A. 海上石油钻井平台有哪些工种,投产后怎么运营情尽量说的详细些
那可是太多了! 基本上有甲方的相关人员,监督,HSE监督, 钻井的所有工种,像平台经理,HSE,大班,司钻,助理司钻,机房的司机,钻台的内外钳工,架工等等; 录井的数据工程师,logger等;泥浆的工程师;固井的工程师及相关人员;测井的操作员、井口等相关人员; 还包括平台的日常维护人员,后勤保障人员,物资装卸人员,如果有采油的话,还包括采油的相关人员,等等。
B. 海上石油是如何开采的
海上油气开发 海上油气开发与陆地上的没有很大的不同,只是建造采油平台的工程耗资要大得多,因而对油气田范围的评价工作要更加慎重.要进行风险分析,准确选定平台位置和建设规模.避免由于对地下油藏认识不清或推断错误,造成损失.60年代开始,海上石油开发有了极大的发展.海上油田的采油量已达到世界总采油量的20%左右.形成了整套的海上开采和集输的专用设备和技术.平台的建设已经可以抗风、浪、冰流及地震等各种灾害,油、气田开采的水深已经超过200米.
当今世界上还有不少地区尚未勘探或充分勘探,深部地层及海洋深水部分的油气勘探刚刚开始不久,还会发现更多的油气藏,已开发的油气藏中应用提高石油采收率技术可以开采出的原油数量也是相当大的;这些都预示着油、气开采的科学技术将会有更大的发展.
石油是深埋在地下的流体矿物.最初人们把自然界产生的油状液体矿物称石油,把可燃气体称天然气,把固态可燃油质矿物称沥青.随着对这些矿物研究的深入,认识到它们在组成上均属烃类化合物,在成因上互有联系,因此把它们统称为石油.1983年9月第11次世界石油大会提出,石油是包括自然界中存在的气态、液态和固态烃类化合物以及少量杂质组成的复杂混合物.所以石油开采也包括了天然气开采.
石油在国民经济中的作用 石油是重要能源,同煤相比,具有能量密度大(等重的石油燃烧热比标准煤高50%)、运输储存方便、燃烧后对大气的污染程度较小等优点.从石油中提炼的燃料油是运输工具、电站锅炉、冶金工业和建筑材料工业各种窑炉的主要燃料.以石油为原料的液化气和管道煤气是城市居民生活应用的优质燃料.飞机、坦克、舰艇、火箭以及其他航天器,也消耗大量石油燃料.因此,许多国家都把石油列为战略物资.
20世纪70年代以来,在世界能源消费的构成中,石油已超过煤而跃居首位.1979年占45%,预计到21世纪初,这种情况不会有大的改变.石油制品还广泛地用作各种机械的润滑剂.沥青是公路和建筑的重要材料.石油化工产品广泛地用于农业、轻工业、纺织工业以及医药卫生等部门,如合成纤维、塑料、合成橡胶制品,已成为人们的生活必需品.
1982年世界石油产量为26.44亿吨,天然气为15829亿立方米.1973年以来,三次石油涨价和1982年的石油落价,都引起世界经济较大的波动(见世界石油工业).
油气聚集和驱动方式 油气在地壳中生成后,呈分散状态存在于生油气层中,经过运移进入储集层,在具有良好保存条件的地质圈闭内聚集,形成油气藏.在一个地质构造内可以有若干个油气藏,组合成油气田.
储层 贮存油气并能允许油气流在其中通过的有储集空间的岩层.储层中的空间,有岩石碎屑间的孔隙,岩石裂缝中的裂隙,溶蚀作用形成的洞隙.孔隙一般与沉积作用有关,裂隙多半与构造形变有关,洞隙往往与古岩溶有关.空隙的大小、分布和连通情况,影响油气的流动,决定着油气开采的特征(见石油开发地质).
油气驱动方式 在开采石油的过程中,油气从储层流入井底,又从井底上升到井口的驱动方式.主要有:①水驱油藏,周围水体有地表水流补给而形成的静水压头;②弹性水驱,周围封闭性水体和储层岩石的弹性膨胀作用;③溶解气驱,压力降低使溶解在油中的气体逸出时所起的膨胀作用;④气顶驱,存在气顶时,气顶气随压力降低而发生的膨胀作用;⑤重力驱,重力排油作用.当以上天然能量充足时,油气可以喷出井口;能量不足时,则需采取人工举升措施,把油流驱出地面(见自喷采油法,人工举升采油法).
石油开采的特点 与一般的固体矿藏相比,有三个显着特点:①开采的对象在整个开采的过程中不断地流动,油藏情况不断地变化,一切措施必须针对这种情况来进行,因此,油气田开采的整个过程是一个不断了解、不断改进的过程;②开采者在一般情况下不与矿体直接接触.油气的开采,对油气藏中情况的了解以及对油气藏施加影响进行各种措施,都要通过专门的测井来进行;③油气藏的某些特点必须在生产过程中,甚至必须在井数较多后才能认识到,因此,在一段时间内勘探和开采阶段常常互相交织在一起(见油气田开发规划和设计).
要开发好油气藏,必须对它进行全面了解,要钻一定数量的探边井,配合地球物理勘探资料来确定油气藏的各种边界(油水边界、油气边界、分割断层、尖灭线等);要钻一定数量的评价井来了解油气层的性质(一般都要取岩心),包括油气层厚度变化,储层物理性质,油藏流体及其性质,油藏的温度、压力的分布等特点,进行综合研究,以得出对于油气藏的比较全面的认识.在油气藏研究中不能只研究油气藏本身,而要同时研究与之相邻的含水层及二者的连通关系(见油藏物理).
在开采过程中还需要通过生产井、注入井和观察井对油气藏进行开采、观察和控制.油、气的流动有三个互相联接的过程:①油、气从油层中流入井底;②从井底上升到井口;③从井口流入集油站,经过分离脱水处理后,流入输油气总站,转输出矿区(见油藏工程).
石油开采技术
测井工程 在井筒中应用地球物理方法,把钻过的岩层和油气藏中的原始状况和发生变化的信息,特别是油、气、水在油藏中分布情况及其变化的信息,通过电缆传到地面,据以综合判断,确定应采取的技术措施(见工程测井,生产测井,饱和度测井).
钻井工程 在油气田开发中,有着十分重要的地位,在建设一个油气田中,钻井工程往往要占总投资的50%以上.一个油气田的开发,往往要打几百口甚至几千口或更多的井.对用于开采、观察和控制等不同目的的井(如生产井、注入井、观察井以及专为检查水洗油效果的检查井等)有不同的技术要求.应保证钻出的井对油气层的污染最少,固井质量高,能经受开采几十年中的各种井下作业的影响.改进钻井技术和管理,提高钻井速度,是降低钻井成本的关键(见钻井方法,钻井工艺,完井).
