当前位置:首页 » 石油矿藏 » 12石油06什么
扩展阅读
柬埔寨石油怎么样 2025-05-20 01:49:08

12石油06什么

发布时间: 2022-05-25 05:07:29

‘壹’ 石油化工生产中的 碳12指的是什么

石油化工中碳12一般是指含12个碳原子炭链烯烃类物质,也就是碳12低聚物的轻油类物质,
主要含量碳12和16%,石油类物质精馏过程中的重要产物之一。
汽油主要成分就是
C
4
~C
12
烃类(主要以C5-C9为主)为混合烃类的轻油
碳12同时也指同位素,即碳有3种同位素:碳12,碳13,碳14中的一种,12指的是其质量数(=中子数+质子数),即该原子含6个质子,6个中子,C12是常见的碳,C13/14比较少见

‘贰’ 石油可以用来做什么

石油的用途有如下十项:

1.燃油

这个应该没有悬念,而且消耗了大部分的石油。72%的石油用于制成各种燃油:汽车上的柴油、汽油,飞机、轮船等交通工具使用的燃油。

2.塑料

塑料无所不在,牙刷、盆、瓶子、iPad、圣诞老人……随便就可以数出一大串,原来,我们生活在石油的包围圈里——几乎所有的塑料都是石油产品,如果没有专门了解,我们很难把黑乎乎的石油与五颜六色形态各异的塑料制品联系起来。

3.沥青

沥青也叫柏油,是石油加工过程的一种产品,也有天然形成的沥青。全球有铺装路面的公路总长为1700多万公里,可以想象消耗了多少沥青!

4.衣服

我们从衣服标签看到的涤纶、腈纶、锦纶等面料,都是由石油生产的合成纤维。纺织所使用的纤维中,化学纤维的比重接近3/4,天然纤维占比仅有1/4,而90%以上的化学纤维产品依赖于石油,所以想想看,你一生要“穿”掉多少石油?

5.合成橡胶

合成橡胶具有高弹性、耐高温、低温等性能,广泛应用于工农业、国防、交通及日常生活中,我们生活中随处可见的鞋子、体育用具、轮胎、电线电缆等物品都能找到合成橡胶的身影,而石油就是制作合成橡胶的主要原料。

6.制药

制药确实与石油密不可分。先不说间接耗材,如包装使用的塑料,就连药品本身也依赖石油。例如苯,许多药都从苯衍生而来,而苯又是从石油里制取,现代医药的进步也和石化技术有着千丝万缕的关系。另外假肢、人造器官以及医用X光片及其处理溶液等等也使用了石油制品。

7.清洁用品

如果没有了石油,我们的生活将会变得很脏。我们用的清洁用品很多都是石油制品,如洗涤剂、洗发水、沐浴乳、肥皂等等,里面都含有石油的衍生物。

8.食品

石油不仅用来制造化肥、杀虫剂等,很多食物的保鲜、染色、以及调味都有石油产品的参与,还有我们嚼的口香糖……如果算上食品生产间接消耗的石油,那么人一生要"吃"掉551千克石油。一瓶500毫升的纯净水,经过发现水源、开采、净化、装瓶、运输等环节,最后摆在你面前,一共需要消耗167毫升的石油。

9.润滑油(润滑脂)

润滑油、润滑脂广泛用于各种机器润滑,如果没有润滑,几乎所有的机械都不能正常运转。润滑油、润滑脂(黄油)里面的成分大部分是石油炼制的基础油,许多润滑油里面90%的成分是石油。生活中较常见的润滑油是汽车发动机用的发动机润滑油,俗称机油。

10.化妆品

石油也是制作化妆品的原料,含量较高的可达80%!石油精炼或合成出来的油、石蜡、香精、染料等,都用来制作化妆品。有兴趣的话可以留意一下自己所使用的化妆品成分表,看看里面到底含有哪些东西。

(2)12石油06什么扩展阅读:石油的性质

石油的性质因产地而异,密度为0.8 -1.0g/cm3,粘度范围很宽,凝固点差别很大(30 ~ -60摄氏度),沸点范围为常温到500摄氏度以上,可溶于多种有机溶剂,不溶于水,但可与水形成乳状液。不过不同的油田的石油的成分和外貌可以区分很大。

石油主要被用作燃油和汽油,燃料油和汽油在2012年组成世界上最重要的二次能源之一。石油也是许多化学工业产品如溶剂、化肥、杀虫剂和塑料等的原料。2012年开采的石油88%被用作燃料,其它的12%作为化工业的原料。实际上,石油是一种不可再生原料

