘合性)混合在一起;B.进行发泡加工。将80份乙烯乙酸乙烯酯(EVA)、20份APAO PT 3385、20份偶氮二甲酰胺、l9份CaCO 和0.6份过氧化二异丙苯混合在一起,置于模具中发泡,并用机械力击破闭孔,即可制得发泡海绵。其密度(d)为0.028 g/cm ,25% 的压缩硬度为1.9 KPa。

海绵的成分大多是聚氨酯

就跟发泡一样同样的材料不同的制造工艺就会造出不同的东西

PU海绵主要包括聚酯及聚醚型可切片或卷切,亦可根据客户要求复合加工,热压加工及爆破开孔处理等 。PU海绵由于其具有保温、隔热、吸音、减震、阻燃、防静电、透气性能好等特性,故涉及各种行业,包括汽车工业、电池工业、化妆品业、胸围内衣制造业及高档家具制造业等。

优劣挑选

1. 在挑选海绵时,主要以它的触感和弹性为判定的首要因素。摸起来应该有柔软的触感,并且富有延展性。

2. 由于海绵怕光,包括商店里的灯光都有可能损坏它的质量,所以在购买海绵时,如果是挂成一排的陈列方式,不要拿第一个,而应拿后面的,因为后面的海绵不会享受很多的“日光浴”。

3. 另外,一个最实际的辨别方式是将海绵对折,互相搓一搓。如果没搓几下就掉海绵屑,就该把它淘汰了。
洗脸方法;要把洁面液在手心揉搓出泡沫,再用海绵使泡沫增加,然后进行清洗。

㈥ 海绵海百合海底石莼这些海洋生物哪一个是属于植物

海绵海百合海底石莼这些海洋生物哪一个预示着海洋植物是海洋中利用叶绿素进行光合作用以生产有机物的自养型生物。海洋植物属于初级生产者。海洋植物门类甚多,从低等的无真细胞核藻类(即原核细胞的蓝藻门和原绿藻门),到具有真细胞核(即真核细胞)的红藻门、褐藻门和绿藻门,及至高等的种子植物等13个门,共 1万多种。 海洋植物 - 简介

海洋植物的形态复杂,个体大小有2,3微米的单细胞金藻,也有长达60多米的多细胞巨型褐藻;有简单的群体、丝状体,也有具有维管束和胚胎等体态构造复杂的乔木。海洋里的植物都称为海草,有的海草很小,要用显微镜放大几十倍、几百倍才能看见。它们由单细胞或一串细胞所构成,长着不同颜色的枝叶,靠着枝叶在水中漂浮。单细胞海草的生长和繁殖速度很快,一天能增加许多倍。虽然,它们不断地被各种鱼虾吞食,但数量仍然很庞大。

大的海草有几十米甚至几百米长,它们柔软的身体紧贴海底,被波浪冲击得前后摇摆,但却不易被折断。海草的经济价值很高,像中国浅海中的海带、紫菜和石花菜,都是很好的食品,有的还可以提炼碘、溴、氯化钾等工业原料和医药原料。

海草是海洋动物的食物。有些海洋动物是食草的,另外一些是靠吃“食草”动物来维持生命的,所以,海洋中的动物都是靠海草来养活的。

海草像陆上的植物一样,没有阳光就不能生存。海洋绿色植物在它的生命过程中,从海水中吸收养料,在太阳光的照射下,通过光合作用,合成有机物质(糖、淀粉等),以满足海洋植物生活的需要。光合作用必须有阳光。阳光只能透人海水表层,这使得海草仅能生活在浅海中或大洋的表层,大的海草只能生活在海边及水深几十米以内的海底。

海洋植物可以简单地分为两大类:低等的藻类植物和高等的种子植物。

海洋植物以藻类为主。海洋藻类都是简单的光合营养的有机体,其形态构造、生活样式和演化过程均较复杂。它们介于光合细菌和高等植物--维管束植物之间,在生物的起源和进化上占有极为重要的地位。海洋种子植物的种类不多,都属于被子植物,没有裸子植物。通常分为红树植物(Mangrove plants)和海草 (Seagrasses)两类。它们和栖居的多种生物,组成沿岸生物群落。