采油工程 是把油、气在油井中从井底举升到井口的整个过程的工艺技术.油气的上升可以依靠地层的能量自喷,也可以依靠抽油泵、气举等人工增补的能量举出.各种有效的修井措施,能排除油井经常出现的结蜡、出水、出砂等故障,保证油井正常生产.水力压裂或酸化等增产措施,能提高因油层渗透率太低,或因钻井技术措施不当污染、损害油气层而降低的产能.对注入井来说,则是提高注入能力(见采油方法,采气工艺,分层开采技术,油气井增产工艺).
油气集输工程 是在油田上建设完整的油气收集、分离、处理、计量和储存、输送的工艺技术.使井中采出的油、气、水等混合流体,在矿场进行分离和初步处理,获得尽可能多的油、气产品.水可回注或加以利用,以防止污染环境.减少无效损耗(见油田油气集输).
石油开采中各学科和工程技术之间的关系见图.
石油开采
石油开采技术的发展 石油和天然气的大规模开采和应用,是近百年的事.美国和俄国在19世纪50年代开始了他们各自的近代油、气开采工业.其他国家稍晚一些.石油开采技术的发展与数学、力学、地质学、物理学、机械工程、电子学等学科发展有密切联系.大致可分三个阶段:
初期阶段 从19世纪末到20世纪30年代.随着内燃机的出现,对油料提出了迫切的要求.这个阶段技术上的主要标志是以利用天然能量开采为主.石油的采收率平均只有15~20%,钻井深度不大,观察油藏的手段只有简单的温度计、压力计等.
第二阶段 从30年代末到50年代末,以建立油田开发的理论体系为标志.主要内容是:①形成了作为钻井工程理论基础的岩石力学;②基本确立了油藏物理和渗流力学体系,普遍采用人工增补油藏能量的注水开采技术.在苏联广泛采用了早期注水保持地层压力的技术,使石油的最终采收率从30年代的15~20%,提高到30%以上,发展了以电测方法为中心的测井技术和钻4500米以上的超深井的钻井技术.在矿场集输工艺中广泛地应用了以油气相平衡理论为基础的石油稳定技术.基本建立了与油气田开发和开采有关的应用科学和工程技术体系.
第三阶段 从60年代开始,以电子计算机和现代科学技术广泛用于油、气田开发为标志,开发技术迅速发展.主要方面有:①建立的各种油层的沉积相模型,提高了预测储油砂体的非均质性及其连续性的能力,从而能更经济有效地布置井位和开发工作;②把现代物理中的核技术应用到测井中,形成放射性测井技术,与原有的电测技术, 加上新的生产测井系列,可以用来直接测定油藏中油、气、水的分布情况,在不同开发阶段能采取更为有效的措施;③对油气藏内部在采油气过程中起作用的表面现象及在多孔介质中的多相渗流的规律等,有了更深刻的理解,并根据物理模型和数学模型对这些现象由定性进入定量解释(见油藏数值模拟),试验和开发了除注水以外提高石油采收率的新技术;④以喷射钻井和平衡钻井为基础的优化钻井技术迅速发展.钻井速度有很大的提高.可以打各种特殊类型的井,包括丛式井,定向井,甚至水平井,加上优质泥浆,使钻井过程中油层的污染降到最低限度;⑤大型酸化压裂技术的应用使很多过去没有经济价值的油、气藏,特别是致密气藏,可以投入开发,大大增加了天然资源的利用程度.对油井的出砂、结蜡和高含水所造成的困难,在很大程度上得到了解决(见稠油开采,油井防蜡和清蜡,油井防砂和清砂,水油比控制);⑥向油层注蒸汽,热采技术的应用已经使很多稠油油藏投入开发;⑦油、气分离技术和气体处理技术的自动化和电子监控,使矿场油、气集输中的损耗降到很低,并能提供质量更高的产品.
靠油藏本身或用人工补给的能量把石油从井底举升到地面的方法.19世纪50年代末出现了专门开采石油的油井.早期油井很浅,用吊桶汲取.后来井深增加,采油方法逐渐复杂,分为自喷采油法和人工举升采油法两类,后者有气举采油法和泵抽采油法(又称深井泵采油法)两种.
自喷采油法: 当油藏压力高于井内流体柱的压力,油藏中的石油通过油管和采油树自行举升至井外的采油方法.石油中大量的伴生天然气能降低井内流体的比重,降低流体柱压力,使油井更易自喷.油层压力和气油比(中国石油矿场习称油气比)是油井自喷能力的两个主要指标.
油、气同时在井内沿油管向上流动,其能量主要消耗于重力和摩擦力.在一定的油层压力和油气比的条件下,每口井中的油管尺寸和深度不变时,有一个充分利用能量的最优流速范围,即最优日产量范围.必须选用合理的油管尺寸,调节井口节流器(常称油嘴)的大小,使自喷井的产量与油层的供油能力相匹配,以保证自喷井在最优产量范围内生产.
为使井口密封并便于修井和更换损坏的部件,自喷井井口装有专门的采油装置,称采油树(见彩图).自喷井的井身结构见图.自喷井管理方便,生产能力高,耗费小,是一种比较理想的采油方法.很多油田都采取早期注水、注气(见注水开采)保持油藏压力的措施,延长油井的自喷期.
人工举升采油法: 人为地向油井井底增补能量,将油藏中的石油举升至井口的方法.随着采出石油总量的不断增加,油层压力日益降低;注水开发的油田,油井产水百分比逐渐增大,使流体的比重增加,这两种情况都使油井自喷能力逐步减弱.为提高产量,需采取人工举升法采油(又称机械采油),是油田开采的主要方式,特别在油田开发后期,有泵抽采油法和气举采油法两种.
气举采油法: 将天然气从套管环隙或油管中注入井内,降低井中流体的比重,使井内流体柱的压力低于已降低了的油层压力,从而把流体从油管或套管环隙中导出井外.有连续气举和间歇气举两类.多数情况下,采用从套管环隙注气、油管出油的方式.气举采油要求有比较充足的天然气源;不能用空气,以免爆炸.气举的启动压力和工作压力差别较大.在井下常需安装特制的气举阀以降低启动压力,使压缩机在较低压力下工作,提高其效率,结构和工作原理见图.在油管外的液面被压到气举阀以下时,气从A孔进入油管,使管内液体与气混合,喷出至地面.管内压力下降到一定程度时,油管内外压差使该阀关闭.管外液面可继续下降.油井较深时,可装几个气举阀,把液面降至油管鞋,使启动压力大为降低.
气举采油法:
气举井中产出的油、气经分离后,气体集中到矿场压缩机站,经过压缩送回井口.对于某些低产油井,可使用间歇气举法以节约气量,有时还循环使用活塞气举法.
气举法有较高的生产能力.井下装置简单,没有运动部件,井下设备使用寿命长,管理方便.虽然压缩机建站和敷设地面管线的一次投资高,但总的投资和管理费用与抽油机、电动潜油泵或水力活塞泵比较是最低的.气举法应用时间较短,一般为15~30%左右;单位产量能耗较高,又需要大量天然气;只适用于有天然气气源和具备以上条件的地区内有一定油层压力的高产油井和定向井,当油层压力降到某一最低值时,便不宜采用;效率较低.