扩展链接:石油-网络

‘叁’ 石油的化学组成

石油的化学组成可以从组成石油的元素、化合物、馏分和组分加以认识,必须明确这是从不同侧面去认识同一问题。

(一)石油的元素组成

由于石油没有确定的化学成分,因而也就没有确定的元素组成。但其元素组成还是有一定的变化范围。

石油的元素组成主要是碳(C)和氢(H),其次是硫(S)、氮(N)、氧(O)。世界上大多数石油的元素组成一般为:碳含量介于80%~88%之间,氢含量占10%~14%,硫、氮、氧总量在0.3%~7%之间变化,一般低于2%~3%,个别石油含硫量可高达10%。世界各地原油的元素组成尽管千差万别,但均以碳、氢两种元素占绝对优势,一般在95%~99%之间。碳、氢元素重量比介于5.7~7.7之间,平均值约为6.5。原子比的平均值约为0.57(或1∶1.8)。

石油中硫含量,据蒂索(B.P.Tissot,1978)等对9347个样品的统计,平均为0.65%(重量),其频率分布具双峰型(图2-2),多数样品(约7500个)的含硫量小于1%,少数样品(1800个)的含硫量大于1%,1%处为两峰的交叉点。根据含硫量可把原油概略地分为高硫原油(含硫量大于1%)和低硫原油(含硫量小于1%)。原油中的硫主要来自有机物的蛋白质和围岩的含硫酸盐矿物如石膏等,故产于海相环境的石油较形成于陆相环境的石油含硫量高。由于硫具有腐蚀性,因此含硫量的高低关系到石油的品质。含硫量变化范围很大,从万分之几到百分之几。

图2-2 不同时代和成因的9347个石油样品中含硫分布(据Tissot&Welte,1978)

石油中含氮量在0.1%~1.7%之间,平均值0.094%。90%以上的原油含氮量小于0.2%,最高可达1.7%(美国文图拉盆地的石油),通常以0.25%作为贫氮和富氮石油的界限。

石油的含氧量在0.1%~4.5%之间,主要与其氧化变质程度有关。

石油的元素组成,不同研究者的估算值不甚一致。通常碳、氢两元素主要赋存在烃类化合物中,是石油的主体,而硫、氮、氧元素组成的化合物大多富集在渣油或胶质和沥青质中。

除上述5种主要元素之外,还从原油灰分(石油燃烧后的残渣)中发现有50多种元素。这些元素虽然种类繁多,但总量仅占石油重量的十万分之几到万分之几,在石油中属微量元素。石油中的微量元素,以钒、镍两种元素含量高、分布普遍,且由于其与石油成因有关联,故最为石油地质学家重视。V/Ni比值可作为区分是来自海相环境还是陆相环境沉积物的标志之一。一般认为V/Ni>1是来自海相环境,V/Ni<1是来自陆相环境。

(二)石油的化合物组成

概要地说,组成石油的化合物多是有机化合物,作为杂质混入的无机化合物不多,含量甚微,可以忽略不计。组成石油的5种主要元素构成的化合物是一个庞大的家族———有机化合物。现今从全世界经过分析的不同原油中分离出来的有机化合物有近500种,还不包括有机金属化合物。其中约200种为非烃,其余为烃类。原油的大半部分是由150种烃类组成。石油的化合物组成,归纳起来可以分为烃类和非烃类化合物两大类,其中烃类化合物是主要的,这与元素组成以C、H占绝对优势相一致。

1.烃类化合物

在化学上,烃类可以分为两大类:饱和烃和不饱和烃。

(1)饱和烃

在石油中饱和烃在数量上占大多数,一般占石油所有组分的50%~60%。可细分为正构烷烃、异构烷烃和环烷烃。

正构烷烃平均占石油体积的15%~20%,轻质原油可达30%以上,而重质原油可小于15%。石油中已鉴定出的正烷烃为C1—C45,个别报道曾提及见有C60的正烷烃,但石油大部分正烷烃碳数≤C35。在常温常压下,正烷烃C1—C4为气态,C5—C15为液态,C16以上为固态(天然石蜡)。

不同类型原油的正构烷烃分布情况如图2-3所示。由图可见,尽管正构烷烃的分布曲线形态各异,但均呈一条连续的曲线,且奇碳数与偶碳数烃的含量总数近于相等。根据主峰碳数的位置和形态,可将正烷烃分布曲线分为三种基本类型:①主峰碳小于C15,且主峰区较窄;②主峰碳大于C25,主峰区较宽;③主峰区在C15—C25之间,主峰区宽。上述正烷烃的分布特点与成油原始有机质、成油环境和成熟度有密切关系,因而常用于石油的成因研究和油源对比。