海洋生物
客服
分享
收藏
立即下载
为了提升浏览体验,原视图版网页已升级为如下版式
海洋生物
海洋生物.doc
48.0K, 8页, 451次阅读

梁晨 分享于2011-04-16 09:31

立即下载 +合伙人(招募中) 举报

海洋生物

299.海洋生物有多少种类,

现生生物(包括陆地生物),已经记录的至少有200万种,其中海洋生物约有50万种,实际上海洋里的生物种类远比陆地丰富得多,特别是一些深海生物和珊瑚礁生物还远远没有搞清楚,因此海洋生物的实际种类将大大超过50万种。

300.地球上最早的生命是什么,

科学家们在澳大利亚发现了距今约35亿年的蓝藻化石——叠层石,这种化石告诉我们, 35亿年前的地球上就已经有生命存在了,它就是海洋中的蓝藻。蓝藻,是迄今为止人们发现的地球上最古老的生物。

301.蓝藻真的无所不在吗,

蓝藻的个体极小,只有头发丝的百分之几,是非常低等的原始生命体,它们以无性细胞分裂来繁衍下一代。从酷热的赤道海域到冰天雪地的极地,从阳光明媚的海面到黑暗缺氧的海底或是动荡不定的潮间带,到处都可以发现它们的踪迹。

302.海洋无脊椎动物有哪些门类,

海洋动物分布非常广泛,海洋无脊椎动物种类数目最多,占海洋动物的绝大部分,它们的门类主要有:海洋中的原生动物、海绵动物、腔肠动物、扁形动物、环节动物、软体动物、节肢动物、棘皮动物等。

303.海洋脊椎动物有哪些门类,

海洋脊椎动物的种类数目比海洋无脊椎动物少,但却代表着海洋生物进化的水平。它包括海洋中的鱼类、爬行类、鸟类和哺乳类动物。海洋鱼类如鲨鱼、海鳗等;海洋爬行类如海龟、青环海蛇等;海洋鸟类如海鸭、海鸥等;海洋哺乳类动物如海豚、鲸、海獭等。

海洋植物还包括一类藻菌共生体--海洋地衣。

㈦ 海绵是动物么

多孔动物又称海绵动物,是水生低等多细胞动物。体多为辐射对称,体壁由两层细胞构成,两层之间有中胶层。仅青岛地区就发现十余种。 下面给你列举几类:

葡萄白枝海绵 属于钙质海绵纲,海绵体为单沟型细管状分枝,分枝后又互相愈合,形成不规则的网状体。
  枝体横切面略呈圆形,直径0。5~2毫米。成体海绵有许多形如毛壶的竖立管状体,高2~3厘米,顶端有一个大的出水口,生活状态呈黄白色。白枝海绵附着在岩石或其他物体上,生活在水流平缓的浅水中。骨骼由各种形状与大小不等的二尖骨针、3辐骨针与4辐骨针组成。
  

戴冠碗海绵 属于钙质海绵纲,海绵体瓶状,外形呈橄榄状,顶端为圆形出水口,口周围有骨针构成的领,与体中轴平行,体基部有短柄,海绵借此附着在其他物体上,体表面有许多刺(骨针)。海绵体高7~10毫米,直径2~3毫米,冠状领长1毫米,活海绵呈黄色。
  骨骼由形状不规则,大小不等的二尖骨针,三辐骨针与四辐骨针构成。

扁平碗海绵 属于钙质海绵纲,系单体海绵,体长管状,常略弯曲,顶端有一圆形出水口,口周围无领,生殖后的个体常横向压扁,因而得名,体表面有细刺。扁平碗海绵曾称日本毛壶,生活在浅水里,体长1~11厘米,多数2。
  5~6厘米,直径2~9毫米;出水口直径1~4毫米。海绵体柔软易断,生活时乳白色或灰白色。骨骼由以下骨针组成:二尖骨针,按其大小可分为三组,不规则弯曲;三辐骨针,各辐略不规则弯曲;四辐射针数量较少。