泵抽采油法: 人工举升采油法的一种(见人工举升采油法).在油井中下入抽油泵,把油藏中产出的液体泵送到地面的方法,简称抽油法.此法所用的抽油泵按动力传动方式分为有杆和无杆两类.
有杆泵 是最常用的单缸单作用抽油泵(图1),其排油量取决于泵径和泵的冲程、冲数.有杆泵分杆式泵、管式泵两类.一套完整的有杆泵机组包括抽油机、抽油杆柱和抽油泵(图2).
泵抽采油法 泵抽采油法
抽油机主要是把动力机(一般是电动机)的圆周运动转变为往复直线运动,带动抽油杆和泵,抽油机有游梁式和无游梁式两种.前者使用最普遍,中国一些矿场使用的链条抽油机属后一种(见彩图).抽油杆柱是连接抽油机和抽油泵的长杆柱,长逾千米,因交变载荷所引起的振动和弹性变形,使抽油杆悬点的冲程和泵的柱塞冲程有较大差别.抽油泵的直径和冲程、冲数要根据每口油井的生产特征,进行设计计算来优选.在泵的入口处安装气体分离装置——气锚,或者增加泵的下入深度,以降低流体中的含气量对抽油泵充满程度(即体积效率)的影响.
泵抽采油法
有杆泵是一个自重系统,抽油杆的截面增加时,其载荷也随着增大.各种材质制成的抽油杆的下入深度,都是有极限的,要增加泵的下入深度,主要须改变抽油杆的材质、热处理工艺和级次.根据抽油杆的弹性和地层流体的特征,在选择工作制度时,要选用冲程、冲数的有利组合.有杆泵的工作深度在国外已超过 3000m,抽油机的载荷已超过25t,泵的排量与井深有关,有些浅井日排量可以高达400m3,一般中深井可达200m3,但抽油井的产量主要根据油层的生产能力.有杆抽油机泵组的主要优点是结构简单,维修管理方便,在中深井中泵的效率为50%左右,适用于中、低产量的井.目前世界上有85%以上的油井用机械采油法生产,其中绝大部分用有杆泵.
无杆泵 适用于大产量的中深井或深井和斜井.在工业上应用的是电动潜油泵、水力活塞泵和水力喷射泵.
电动潜油泵 是一套多级离心泵和电动机直接连接的机泵组.由动力电缆把电送给井下的电机以驱动离心泵,把井中的流体泵送到地面,由于机泵组是在套管内使用,机泵的直径受到限制,所以采取细长的形状(图3).为防止井下流体(特别是水)进入电枢使电机失效,需采取特殊的密封装置,并在泵和电动机的连接部位加装保护器.泵的排量受井眼尺寸的限制,扬程决定于泵的级数,二者都取决于电动机的功率.电动潜油泵适用于中、高产液量,含气和砂较少的稀油或含水原油的油井.一般日排量为100~1000m3、扬程在2000m以内时,效率较高,可用于斜井.建井较简单,管理方便,免修期较长,泵效率在60%左右;但不适用于高含气的井和带腐蚀性流体的井,下井后泵的排量不能调节,机泵组成本较高,起下作业和检修都比较复杂.
泵抽采油法
水力活塞泵 利用地面泵注入液体驱动井下液压马达带动井下泵,把井下的液体泵出地面.水力活塞泵的工作原理与有杆泵相似,只是往复运动用液压马达和换向阀来实现(图 4水力活塞泵的井下泵有单作用和双作用两种,地面泵都用高压柱塞泵.流程有两种:①开式流程.单管结构,以低粘度原油为动力液,既能减少管道摩擦阻力,又可降低抽出油的粘度,并与采出液混在一起采出地面.②闭式流程.用轻油或水为动力液,用水时要增添润滑剂和防腐剂,自行循环不与产出的液体相混,工作过程中只需作少量的补充.水力活塞泵可以单井运转,也可以建泵组集中管理,排量适应范围宽,从每日几十到上千立方米等,适用于深井、高扬程井、稠油井、斜井.优点是可任意调节排量,起下泵可不起油管,操作和管理方便.泵效率可达85%以上.缺点是地面要多建一条高压管线,动力液要处理,增加了建井和管理成本.
泵抽采油法
水力射流泵 带有喷嘴和扩散器的抽油泵(图5).水力射流泵没有运动零件,结构简单,成本低,管理方便,但效率低,不高于30~35%,造成的生产压差太小,只适用于高压高产井.一般仅在水力活塞泵的前期即油井的压力较高、排量较大时使用;当压力降低、排量减少时,改用水力活塞泵.
C. 我国海洋石油储运技术是什么
一、海底管道
在我国近40年海上油气田开发中,从最初的油气田内部短距离海底管道发展到各类长距离平台至陆地海底管道,海底管道设计、施工技术都有了长足发展。目前,我国海上油气田的开发工程模式也本上是全海式与半海半陆式。
我国海洋石油工业起步于20世纪60年代,在改革开放前的20多年中,海洋石油人自力更生;改革开放后的30多年中,通过对外合作,引进、吸收国外先进技术与管理经验,中国海洋石油工业实现了跨越式发展,先后在渤海、东海、南海发现并开发了30多个油气田,年产油气当量已超过5000万吨。伴随着海洋石油工业的发展,海洋油气储运事业也得到了长足发展。20多年来,中国海洋石油总公司在我国渤海、东海以及南海先后建设了各类平台60余座,浮式生产储油装置11艘,海底管道2000多千米,陆上油气处理终端6座。可以说,经过20多年来的引进、学习与实践,目前,我国工程技术人员已基本掌握了百米水深以内的海洋油气储运工程技术,并且形成了一些有中国近海特色的专有技术与能力。但是,尽管我国海上已铺设了两千余千米海底管道,但国内设计、施工能力及水平与国际先进水平相比还有很大差距。工程设计方面,国外公司已形成水深近3000米,恶劣海况与复杂海底地貌及地质情况下的设计技术;而国内设计单位仅能涉足百米水深、常规环境下的海管设计;工程施工方面,国内只有两条铺管船,铺设水深百米以内,工程检测与维修方面更是相形见绌。