石油中带支链(侧链)的异构烷烃以≤C10为主,常见于C6—C8中;C11—C25较少,且以异戊间二烯型烷烃最重要。石油中的异戊间二烯型烷烃(图2-4),一般被认为是从叶绿素的侧链———植醇演化而来,因而它是石油为生物成因的标志化合物。这种异构烷烃的特点是每四个碳原子带有一个甲基支链。现已从石油中分离出多种异戊间二烯型烷烃化合物,其总量达石油的0.5%。其中研究和应用较多的是2,6,10,14-四甲基十五烷(姥鲛烷)和2,6,10,14-四甲基十六烷(植烷)。研究表明,同一来源的石油,各种异戊二烯型化合物极为相似,因而常用之作为油源对比的标志。

图2-3 不同类型石油的正构烷烃分布曲线图(据Martin,1963)

图2-4 类异戊间二烯型烷烃同系物立体化学结构图

环烷烃在石油中所占的比例为20%~40%,平均30%左右。低分子量(≤C10)的环烷烃,尤以环戊烷(C5-五员环)和环己烷(C6-六员环)及其衍生物是石油的重要组成部分,且一般环己烷多于环戊烷。中等到大分子量(C10—C35)的环烷烃可以是单环到六环。石油中环烷烃以单环和双环为主,占石油中环烷烃的50%~55%,三环约占20%,四环以上占25%左右。在石油中多环环烷烃的含量随成熟度增加而减少,故高成熟原油中1~2环的环烷烃显着增多。

在常温常压下,环丙烷(C3H6)和甲基环丙烷(C4H8)为气态,除此之外所有其他单环环烷烃均为液态,两环以上(>C11)的环烷烃为固态。

(2)不饱和烃

石油中的不饱和烃主要是芳香烃和环烷芳香烃,平均占原油重量的20%~45%。此外原油中偶可见有直链烯烃。烯烃及不饱和环烃,因其极不稳定,故很少见。

石油中已鉴定出的芳香烃,根据其结构不同可以分为单环、多环和稠环三类,而每个类型的主要分子常常不是母体,而是烷基衍生物。

单环芳烃包括苯、甲苯、二甲苯等。

多环芳烃有联苯、三苯甲烷等。

稠环芳烃包括萘(二环稠合),蒽和菲(三环稠合)以及苯并蒽和屈(四环稠合)。

芳香烃在石油中以苯、萘、菲三种化合物含量最多,其主要分子也常常以烷基的衍生物出现。如前者通常出现的主要是甲苯,而不是苯。

环烷芳香烃包含一个或几个缩合芳环,并与饱和环及链烷基稠合在一起。石油中最丰富的环烷芳香烃是两环(一个芳环和一个饱和环)构成的茚满和萘满以及它们的甲基衍生物。而最重要的是四环和五环的环烷芳烃,其含量及分布特征常用于石油的成因研究和油源对比。因为它们大多与甾族和萜族化合物有关(芳构化),而甾族和萜族化合物是典型的生物成因标志化合物。

2.非烃化合物

石油中的非烃化合物是指除C、H两种主要元素外,还含有硫或氮或氧,抑或金属原子(主要是钒和镍)的一大类化合物。石油中这些元素的含量不多,但含这些元素的化合物却不少,有时可达石油重量的30%。其中又主要是含硫、氮、氧的化合物。

(1)含硫化合物

硫是碳和氢之后的第三个重要元素,含硫的化合物也最为多见。目前石油中已鉴定出的含硫化合物将近100种,多呈硫醇、硫醚、硫化物和噻吩(以含硫的杂环化合物形式存在),在重质石油中含量较为丰富。

石油中所含的硫是一种有害的杂质,因为它容易产生硫化氢(H2S)、硫化铁(FeS)、亚硫酸(H2SO3)或硫酸(H2SO4)等化合物,对机器、管道、油罐、炼塔等金属设备造成严重腐蚀,所以含硫量常作为评价石油质量的一项重要指标。

通常将含硫量大于2%的石油称为高硫石油;低于0.5%的称为低硫石油;介于0.5%~2%之间的称为含硫石油。一般含硫量较高的石油多产自碳酸盐岩系和膏盐岩系含油层,而产自砂岩的石油则含硫较少。我国原油多属低硫石油(如大庆、任丘、大港、克拉玛依油田)和含硫石油(如胜利油田)。原苏联伊申巴石油含硫量高达2.25%~7%,其他如墨西哥、委内瑞拉和中东的石油含硫量也较高。

(2)含氮化合物

石油中含氮化合物较为少见,平均含量小于0.1%。目前从石油中分离出来的含氮化合物有30多种,主要是以含氮杂环化合物形式存在。可将其分为两组,一组为碱性化合物,有吡啶、喹啉、异喹啉、吖啶及其同系物;另一组为非碱性化合物,有卟啉、吲哚、咔唑及其同系物,其中以含钒和镍的金属卟啉化合物最为重要。