头盔碗海绵 属于钙质海绵纲,海绵体瓶状,外形略如大米,顶端为出水口,出水口缘有两层骨针构成的领,上面一圈与体中轴线平行的竖领,下面一圈为横领,与海绵体中轴线垂直排列。
  体表面有许多细刺。海绵生活在平静的浅水中,活海绵乳白色。骨骼由小尖骨针(不规则弯曲)、羽辐骨针、三辐骨针和四辐骨针组成。

寄居蟹海绵 属于寻常海绵纲皮海绵科,是很奇特的海绵,海绵幼体附着于有寄居蟹的贝壳上,幼海绵向四周扩展延生,最后将整个贝壳封包,并逐渐增厚,形成不规则的块状体,随着寄居蟹的生长,海绵体内留下螺旋形的喇叭孔。
  成体海绵没有位移运动能力,寄居蟹海绵是少数能借助其他动物的活动的无目的运动的种类。海绵体硬如马铃薯,棕灰色,常常有橙红或紫红色。骨骼中有各种大小的大头骨针及中头骨针。

生姜波海绵 属于寻常海绵纲皮海绵科,海绵体略扁,不规则地分枝,外形如生姜,直接固着于海底软泥上,海绵体硬如马铃薯,表面平坦,有的分枝顶端有出水口。
  海绵生活在十多米到数十米深的海底,这是少数不附着于其他物体上的寻常海绵。活海绵青灰色,有时略带橙红色。

中空穿贝海绵 属于寻常海绵纲穿贝海绵科,穿贝海绵分布很广,钻入并穴居于贝壳或其它含钙物体中,表面只留下有针尖大小的孔。穿贝海绵钻入贝壳后就开始横向扩展,不断将贝壳凿穿成许多大小不同的孔、室,随着海绵的生长,逐渐将几个室连通成一片,最后将整个贝壳凿毁。
  露在外面的穿贝海绵呈桔红色。骨骼由大骨针与小骨针组成。大骨针有两种:(一)大头骨针,细长笔直,表面平滑;(二)棘二尖骨针,弧状弯曲,表面有细棘,有些骨针有中央瘤突。小骨针为旋棘骨针,常扭曲成“S”或“3”形。表面有细棘。

多弓山海绵 属于寻常海绵纲山海绵科,海绵体地毯状,附着于其他物体上,向四面扩展,逐渐增厚,变成不规则的块状,表面不平坦,有许多圆形隆起,体质松软易碎,有一薄的皮层。
  骨骼构造较复杂,由多种骨针组成:大骨针为亚大头骨针,常略弯曲,表面光滑。小骨针有两种:(一)异常形爪状骨针,有大小两组,外形完全一致。(二)弓形骨针,大小差异很大,有一系列中间型骨针,使之连成一片。

外套粘海绵 属于寻常海绵纲粘海绵科,海绵有地毯状、块状、球状及分枝的片状,体表面不平坦,常有走向不规则的脊和沟,表面有几个分布不规则的出水口。
  活海绵呈灰黄色或橙黄色。骨骼由多种骨针组成:(一)棘针骨针,表面有疏密程度不同的小棘;(二)楔形骨针,表面平滑,两端有细棘。小骨针有两种:(一)掌形爪状骨针,有大小两组骨针,外形完全相同;(二)卷轴骨针,也有大小两组。

面包软海绵 属于寻常绵纲软海绵科,成体海绵为无定形的块状,附着不久的海绵常呈地毯状,向四面伸展,逐渐增厚,表面常有烟囟状的出水口,体软而有弹性,易碎裂。
  骨骼为散乱的骨针构成不规则的多角形网。皮层中的骨针与表层平行,骨针为略弯成弧形的二尖骨针。活海绵呈棕色或略棕色。

宽阔蜂海绵 属于寻常海绵纲蜂海绵科,海绵无固定的外形,起初呈地毯状向四面扩展,然后增厚成薄的块状,表面常有不规则的火山口状出水口,高达1厘米,海绵体软而有弹性,活海绵灰白色或黄棕色,生活在沿海数米深的水中,大的海绵可达7~8厘米宽,2~4厘米厚。
  骨骼网状,是由发达的海绵质将二尖骨针包埋或连接,网眼为不规则的圆形、三角形或四角形。