我国第一条海底输油管道是中日合作开发的埕北油田内部海管。该海管为保温双重管,内管直径6分米,外管直径12分米,长1.6千米。该管道由新日铁公司设计,采用漂浮法施工,1985年建成投产,至今仍在生产。我国第一条长距离油气混输海底管道是1992年建成投产的锦州20-2天然气凝析油混输管道;该管道直径12分米,长48.6千米。这是国内第一条由国内铺管船铺设的海底管道。我国迄今为止最长的海底管道是1995年底建成投产的由南海崖13-1气田至香港的海底输气管道,管道直径28分米,长度787千米,年输气量29亿立方米。由美国JPKenny公司设计,意大利Seipem公司铺设。我国第一条长距离稠油输送海底管道是2001年建成投产的绥中36-1油田中心平台至绥中陆上终端海底管道,该管道长70千米,为双重保温管,内管直径20英寸,外管直径26英寸,年输油量500万吨;所输原油密度0.96克/立方厘米。该管道完全由海总工程公司设计并铺设。它是在总结绥中36-1试验区海管输送的经验基础上建设的。在1987年发现该油田后,在进行油田工程方案可行性研究中曾探讨铺设50千米海底管道将海上原油输送上岸。最后经过国内权威专家及国外公司研究评估认为,该油田所产原油密度高、黏度高,且当时国内外尚无长距离海底管道输送稠油的先例,技术风险大。特别是油田处在辽东湾,冬季气温低,停输再启动风险更大。随即启动了试验区方案,通过1993—1998近5年的生产试验,认为采用双层保温管长距离输送高黏原油是可行的。该长输管道自2001年油田投产以来系统运转正常。可以说,绥中长距离海底输油管道填补了国内外海底长距离输送高黏原油的空白。目前我国海上开发的天然气田,均采用了半海半陆式模式。东海的平湖气田以及南海的崖13-1气田、东方1-1气田等气田生产的天然气在海上平台完成气液分离及天然气脱水后,均通过长输海底管道输送到陆上油气终端进行处理后销给陆上用户(或工业用或民用)。渤海以及南海开发的大部分油田基本上用了全海式工程模式,如渤海的秦皇岛32-6油田、南海的惠州油气田等。在平台生产的油气通过海底管道混输到海式生产储油装置上进行处理、储存、外销。近年来渤海及北部湾油田群的开发也开始采用半海半陆式形式,如渤海的绥中36-1油田、南海的涠洲油田。这些油田生产的油气在平台上进行油气分离及脱水后,通过长距离海管将原油输送到陆上终端处理、储存,并通过码头或单点外销。
此外,中国近海铺设了多条长距离海底管道,如表37-1所示。
表37-2主要长距离管道
此外,我国海底管道技术也取得了长足的进步,其中许多都达到了国际领先水平。这方面尤以海底管道多相混输等新技术的研究特别突出,相信在未来的世界海洋石油储运中,我国将会有更大的发展。多相混输技术在我国具有广阔的市场应用前景,制约多相混输技术应用的主要因素体现在技术本身的不完善和适用程度。我国石油工业迫切需要一整套完善的、适用性强的长距离多相混输技术,以提高海洋油田、滩海油田、沙漠油田和边远外围油田开发的经济效益,从而为石油工业实施低成本战略提供技术支持。
二、浮式生产储油装置
自1986年第一艘海上浮式生产储油装置希望号在南海涠10-3投入使用至今,在海上油气田开发中,先后有11条各类浮式生产储油装置投入使用;1989年在渤海BZ28-1由田投入使用的友谊号浮式生产储油装置是国内设计、建造的第一条海上储油装置。浮式生产储油装置由单点系统系泊在海上,它是在油轮基础上演变过来的。井口平台生产的油气由海底管道输送到单点装置后进入浮式生产储油装置上处理并定期外销。渤海使用的四条浮式生产储油装置,均为国内设计、建造;1989—1992年投产的3条装置储油量在5万~7万吨,2002年秦皇岛油田投产的世纪号储油量达到15万吨。渤海地区应用的浮式生产储油装置的系泊装置均为软刚臂系泊系统,这种设计主要是针对渤海海域水浅,冬季海面有流冰的特殊情况。而南海使用的六条浮式生产储油装置中有五条是由外国公司由旧油轮改造而成的;2002年南海文昌油田投入使用的南海奋进号是由国内设计、建造的15万吨浮式生产储油装置,该装置系泊采用了内转塔式系统,南海使用的浮式生产储油装置基本上采用了类似的系泊装置:浮式生产储油装置是一种简便可靠的海上装置,它集油气处理、成品油储存外输、人员生活居住为一体;1997年投产的陆丰油田采用水下井口系统与浮式生产储油装置组合,实现了一条船开发油田的设想。
2009年6月,我国最大的海上浮式生产储油装置“海洋石油117号”在蓬莱19-3油田投产。该装置又名“渤海蓬勃号”,船体尺寸为323米×63米×32.5米,是全球最大的浮式生产储油装置之一。
三、油轮
在国家能源运输安全战略导向之下,到2010年实现中国油轮船队承运中国年进口原油量50%的目标,中国油轮船队运力需从目前的约900万载重吨迅速扩充到1600万载重吨,因此建造中国自己的远洋运油船队乃至“超级船队”势在必行。
分析师认为,一个国家打造一支自己的超级油轮船队是一项十分庞大、复杂的工程,须由政府主管部门进行政策引导,同时需要航运、石化、造船、金融等相关行业的协作配合。目前,国内几大航运巨头基本都与中国石化集团、中化集团等中国最大的原油进口商之间建立了战略合作关系,签订了长期运输合同。
中国共有七家油运企业,中远集团、中海集团、招商局集团、中国对外贸易运输集团、长江航运集团是“国家五巨头”,民营企业有两家,河北远洋和大连海昌集团。还有一个比较特别的是泰山石化,该公司属于内地起家、境外注册的民营企业。
油轮的建设更涉及我国深水油气田的开发。
深水油气田的开发正在成为世界石油工业的主要增长点和世界科技创新的热点,是世界海洋石油的发展趋势,世界上钻井水深已达2967米,海管铺设水深已达2150米,油田作业水深已达1853米;据有关资料介绍,2000—2004年,世界上新建114座深水设施,深水钻完井1400口;安装水下采油装置1000多套,铺设深水海底管道与立管12000千米;世界各大石油公司对深水油田勘探开发的投入达566亿美元,深水产能提高1倍。严格说,我国尚不具备独立自主开发深水油田的能力。20多年来,我国通过对外合作已基本掌握了开发200米水深以内各类油气田的工程技术。我国最深的海上油田流花油田水深为330米,是1996年由美国阿莫科石油公司开发的。该生产系统由一艘半潜式生产平台与一艘浮式生产储油装置组成,采用了许多当时世界上最先进的技术组合。世界目光已转向深海,西非、巴西外海及墨西哥湾已开始采油,中国油气前景亦寄希望于深水。我国南海有着丰富的油气资源,预计的南海大气田区水深范围在200~300米,海洋石油对外招标区块水深均在300~3000米,因此,走向深水既是世界海洋石油发展趋势,也是中国海洋石油战略目标所在。深水开发不同于浅海,需要更多先进的技术与技术组合;常规的平台及浮式装置深水海管铺设无论技术上还是经济上均已不再适应新的环境,过去的海上作业装置与技术需要更先进的动力定位、ROV等先进装备配合才能完成。
我国大型油轮船队经营正处于起步阶段,绝大部分船公司目前主要致力于加快船队规模的发展,而在安全管理方面,与国际知名公司相比,则处于相对滞后的状态。