原油中的卟啉化合物首先是由特雷勃斯(C.Treibs,1934)发现的。包括初卟啉和脱氧玫红初卟啉,并提出石油中的卟啉是由植物的叶绿素和动物的氯化血红素转化而来。这个发现为石油有机成因说提供了有力的证据,引起了广泛的注意和重视。目前对卟啉的研究已逐步深入并发现了多种类型。卟啉是以四个吡咯核为基本结构,由4个次甲基(—CH)桥键联结的含氮化合物,又称族化合物。在石油中卟啉常与钒、镍等金属元素形成络合物,因而又称为有机金属化(络)合物,其基本结构与叶绿素结构极为相似(图2-5)。

图2-5 叶绿素(A)与原油中的卟啉(B)、植烷(Ph)、姥鲛烷(Pr)结构比较图(据G.D.Hobson等,1981)

但是,并不是所有原油中都含有卟啉,有相当一部分原油中不含或仅含痕量。一般中新生代地层中形成的原油含卟啉较多,而古生代地层中石油含卟啉甚低或不含。这可能与卟啉的稳定性差有关。在高温(>250℃)或氧化条件下,卟啉将发生开环裂解而遭破坏。

此外,原油中的卟啉类型还与沉积环境有密切关系,海相石油富含钒卟啉,而陆相石油富含镍卟啉。

(3)含氧化合物

石油中含氧化合物已鉴定出50多种,包括有机酸、酚和酮类化合物。其中主要是与酸官能团(—COOH)有关的有机酸,有C2~24的脂肪酸,C5~10的环烷酸,C10~15的类异戊二烯酸。石油中的有机酸和酚(酸性)统称石油酸,其中以环烷酸最多,占石油酸的95%,主要是五员酸和六员酸。几乎所有石油中都含有环烷酸,但含量变化较大,在0.03%~1.9%之间。环烷酸易与碱金属作用生成环烷酸盐,环烷酸盐又特别易溶于水。因此地下水中环烷酸盐的存在是找油的标志之一。

(三)石油的馏分组成

石油是若干种烃类和非烃有机化合物的混合物,每种化合物都有自己的沸点和凝点。石油的馏分就是利用组成石油的化合物各自具有不同沸点的特性,通过对原油加热蒸馏,将石油分割成不同沸点范围的若干部分,每一部分就是一个馏分。分割所用的温度区间(馏程)不同,馏分就有所差异(表2-1)。

表2-1 石油的馏分组成

据亨特对美国一种相对密度为35°API(0.85g/cm3)的环烷型原油所做的分析结果,以脱气后各馏分总和计算,各馏分的体积百分比为:汽油27%,煤油13%,柴油12%,重质瓦斯油10%,润滑油20%,渣油18%。其与化合物组成的关系如图2-6所示。

通常石油的炼制过程可以看作就是对石油的分馏,馏程的控制是根据原油的品质及对油品质量的具体要求来确定的。现代炼油工业为了提高石油中轻馏分的产量和提高产品质量,除了采用直馏法外,还采用催化热裂化、加氢裂化、热裂解、石油的铂重整等一系列技术措施。例如在常压下分馏出的汽油只占原油的15%~20%,在采用催化热裂化后,可使汽油的产量提高到50%~80%,以满足各方面以汽油作能源燃料的需求。

图2-6 相对密度为35°API的环烷型石油的馏分与化合物组成的关系图(据J.M.Hunt,1979)

(四)石油的组分组成

石油组分分析是过去在石油研究中曾广泛使用的一种方法。它是利用有机溶剂和吸附剂对组成石油的化合物具有选择性溶解和吸附的性能,选用不同有机溶剂和吸附剂,将原油分成若干部分,每一部分就是一个组分。

一般在作组分分析之前,先对原油进行分馏,去掉低于210℃的轻馏分,切取>210℃的馏分进行组分分析(图2-7)。凡能溶于氯仿和四氯化碳的组分称为油质,它们是石油中极性最弱的部分,其成分主要是饱和烃和一部分低分子芳烃。溶于苯的组分称为苯胶质,其成分主要是芳烃和一些具有芳环结构的含杂元素的化合物(主要为含S、N、O的多环芳烃)。用酒精和苯的混合液(或其他极性更强的如甲醇、丙酮等)作溶剂,可以得到酒精-苯胶质(或其他相应组分),此类胶质的成分主要是含杂元素的非烃化合物。用石油醚分离,溶于石油醚的部分是油质和胶质。其中能被硅胶吸附的部分是胶质;不被硅胶吸附的部分是油质;剩下不溶于石油醚的组分(但可溶于苯、二硫化碳和三氯甲烷等中性有机溶剂,呈胶体溶液,可被硅胶吸附)为沥青质;后者是渣油的主要组分,其主要成分是结构复杂的大分子非烃化合物。