对单壳油轮航行,我国海域未做出明确的限制性规定,而我国目前还没有限制单壳船进港,这无疑增加了我国海上溢油事故的隐患,使我国沿海海域面临更大的油污风险。
对于管道和管线系统,水越深,水压越大,立管系统响应越大;而水压越大,海底管道屈曲传播加剧。更严重的是,深水的海管和立管比浅水的重得多,其连接、牵引和安装比浅水域困难得多。
深水温度比较低(3~4℃),油气管道容易形成钠化物结晶和水合物,给管道流动保障带来严重挑战;而高温输送带来的热应力是管道整体屈曲(主要是侧向的蛇形屈曲)的主要原因。
四、发展趋势
国内海上油田的发展有两个趋势,一是向偏远边际小油田发展,二是向更深的水域发展。一些新技术的开发和推广应用将在开发偏远边际油田上起着十分关键的作用,这些新技术代表了海上油田技术发展的趋势。
(1)研究和推广多相流技术。利用多相泵和多相混输,可以扩大集输半径,使边际油田纳入已建的集输系统,充分利用现有已建设施来减少投资和操作费用,使边际小油田开发变得经济有效。目前多相泵在陆地应用已逐步推广,但还未应用于滩海油田建设中。随着计量技术的不断发展,传统的分离计量装置将会逐渐被不分离计量装置所替代。目前,国外已有几十套商业性产品应用于海上油田,而我国在此方面目前正处于研制和试验阶段。
(2)研制轻小高效型设备。由于受海上平台面积和质量的限制,一些轻小高效型设备将会越来越多地应用于海上油田。虽然我国在液液旋流设备研制上取得了一定进展,但与国外水平相比仍有较大差距,因此,轻小高效型设备的研制仍是海上油田技术发展的一个趋势。
(3)平台结构多样化和轻小型化。平台建造在海上油田开发中占有相当大的投资比重,国内外都在致力于开发轻型平台技术以降低投资费用,这是平台建造技术的发展趋势。
(4)海底管道技术及其他配套技术。海底管道敷设技术和单壁管输送技术的推广应用,以及立管技术、水下回接技术、安全与环保等配套技术等是未来降低海上油田开发成本的技术发展趋势。
(5)海洋平台振动及安全分析研究。这也是轻型平台发展需要完善的基础理论研究。
(6)深海油田开发工程配套技术研究。水下连接技术、多相流技术等是深海油田开发技术的发展趋势。
(7)深海油田越来越多地采用FPSO进行海上油田开发。在海上油田偏远的较深水域内采用FPSO进行油田开发,可能是将来开发边际油田的一种选项和趋势。
我国与国外合作开发的油田技术起点高,处于同期国外先进水平。但从整体上来讲,由于我国海洋石油工业起步较晚,与国外先进水平相比,仍有相当大的差距。如深海油田的水下处理技术及设备(如立管技术、水下生产设施)主要依赖进口,设备的高效化、小型化、橇装化与国外相比仍需做进一步的改进,在平台结构形式多样化、简易平台技术发展上还不成熟等,这些都是今后科研工作需要努力的方向。在我国科研经费投入相对不足的情况下,新技术开发应树立有所为、有所不为的思想,积极稳妥地采用新技术、新设备。有所为就是开发一些投入小、效益高、现场较为急需的项目,如轻型平台技术,小型化、高效化和撬装化设备的研制,多相流技术等:有所不为并不是指无所作为,一些投入高、风险大,且国外发展较成熟,技术水平领先的技术,如水下回接技术、水下生产设施、多管径智能清管器技术、腐蚀监控技术、井下分离回注技术等,可以走通过项目引进与合作开发的路子,缩短研制周期,尽快缩小与国外先进水平的差距。如我国的FPSO制造技术,就是通过引进国外先进技术,加以消化吸收,为己所用,迅速达到世界先进水平的典型例子。
从技术发展与生产实际相结合的要求出发,现阶段的技术发展应着重解决以下几个技术问题:
(1)在海上边际油田和已建油田的集输流程改造中,积极推广应用混输泵技术,提高海上油田的集输半径,将一些边际油田纳入已建的集输系统,使边际油田得以经济有效地开发。
(2)加速多相流混相输送和不分离计量技术的研究和应用试验,尽早在海上油田建设中得到应用。
(3)开发和推广应用具有储油能力的小型钢筋混凝土平台和可重复利用桶形基础平台。
(4)参考国外在轻小型平台开发边际油田方面的经验,结合我国情况开发研究适合我国海上油田建设条件的轻小型平台,包括:开展轻型平台风险评估的研究,编制与轻型平台设计相适合的设计规范,提高设计人员素质。
(5)借鉴国外工艺设备轻小型化、一体化特点,进一步开发研制更适合我国海上油田建设特点的轻小型化、一体化高效设备。
D. 现在海洋油气资源开采的主要方式有哪些
全球海洋油气田,指的是世界各地海洋油气田的概况,主要关注油气田分布情况、储量情况以及产油量情况几方面。到90年代,世界各地发现了约1600多个海洋油气田,近300个已正式投入生产,其中70多个是巨型油气田。储量超过1亿吨的有14个。在特大油田中有7个位于波斯湾。波斯湾面积近150万平方千米,目前查明储量120亿吨,平均每平方千米其中英国日产原油达30万吨,波斯也就成为世界上海上产油量最多的国家。常用的采油方法
一,自喷采油法:利用油层本身的弹性能量使地层原油喷到地面的方法称为自喷采油法。自喷采油主要依靠溶解在原油中的气体随压力的降低分享出来而发生的膨胀。在整个生产系统中,原油依靠油层所提供的压能克服重力及流动阻力自行流动,不需要人为补充能量,因此自喷采油是最简单、最方便、最经济的采油方法。
二、人工举升。人为地向油井井底增补能量,将油藏中的石油举升至井口的方法是人工举升采油法。随着采出石油总量的不断增加,油层压力日益降低;注水开发的油田,油井产水百分比逐渐增大,使流体的比重增加,这两种情况都使油井自喷能力逐步减弱。为提高产量,需采取人工举升法采油(又称机械采油),是油田开采的主要方式,特别在油田开发后期,有泵抽采油法和气举采油法两种。在陆地油田常用抽油机,海上多用电潜泵,像一些出砂井或稠油井多用螺杆泵,此外常用的还有射流泵、气举、柱塞泵等等。
E. 海里怎么取石油有了解海底石油的吗
1、海底石油的生产过程一般分为勘探和开采两个阶段。海上勘探原理和方法与陆地上勘探基本相同,也分普查和勘探两个步骤。方法是以地球物理勘探法和钻井勘探法为主,其任务是探明油气藏构造、含油面积和储量。普查是从地质调查研究入手,主要通过地震、重力和磁力调查法寻找油气构造。在普查的基础上,运用地球物理勘探分析了解海底地下岩层分布、地质构造类型、油气圈闭情况,从而确定勘探井井位。然后,采用钻井勘探法取得地质资料,进行分析评价,确定该地质构造是否含油、含油量及开采价值。
2、海底石油的开采过程包括钻生产井、采油气、集中、处理、贮存及输送等环节。海上石油生产与陆地上石油生产不同的是要求海上油气生产设备体积小、重量轻、自动化程度高、布置集中紧凑。一个全海式的生产处理系统包括:油气计量、油气分离稳定、原油和天然气净化处理、轻质油回收、污水处理、注水和注气系统、机械采油、天然气压缩、火炬系统、贮油及外输系统等。
3、供海上钻生产井和开采油气的工程措施主要有以下几种:人工岛,多用于近岸浅水中,较经济。固定式采油气平台,其形式有桩式平台(如导管架平台)、拉索塔式平台、重力式平台(钢筋混凝土重力式平台、钢筋混凝土结构混合的重力式平台)。浮式采油气平台,其形式又可分为可迁移式平台(又称活动式平台),如自升式平台、半潜式平台和船式平台(即钻井船);不迁移的浮式平台,如张力式平台、铰接式平台。海底采油装置:采用钻水下井口的办法,将井口安装在海底,开采出的油气用管线直接送往陆上或输入海底集油气设施。
4、供开采生产的油气集中、处理、转输、贮存和外运的工程设施包括:装有集油气、处理、计量以及动力和压缩设备的平台。储油设施,包括海上储油池、储油罐和储油船。海底输油气管线。油气外运码头,包括单点系泊装置和常规的海上码头(有固定式和浮式两种)。
F. 石油运输方式
石油运输方式:
1、陆上运输:主要采取管道运输。因为管道运输时效性好、可以不受白天黑夜和天气的限制。但是灵活性差。
2、海上运输:通过海运,采用大型油轮等等的运输方式,海运运费低、但是运量大、时间较长。
(6)海上石油怎么运作扩展阅读:
管道运输主要优点可大概概括为:
(1)运量大。
一条输油管线可以源源不断地完成输送任务。根据其管径的大小不同,其每年的运输量可达数百万吨到几千万吨,甚至超过亿吨。
(2)占地少。
运输管道通常埋于地下,其占用的土地很少;运输系统的建设实践证明,运输管道埋藏于地下的部分占管道总长度的95%以上,因而对于土地的永久性占用很少,分别仅为公路的3%,铁路的10%左右,在交通运输规划系统中,优先考虑管道运输方案,对于节约土地资源,意义重大。
(3)管道运输建设周期短、费用低。
国内外交通运输系统建设的大量实践证明,管道运输系统的建设周期与相同运量的铁路建设周期相比,一般来说要短1/3以上。
G. 什么是世界海洋石油储运技术
一、海上油气集输系统
油气集输是继地质勘探、油田开发、钻井采油之后的油田生产阶段。这阶段的任务是从油井井口开始,将油井的产出物在油田集中、油气分离、计量、净化处理、必要的初加工,生产出符合质量要求的油、气及副产品,而后输送给用户。
海上油气集输系统包括海上油气生产设备系统以及为其提供生产场地、支撑结构的工程设施。海上油气集输包括了整个油田生产设备及其工程设施。这些工程设施有井口平台、生产平台、生活平台、储油平台、储油轮、储油罐、单点系泊、输油码头等。根据所开发油田的生产能力、油田面积、地理位置、工程技术水平及投资条件,可分别组成不同的油气集输系统。
随着海上油田开发工程由近海向远海发展,海上油气集输形成了以下三种类型。
1.全陆式集输系统
海上油田开发初期,是在离岸不远的地方修筑人工岛,建木质或混凝土井口保护架(平台)打井采油。油井的产出物靠油井的压力经出油管线上岸集油、分离、计量、处理、储存及外输。这种把全部的集输设施放在陆上的生产系统称为全陆式集输系统。
该系统的海上工程设施一般为:(1)井口保护架(平台)通过海底出油管上岸;(2)井口保护架(平台)通过栈桥与陆地相连;(3)人工岛通过路堤与陆地相连。
全陆式生产系统在海上只设井口保护架(平台)和出油管线,大大减少了海上工程量,便于生产管理。陆地生产操作费用比较低,而且受气候影响小,与同等生产规模的海上生产系统相比,其经济效益好。该系统一般适用于浅水、离岸近、油层压力高的油田。我国滩海油田开发多采用这一集输方式。
2.半海半陆式集输系统
随着油田开发地点水深的增加、离岸距离加大、钢导管架平台的发展和应用,全陆式集输系统已不能适用。为了解决油气长距离混输上岸效率低及油层压力不足的问题,逐步把油气分离及部分处理设备放在海上。油井开采出来的油气在海上经过分离初处理后,再将原油加压管输上岸处理、储存及外输。如伴生气的量小,除作平台燃料外,其余在海上放空烧掉;如天然气量较大,则油、气在海上分离后,分输上岸再处理。这种在海上仅进行油气初处理,而把主要的油气集输设备及储存、外输工作放在陆上的油气集输系统,称为半海半陆式集输系统。该系统适用于离岸不远、油田面积大、产量高、海底适合铺设管线以及陆上有可利用的油气生产基地或输油码头条件的油田,尤其适用于气田的集输。因为在海上不易解决天然气的储存和加工问题,所以一般气田采用半海半陆式的集输系统,如我国渤海湾锦州20-2气田就采用半海半陆式集输系统。
3.全海式集输系统
随着世界工业的迅猛发展,对石油的需求量不断增加。为了简化海上生产的原油上岸后再通过海运外输的环节,凭借现代海洋工程技术在海上建储油罐和输油码头,使油气直接从海上外运。这种将油气的集中、处理、储存和外输工作全部放在海上,从而形成了全海式集输系统。由此也使海洋油田的开发向远海、深海和自然条件恶劣的极地发展。全海式的集输系统可以是固定式,也可以是浮动式;井口生产系统可以在水上,也可以在水下。这种集输生产系统既适合小油田、边际油田,也适合大油田;既适合油田的常规开发,也适合油田的早期开发。这是当今世界适应性最强、应用最广的一种集输生产系统。
综上所述,海上油气集输系统是从全陆式发展到半海半陆式,又从半海半陆式发展到全海式。它们的根本区别在于集输的生产处理设施是放在海上还是陆上,如全部的油气集输生产设施放在陆上,则称为全防式;如全部设施放在海上,称为全海式;如部分设施放在陆上、部分设施放在海上,称为半海半陆式。
二、海上油气集输工艺流程
因为全海式油气集输系统可实现全部油气集输任务,本节就以全海式生产平台为例,介绍油气集输主要工艺流程及设备。出油气集输生产包括油气水分离、原油处理、天然气处理、污水处理等主要生产项目。