显然,石油的组分组成是一个比较模糊的概念,特别是胶质和沥青质,在石油地质学中使用频率较高,使用上也不是很严谨。胶质和沥青质是一些分子量较大的复杂化合物的混合体。胶质的视分子量约在300~1200;沥青的视分子量多大于10000,可能达到甚至于超过50000,其直径平均为40~50nm。胶质和沥青质占原油的0~40%,平均为20%。胶质和沥青质可能主要是由多环芳核或环烷-芳核和杂原子链如含S、N、O等的化合物组成,其平均元素组成如表2-2所示,大量分布于未成熟以及经过生物降解和变质的原油中,尤其在天然沥青矿物或沥青砂岩中更为多见。

石油的组分在石油的成因演化研究和原油品质评价中经常涉及。

图2-7 原油组分分析流程图

表2-2 胶质和沥青质的平均元素组成

‘肆’ 组成石油的化学元素主要是什么

石油的元素组成是:碳、氢、氧、氮、磷、硫、氯、碘、钠、钾、钙、铁、镍等元素。石油的性质因产地而异,密度为0.8 -1.0g/cm3,粘度范围很宽,凝固点差别很大(30 ~ -60摄氏度),沸点范围为常温到500摄氏度以上,可溶于多种有机溶剂,不溶于水,但可与水形成乳状液。不过不同的油田的石油的成分和外貌可以区分很大。石油主要被用作燃油和汽油,燃料油和汽油在2012年组成世界上最重要的二次能源之一。石油也是许多化学工业产品如溶剂、化肥、杀虫剂和塑料等的原料。2012年开采的石油88%被用作燃料,其它的12%作为化工业的原料。实际上,石油是一种不可再生原料。

世界海洋面积3.6亿平方 千米,约为陆地的2.4倍。大陆架和大陆坡约5500万平方千米,相当于陆上沉积盆地面积的总和。地球上已探明石油资源的1/4和最终可采储量的45%, 埋藏在海底。世界石油探明储量的蕴藏重心,将逐步由陆地转向海洋。

‘伍’ 石油的分类

石油又称原油,是从地下深处开采的棕黑色可燃粘稠液体。最早提出″石油″一词的是公元977年中国北宋 编着的《太平广记》。正式命名为″石油″是根据中国北宋杰出的科学家沈括(公元1031-1095)在所着《梦溪笔谈》中根据这种油《生于水际砂石,与泉水相杂,惘惘而出》而命名的。在″石油″一词出现之前,国外称石油为″魔鬼的汗珠″、″发光的水″等,中国称″石脂水″、″猛火油″、″石漆″等。

我们日常生活中到处都可以见到石油或其附属品的身影,比如汽油、柴油、煤油、润滑油、沥青、塑料、纤维等还有很多!这些都是从石油中提炼出来的;而我们日常所用的天然气(液化气)是从专门的气田中产出的!通过输气管道和气站再到各家各户。

目前就石油的成因有两种说法:①无机论即石油是在基性岩浆中形成的;②有机论即各种有机物如动物、植物、特别是低等的动植物像藻类、细菌、蚌壳、鱼类等死后埋藏在不断下沉缺氧的海湾、泻湖、三角洲、湖泊等地,经过许多物理化学作用,最后逐渐形成为石油。

原油的颜色非常丰富,有红、金黄、墨绿、黑、褐红、甚至透明;原油的颜色是它本身所含胶质、沥青质的含量,含的越高颜色越深。原油的颜色越浅其油质越好!透明的原油可直接加在汽车油箱中代替汽油!原油的成分主要有:油质(这是其主要成分)、胶质(一种粘性的半固体物质)、沥青质(暗褐色或黑色脆性固体物质)、碳质(一种非碳氢化合物)。

石油由碳氢化合物为主混合而成的,具有特殊气味的、有色的可燃性油质液体!天然气是以气态的碳氢化合物。

石油的性质因产地而异,密度为0.8~1.0 g/cm3,粘度范围很宽,凝固点差别很大(30~60°C),沸点范围为常温到500°C以上,可容于多种有机溶剂,不溶于水,但可与水形成乳状液。 组成石油的化学元素主要是碳(83%~87%)、氢(11%~14%),其余为硫(0.06%~0.8%)、氮(0.02%~1.7%)、氧(0.08%~1.82%)及微量金属元素(镍、钒、铁等)。由碳和氢化合形成的烃类构成石油的主要组成部分,约占95%~99%。含硫、氧、氮的化合物对石油产品有害,在石油加工中应尽量除去。不同产地的石油中,各种烃类的结构和所占比例相差很大,但主要属于烷烃、环烷烃、芳香烃3类。通常以烷烃为主的石油称为石蜡基石油;以环烷烃、芳香烃为主的称环烃基石油;介于二者之间的称中间基石油。我国主要原油的特点是含蜡较多,凝固点高,硫含量低,镍、氮含量中等,钒含量极少。除个别油田外,原油中汽油馏分较少,渣油占三分之一。组成不同类的石油,加工方法有差别,产品的性能也不同,应当物尽其用。大庆原油的主要特点是含蜡量高,凝点高,硫含量低,属低硫石蜡基原油。