1.油气计量及油气生产处理流程石油是碳氢化合物的混合物,在地层里油、气、水是共生的,又由于油气生成条件各异,各油田开采出的原油的组分是不同的。此外,油中还含少量氧、磷、硫及砂粒等杂质。油气生产处理的任务就是将油井液经过分离净化处理,能给用户提供合格的商品油气。由于各油田生产出来的油气组分和物性不同,生产处理流程也不完全相同,如我国海上生产的原油普遍不含硫和盐,因此就没有脱盐处理的环节。有的油田生产的原油不含水,就没有脱水环节。海上原油处理包括油气计量、油气分离、原油脱水及原油稳定几部分。由于海上油田普遍采用注水增补能量的开采方法,因此原油脱水是原油处理的主要环节之一。
2.天然气处理
经油、气分离的天然气,在高温下仍带有未被分离的轻质油、饱和水、二氧化碳及粉尘等物质,这些物质如不处理,一则浪费,二则会造成管路系统的堵塞和腐蚀。天然气处理主要指脱水、脱硫及凝析油回收,有的天然气还要脱除二氧化碳。一般海上平台天然气处理是将由高压分离器分离出的气体和各级闪蒸出来的气体分别进入相应的气体洗涤器,以除去气体携带的液体,再进入不同压力等级的压缩机,分段加压,达到设计压力,一个典型四级分离的气体压缩和凝析油回收系统。由各级气体洗涤器收集的凝析油分别进入各级闪蒸罐的原油管线中。为防止管线被天然气水化物堵塞,采用甘醇-气体接触器,吸收天然气的水分。
由于天然气处理压缩系统投资较高、质量大、占用空间面积大,有的平台由于生产的伴生气较少,往往将生产分离出来的天然气不经处理,一部分作平台燃料,一部分送火炬放空烧掉。如果气量大,可管输上岸再处理。如何处理天然气要经综合评价后做出选择。经气体压缩和凝析回收后出来的气体,一般仍需进一步脱水、脱硫和凝析油回收。脱水主要采用自然冷却法、甘醇化学吸收法、压缩冷却法等,脱水的同时可以脱出轻质油。对含硫的天然气还需要脱硫,同时可以回收硫。海上天然气加工生产系统和陆上一样,这里不再赘述。
3.含油污水的处理
随着世界工业的迅速发展,自然环境受到污染,严重地影响了生物的生长和人类的健康。目前世界环境保护机构规定:油田所有的含油污水必须经过处理,水中含油量低于15~50毫克/升才能排放。故海上采油平台原油脱水出来的污水及生产中产生的含油污水,都必须经过污水处理系统进行处理。
4.海上油气集输生产流程及设备的选型
油气集输生产流程的设计及主要设备的选型,不像钻井工艺及钻机设备那样有定型生产流程及系列的钻机设备,它往往是根据油田产出物的组分、物理性质、产量及油田的开发方式、油气集输系统的选择等条件进行设计制作。如一离岸较远、含气量较高的油田,选用半海半陆式集输系统,油气长距离混输上岸,在技术上有一定难度,为此采用油、气分输上岸流程,即在海上平台进行油、气分离初处理,油、气上岸后再分别进行全面的处理;如采用全海式集输系统,油气处理及其储运设备全部放在海上,那么其具体工艺流程及设备的型号显然是与前者不同的。每个油田根据设计的生产流程、主要设备、工程结构选型及尺度,分别设计安装在模块上,一般都按生产的内容设计,大致分以下几种类型。
(1)井口模块模块。上面设置井口采油树、测试分离器、管汇、换热器等。
(2)油气处理模块。一般设置生产分离器组、电脱水器、原油稳定装置及其配套的管路、仪表、罐、换热器等。
(3)天然气处理模块。一般设置有分离器、洗涤器、压缩机、轻质油回收装置等。
(4)污水处理模块。有隔油浮选、沉降分离、过滤器及其加压的水泵与其辅助设备等。
此外,还有发电配电模块、生活模块、注水模块、压缩模块等。这些模块的设计要求自成系统,同时考虑与其他系统的连接配套。部分生产模块的设备在陆上安装好可进行试车,当在平台吊装就位,连接好水、电、管路系统就可全面试运转,以减少海上工程量,便于生产管理。在设计模块规模时,还要考虑平台面积、施工起吊能力及生产安全要求等。
三、海洋集输平台设施
当人们航行在茫茫大海中,有时会突然发现远方有一些建筑群时隐时现,你一定会欣喜万分,以为看到了海市蜃楼。轮船靠近后才看清这是一些钢铁制造的庞然大物高高地矗立在海面上,不管是台风袭击还是海浪拍打,它都像一个忠实的哨兵守卫在辽阔的海疆。这些钢铁建筑物就是海上石油生产平台。先建平台后打井、采油,这是海上石油和陆上石油的主要差别。通俗地说平台就是给人们在海上生活、生产提供的固定场所。
最初人们在海洋进行石油勘探开发只能在近海,用木料搭制一个作业平台,进行钻井、采油。伴随科学技术的进步,人们希望平台更安全、更坚固耐用,并能适用于环境恶劣的深海条件,逐渐改为使用混凝土或钢铁建造作业平台。再后来发明了自升式钻井平台和钻井船,这两种装备实际上都是船,前者没有自航能力,要靠其他船只拖曳,后者具备自航能力。钻完井后,钻井平台或钻井船驶往新井场。目前海上见到的平台大多是油气生产平台,这些平台上设施的内涵与陆地油田没有什么差别,只是更精良、更安全可靠。图37-1所示是所有设施全部设置在海上的情况,其中中心处理平台把周边各井的油气通过海底管道集中并计量,同时配备安全装置,然后将油气水分离净化,合格的原油输送到储油平台,处理过的水再经过井口平台回注或排放,天然气一般放空烧掉;储油平台主要功能是存放原油并通过穿梭油轮定期运送给用户;动力平台主要是柴油发电机组、天然气透平发电机组、供热锅炉等提供动力的设备;生活平台提供工作人员休息、生活;各平台间有供工作人员行走的栈桥,另外淡水、蒸汽、燃料等管道及电缆也附设其上。当然,根据油田在海洋的地理位置,各种设施并非要全部建在海上。如果距离陆地较近,油气水处理平台、储油平台则建在陆上。即便全部建立在海上,也可根据情况将某些设施适当地组合在一座平台上。井口平台实际就相当于陆上油田计量站,负责单井的集油、油气日产量的计量和注水。浮式生产储油轮相当于陆上油田的联合站,负责油气水分离净化、储油。其动力、生活系统也在船上。这样就大大减少了海上固定平台,降低了投资。如果油田迅速降产或失去生产价值,浮式生产储油轮还可以转移到其他油田继续使用。
图37-2FPSO工作示意图
静态来看,截至2008年2月,FPSO现役数量为139艘,其中,新建数量为54艘,占比为38.85%,改造数量为85艘,占比为61.15%;订单32艘,其中11艘为新建,21艘为改造,占比分别为34.38%和65.63%。无论是新建还是改造,均经历了两次高峰:1997—1999年、2003年至现在。现役FPSO基本上是在2000年以后建造的,80%左右的船龄在10年以内,大多还可以应用至少10年左右的时间,更新需求动力相对较小。在现役的FPSO中,分布较多的国家有巴西、中国、英国、澳大利亚、尼日尔爾利亚、安哥拉等国,数量分别为22艘、15艘、13艘、12艘、12艘、11艘。在FPSO订单中,巴西依然是拥有量最多的,为9艘,其次较多的分别为英国、印度和尼日尔爾利亚,其数量分别为5艘、4艘和3艘。