‘陆’ 石油的用途是什么

石油,也称原油,是一种粘稠的、深褐色(有时有点绿色的)液体。地壳上层部分地区有石油储存。石油的性质因产地而异,密度为0.8 ~ 1.0 克/厘米³,粘度范围很宽,凝固点差别很大(30 ~ -60摄氏度),沸点范围为常温到500摄氏度以上,可溶于多种有机溶剂,不溶于水,但可与水形成乳状液。不过不同的油田的石油的成分和外貌可以区分很大。石油主要被用作燃油和汽油,燃料油和汽油组成目前世界上最重要的一次能源之一。石油也是许多化学工业产品如溶剂、化肥、杀虫剂和塑料等的原料。今天88%开采的石油被用作燃料,其它的12%作为化工业的原料。
产品分类
石油经过加工提炼,可以得到的产品大致可分为四大类:
石油燃料
石油燃料是用量最大的油品。按其用途和使用范围可以分为如下五种:
1.点燃式发动机燃料有航空汽油,车用汽油等。
2.喷气式发动机燃料(喷气燃料) 有航空煤油。
3.压燃式发动机燃料(柴油机燃料) 有高速、中速、低速柴油。
4.液化石油气燃料即液态烃。
5.锅炉燃料有炉用燃料油和船舶用燃料油。
润滑油和润滑脂
润滑油和润滑脂被用来减少机件之间的摩擦,保护机件以延长它们的使用寿命并节省动力。它们的数量只占全部石油产品的5%左右,但其品种繁多。
蜡、沥青和石油焦
它们是从生产燃料和润滑油时进一步加工得来的,其产量约为所加工原油的百分之几。
溶剂和石油化工产品
后者是有机合成工业的重要基本原料和中间体。

‘柒’ 石油到底是什么

如果你去过油田,你会看到从地下采出来的石油是一种粘稠的,颜色很深的液体,人们叫它原油。

原油的颜色虽然很深,但各地产的石油并不是同一个色。大庆出的原油是黑色的,王门出的原油是绿色的、克拉玛依出的石油是褐色的。为什么颜色不一样,原来里面含的胶质和沥青多少不一样,含量越多颜色越深。

原油带有各种特殊的气味,这是由于里面含有一些有奇味的成分。比如有一种原油有股臭鸡蛋味,这是因为里面含有硫化氢。

原油的“体重”比较轻,密度大约是水的0.75或多一点,只有极少数的比水重。所以,大多的原油都可以浮在水上。

上面说好这些是原油的“外表”状况,那么它的“内心本质”是由碳和氢构成。其中碳占84%~87%左右,氢占12%~14%左右。余下的百分之一是极微量的硫、氧、氮等元素。

碳和氢可以形成多种化合物,按它们的原子数从少到多排列,有甲烷、乙烷、丙烷、丁烷、戊烷、己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷等等。石油就是由这些化合物组成的。

由于组成石油的各种化合物“脾气”不一样,所以直接用它不方便。这就像各种性格的人搅在一起,发挥不出正常的作用一样。为此,科学家决定给石油“分家”。“分家”的办法就是加热,也就是蒸馏。

由于甲烷、乙烷、丙烷、丁烷在常温下呈气体状态,所以一蒸馏,它们就从蒸馏塔顶跑出来。

当加温到40~150摄氏度时,就会从蒸馏塔上部流出戊烷、己烷、庚烷、辛烷、壬烷等化合物来,它们在这个温度下呈液态。这部分液体油就是汽油。它是石油家庭中的老大。

再加温150摄氏度以上,至300摄氏度时,在蒸馏塔中部会流出癸烷、十一烷至十五烷等化合物的混合物。这部分化合物也是液态,叫煤油。它是石油家庭中的老二。

再继续加温,从200摄氏度加到350摄氏度时,则会在蒸馏塔下部流出另一种液体——柴油来。它是石油家庭中的老三。老三的成分包括十一烷至二十烷等。

再加温,从300摄氏度开始,则会在蒸馏塔底部流出沸点很高的重油来,它是石油家庭中的老四。它是由十六烷至四十五烷等化合物组成的。

由于重油的沸点很高,到400摄氏度也不蒸发,所以不能再用一般加热的方法来给石油“分家”了。科学家采用减压加热法,使重油又“分家”了,又得到了柴油,还有润滑油、石蜡、沥青等许多有用的东西。

这样,我们基本上把石油的里里外外都看清了,把它们一家的大小兄弟都找出来了。

‘捌’ 常见的石油产品有哪些,各自用途

石油产品可分为: 石油燃料、石油溶剂与化工原料、润滑剂、石蜡、石油沥青、石油焦等6类。 石油工业一向以生产汽油、煤油和工业锅炉用的燃料油为主。

20世纪20年代至30年代,更先进的炼油技术出现,以法国人荷德利发明的(催化裂化法)最为重要。

所谓催化裂化就是利用热力、压力和催化剂把重油裂解为较轻油类,主要是汽油。另一种炼油法是聚合法,与裂化法刚好相反:把小分子合成大分子,将提炼所得的较轻气体聚合成汽油和其他液体。

(8)12石油06什么扩展阅读:

石油主要组成元素为碳氢元素,还有少量O、N、S、P和微量Cl、I、P、As、Si、Na、K等元素,它们都以化合物的形式存在。石油不是单一化合物,而是由几百甚至上千种化合物组成的混合物,故蒸馏时馏出物一般都是连续的;

主要成分是:A。烃类有机物(烷烃、环烷烃和芳香烃);B。含有相当数量的非烃类有机物-即烃的衍生物,这类化合物的分子中除含有碳氢元素外,还含有氧、硫、氮等,其含量(元素含量)虽然很少,

组成化合物的量一般约占石油总量的10%~15%,但它对石油加工和油品质量的影响是不可忽视的,大部分需要在加工过程中脱除,如果将它们进行适当处理,也可生产一些有用的化工产品。

‘玖’ 石油是什么

石油
维基网络,自由的网络全书
Jump to: navigation, search

石油,产于岩石中以碳氢化合物为主的油状粘稠液体。未经提炼的天然石油称为原油。其中含碳84-87%。氢12-14%,1-2%为硫、氧、氮、磷、钒等元素。 当代社会应用最广泛的一种不可再生能源之一。在中东地区-波斯湾一带有丰富的储藏,在俄罗斯、美国、中国、南美洲等地也有很大量的储藏。

石油的常用衡量单位“桶”为一个容量单位,具体为159升。 因为各地出产的石油的密度不尽相同,所以一桶石油的重量也不尽相同。一般地,一吨石油大约有8桶。
目录
[隐藏]

* 1 石油的成因
o 1.1 现在最有力的看法
* 2 成分
* 3 相关条目
* 4 参看
o 4.1 References
* 5 Books about the petroleum instry
* 6 Films about petroleum
* 7 Writers covering the petroleum instry

[编辑]

石油的成因

过去认为石油是从动物的尸体变化而成,因此,石油是不可生的能源。不过,根据美国于2003年的一项研究,有不少枯干的油井在经过一段时间的弃置以后,仍然可以生产石油。所以,石油可能并非生物生成的矿物,而是碳氢化合物在地球内部经过放射线作用之后的产物。
[编辑]

现在最有力的看法

不过,少数科学家,包括着名的Thomas Gold,认为石油的起源与生物无关。这种看法认为,行星(地球)内部天然就存在着大量的碳,一部分以碳氢化合物的形式存在。因为碳氢化合物比岩石轻,逐渐浮向地表。由地底深处存在的微生物将各种碳氢化合物转换排出。曾经一度枯竭的油井经过一段时间的放置,还有可能再次产出原油,这也是现在最有力的看法的佐证。

最近,在2003年《Scientific American》杂志发表的新看法,认为碳氢化合物是由于地球内部的放射线的作用而产生的。
[编辑]

成分

构成石油的化学物质,用蒸馏能分解。原油作为加工的产品,有煤油、苯、汽油、石蜡、沥青等。严格地说,石油以氢与碳构成的脂肪烃为主要成分。

分子量最小的4种烃,全都是煤气。

* CH4 (甲烷, methane) - 沸点 -107℃
* C2H6 (乙烷, ethane) - 沸点 -67℃
* C3H8 (丙烷, propane) - 沸点 -43℃
* C4H10 (丁烷, butane) - 沸点 -0.5℃

炭素数5~7の范囲の锁状炭化水素は、完全に軽质で、蒸発しやすい透明な性质のナフサになる。

ナフサの留分は溶媒、ドライクリーニングの溶剤あるいはその他の速干性の制品に用いる。

C6H14からC12H26までの锁状炭化水素は配合调整されガソリンに用いられる。炭素数10~15の范囲の炭化水素からケロシンが作られジェット燃料に用いられる。炭素数10~20の范囲からディーゼル燃料(軽油)と灯油が、そして船舶のエンジンに用いられる重油と続く。これらの石油制品は常温で液体である。