七、发展趋势
挪威专家Einar Holmefjord先生在题为《挪威边际油田开发研究活动现状——DEMO2000》的演讲中指出,“昨天,我们采用重力基础的平台进行钻井和生产,今天,我们采用浮式生产系统和水下设施,明天,我们将井流物从海底直接输送上岸处理,不需要任何海上设施”。Einar Holmefjord先生的话简明地概括了国外海上石油发展现状和发展趋势。为开发边际油田,国外越来越多地采用了浮式生产设施和水下回接技术,开发了一系列的配套技术,如水下混输技术、深水大排量混输泵、水下供配电系统、水下作业机器人、水下卧式采油树、水下管汇和水下多相计量技术等。上部设施包括油气集输和水处理设施的新工艺、新设备也不断出现,如多相透平技术、海水脱氧技术等。这些技术已得到应用,且有些技术已趋于成熟。深水和超深水域油田的开发是国外海上油田开发面临的最大挑战,某些地区,如Ormen Lange、Voring plateau、At1antic Margin的水深在600~1400米,而Angola、Gom、New Foundland、Brazil的水深更是达1500~3000米。深水具有低温、超高静压、温压变化引起立管内介质物性复杂等特点,容易引发立管段塞流、结蜡、水合物等问题,并且一旦出现问题,就会造成重大损失和危害。为解决深水水域介质在管道内的流动安全问题,近年形成了一门新兴学科——流动安全学。目前国外公司开展的深水技术研究包括立管内多相流研究、SPAR模型平台、深水系泊系统、轻型组合立管、电加热管技术、水合物抑制技术(动力学抑制剂的研制)等。解决深水油田开发的技术问题是国外海上石油技术发展的趋势。
H. 海底石油是怎样形成的
分布于海底的石油和天然气不论其生成环境是否属于海洋环境,都属于海底石油资源的一部分。
40多年来,海上石油勘探工作查明,海底含有大量的石油和天然气资源。据1979年的统计显示,世界近海海底已探明的石油可采储量为220亿吨,天然气储量为17万亿立方米,分别占当年世界石油和天然气探明总可采储量的24%和23%。
海底有石油,在以前是非常不可思议的事情。自从19世纪末人们在海底发现石油以后,科学家研究了石油生成的理论。在中、新生代,海底板既包括海洋中的浮游生物的遗体(它们在特定的有利环境中大量繁殖),也包括河流从陆地带来的有机质。这些沉积物被沉积的泥沙埋藏在海底,构造运动使盆地岩石变形,形成断块和背斜。伴随着构造运动而发生岩浆活动,产生大量热能,加速有机质转化为石油,并在圈闭中聚集和保存,成为现今的陆架油田。
在我国沿海和各岛屿附近海域的海底,石油和天然气资源的储藏量也非常可观。有人估计中国近海石油储量为100万吨~250万吨,我国无疑是世界海洋油气资源丰富的国家之一。
渤海属于我国首个开发的海底油田,渤海大陆架位于华北沉降堆积的中心,大部分已被发现的新生代沉积物厚达4000米,最厚达7000米。这是很厚的海陆交互层,周围陆上的大量有机质和泥沙沉积其中,渤海的沉积又是在新生代第三纪适于海洋生物繁殖的高温气候下进行的,这对油气的生成极为有利。由于断陷伴随褶皱形成了大量的背斜带和构造带,形成各种类型的油气藏。东海大陆架十分宽广,沉积厚度大于200米。外国人认为,东海是世界石油远景最好的地区之一,东海天然气储量潜力可能比石油还要大。
科学家在南海大陆架发现了一个很大的沉积盆地,新生代地层为2000米~3000米,有的达6000米~7000米,具有良好的生油和储油岩系。生油岩层厚达1000米~4000米,已探明的石油储量为6.4亿吨,天然气储量为9800亿立方米,是世界海底石油的富集区。因此,某些国外石油专家认为,南海的石油储藏量或许可以与波斯湾或北海油田相媲美。
海上石油资源开发利用前途非常光明。但是,由于在海上寻找和开采石油的条件与在陆地上不同,技术手段要比陆地上的复杂一些,建设投资比陆地上的高,风险要比陆地上的大,因此,当今世界海洋石油开发活动比较流行的是国际合作的方式。
I. 石油与天然气怎么运输
石油与天然气的生产地区往往远离那些能源需求量最大的国家,因此,就需要用长距离的管线和特制的油管将石油和天然气输送到消费者的所在地。石油是一种液体在常温或略高的温度下,石油是一种黏稠状的液态物质(油状物)。,所以将其输送至炼油厂的一种简便方式就是通过管线。还可以用油管将石油和天然气输送到陆上泵站,这些泵沿着输送管线约每60~100千米一座。海上石油与天然气运输可用油轮进行,在海上运输途中,驳船或油轮可以随时改变最终目的地。超级油轮的运载能力常常可达20万吨以上,这足以供一座一般规模的炼油厂一到两周的正常生产。
“石油的流速可达每秒1.8~2.0米,可以进行几百到数千千米的输送。”
“石油与天然气的生产区域往往远离对能源需求量最大的国家。”
那些发现石油与天然气最多的地区往往远离油气主要消费国。绝大多数油气生产国很容易满足本国的需求,并将其绝大部分油气用于出口。另一方面,那些主要的消费国家并不能实现石油与天然气的自给自足,所以需要进口。即使在一些重要的油气生产国(如美国)内,其油气生产区也往往远离需要石油和天然气的消费区。结果,几十年来,全世界石油和天然气的海运和陆地运输从未间断过,而输送量极大。
J. 什么为中国原油海上运输
中国原油海上运输是指将产自国内或进口的原油,通过海上运输方式,从海外港口运往中国沿海的炼油厂进行加工处理的过程。
中宽做顷国作为全球最大的能源消费国之一,在满足国内需求方面存在着较大的原油缺口。因此,中国需要从海外进口大量的原油,以保障其能源安全。为了满足慎陆国内需求,中国石化企业会通过海上运输等方式将大量原油从海外运回中国进行加工、生产和供应。
中国原油海上运输主要通过中型、大型油轮和LNG船等方式胡念进行,各大石化公司和船运公司也在不断探索和实践新技术和方法,以提高运输效率和降低成本。此外,中国还建设了多个海上油气管道和LNG接收站,以提高原油进口的安全性和可靠性。