润滑油和半固体的凡士林、炭素数16から炭素数20の范囲である。

炭素数20以上の锁状炭化水素は个体であり、パラフィンワックスを皮切りに、タール、アスファルトの顺である。

用常压蒸馏馏分的名称和沸点(℃)来表示,就是:

石油エーテル(petrol ether):40 - 70℃ (溶媒用)
轻汽油(light petrol):60 - 100℃ (汽车燃料)
重汽油(heavy petrol):100 - 150℃ (汽车燃料)
轻煤油(light kerosene):120 - 150℃ (家用溶媒・燃料)
煤油(kerosene):150 - 300℃ (飞机油)
柴油(gas oil):250 - 350℃ (狄塞尔燃料/轻油/灯油)
润滑油:> 300℃ (发动机油)
残渣:焦油,柏油,沥青,残余燃料

[编辑]

相关条目

* 克拉马依油田
* 大庆油田
* 中原油田
* 胜利油田
* 中东
* 沙特阿拉伯
* 伊拉克
* 阿拉伯国家
* 阿盟
* 石油大学
* 石油输出国组织

[编辑]

参看

* 工业化
* 哈伯特顶点

[编辑]

References

1. 注 Kenney, J., Kutcherov, V., Bendeliani, N. and Alekseev, V. (2002). "The evolution of multicomponent systems at high pressures: VI. The thermodynamic stability of the hydrogen–carbon system: The genesis of hydrocarbons and the origin of petroleum". Proceedings of the National Academy of Sciences of the U.S.A. 99: 10976-10981. Article link
2. 注 Kenney, J., Shnyukov, A., Krayushkin, V., Karpov, I., Kutcherov, V. and Plotnikova, I. (2001). "Dismissal of the claims of a biological connection for natural petroleum". Energia 22: 26-34.

[编辑]

Books about the petroleum instry

* James Howard Kunstler (2005). The Long Emergency: Surviving the Converging Catastrophes of the Twenty-first Century. Atlantic Monthly Press. 0871138883.
* C.J. Campbell (2004). The Coming Oil Crisis. . .
* (2004). Out of Gas: The End of the Age of Oil. . .
* Amory B. Lovins (2004). Winning the Oil Endgame. Rocky Mountain Institute. 1881071103.
* (2003). Hubbert's Peak : The Impending World Oil Shortage. . .
* Vaclav Smil (2003). Energy at the Crossroads : Global Perspectives and Uncertainties. The MIT Press. 0262194929.
* Daniel Yergin (1991). The Prize: The Epic Quest for Oil, Money, and Power. Simon & Schuster. 0671502484.
* Harold F. Williamson and Arnold R. Daum (1959). The American Petroleum Instry: Volume I, The Age of Illumination. Northwestern University Press. .
* Harold F. Williamson, Ralph L. Andreano, Arnold R. Daum, and Gilbert C. Klose (1963). The American Petroleum Instry: Volume II, The Age of Energy. Northwestern University Press. .

[编辑]

Films about petroleum

* 在因特网电影数据库上《Burning of the Standard Oil Co.'s Tanks, Bayonne, N.J.》的资料 (外部链接)
* 在因特网电影数据库上《California Oil Wells in Operation》的资料 (外部链接)
* 在因特网电影数据库上《Canada Strikes Oil: Lec, Alberta 1947》的资料 (外部链接)
* 在因特网电影数据库上《The End of Suburbia: Oil Depletion and the Collapse of the American Dream》的资料 (外部链接)
o http://www.endofsuburbia.com
* 在因特网电影数据库上《Hellfighters》的资料 (外部链接)
* 在因特网电影数据库上《Incendio del pozo petrolero de Dos Bocas, Veracruz》的资料 (外部链接)
* 在因特网电影数据库上《La Instria del Petróleo》的资料 (外部链接)
* 在因特网电影数据库上《Instria petrolului》的资料 (外部链接)
* 在因特网电影数据库上《Oil - From Fossil to Flame》的资料 (外部链接)
* 在因特网电影数据库上《Oil Fires, Their Prevention and Extinguishment》的资料 (外部链接)
* 在因特网电影数据库上《Oil Storm》的资料 (外部链接)
* 在因特网电影数据库上《Roughnecks: The Story of Oil Drillers》的资料 (外部链接)
* 在因特网电影数据库上《Wildcatter: The Story of Texas Oil》的资料 (外部链接)
* 在因特网电影数据库上《Lektionen in Finsternis》的资料 (外部链接)

[编辑]

Writers covering the petroleum instry

* Colin J. Campbell
* Jay Hanson
* Kenneth S. Deffeyes
* David Goodstein
* Daniel Yergin
* Thomas Gold

取自"http://wikipedia.cnblog.org/wiki/%E7%9F%B3%E6%B2%B9"

页面分类: Lubricants | Petroleum | Oils | 石油工业 | 燃料