A. 石油可以采取什么方法进行分离
(1)石油没有固定的沸点,炼油厂根据石油中各成分沸点不同,将其分馏分离开来,得到汽油、煤油、柴油、润滑油等.
(2)过滤是把不溶于液体的固体与液体分离的一种方法,泥沙不溶于水,除去食盐水中的泥沙可采用过滤的方法.
故答案为:(1)分馏;(2)过滤.
B. 常用的分离技术有哪两类
精馏和萃取
精馏是利用混合物中各组分挥发度不同而将各组分加以分离的一种分离过程,常用的设备有板式精馏塔和填料精馏塔。精密精馏的原理及设备流程与普通精馏相同,只是待分离物系中的组分间的相对挥发度较小(<1.05~1.10),因而采用高效精密填料以实现待分离组分的分离提纯。在单离香料的生产原料一天然精油中经常有同分异构体并存的情况,例如在香叶油、玫瑰油、玫瑰草油等天然精油中同时存在的香茅醇和玫瑰醇就是旋光异构体。这些同分异构体的沸点差比较小,用一般的精馏过程很难实现这种单离香料的有效分离,因此精密精馏在单离香料的生产中有着广泛的应用。在精密精馏塔中使用的高效填料包括Q 网环(Dixon)填料、网鞍(McMahon)填料等散装填料和以丝网波纹填料(Sulyer 填料)为代表的规整填料。这些填料的比表面大,润湿性好,持液量和流体阻力都小,但是散装填料塔的直径不宜太大,否则传质分离效率会急剧下降,此即填料塔的"放大效应"。规整填料的放大效应较小,因此丝网波纹规整填料的应用越来越广泛。萃取(Extraction)指利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来的方法。萃取又称溶剂萃取或液液萃取(以区别于固液萃取,即浸取),亦称抽提(通用于石油炼制工业),是一种用液态的萃取剂处理与之不互溶的双组分或多组分溶液,实现组分分离的传质分离过程,是一种广泛应用的单元操作。
C. 常见的膜分离技术有哪些,分别适用于什么情况
膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。
微滤
具体涉及领域主要有:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。
超滤
早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。
纳滤
纳滤的主要应用领域涉及:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保工业等。
反渗透
由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水。
D. 旋液分离技术的技术应用
旋流分离技术在石油化工行业中的典型应用
⑴ 含油污水旋流分离技术
国内石化企业污水处理一般仍采用“老三套”技术, 即“沉降、隔油—浮选—生化”。该技术的优点是造价较低; 缺点是占地面积大,油水分离效果差,对污水中溶解油、乳化油和分散油不能有效去除。随着重质、劣质原油掺炼比例不断提高、含油污水乳化程度加剧,该设施已不能满足清洁生产要求。
油水旋流分离技术是20世纪80年代发展起来的一种高效节能分离技术,其关键部分是水力旋流器,可分离几个微米以上的油水混合物。与其它除油设备相比,水力旋流器具有结构紧凑、体积小、重量轻、除油效率高、无运动部件、使用寿命长、流程密闭无污染等优点。在处理量和除油性能相同的条件下,其重量仅为其它除油设备的1/10,体积是其它设备的1/15,工程建设投资降低50%左右,与二级气浮相比较,一次性投资仅为二级气浮(包括浮渣处理设备)的50%,占地面积仅为二级气浮的1/25。可广泛用于油田、炼油厂、化工、机械等行业的含油污水处理工程。
表7 旋流除油技术与其它几种除油技术的比较 除油器类型 旋流分离 API PPI CPI TPI 停留时间(min) 2-3秒 30 60 90 90 可去除最小油滴粒径(μm) 5 150 60 30-60 30-50 进口含油量(ppm) 500 1000 1000 1000 1000 出口最低含油量(ppm) 10 30 10-20 10 10 占地面积(以API为基准) 1/25 1 1/2 1/3 1/3 油分移去方式 自动排油 撇油管集油 压力差自动 撇油管自动 撇油管自动 板的清洗 无 不需要 定期清洗 定期清洗 定期清洗 防火安全措施 全密封、安全 有油味散发及火灾危险 水封、安全 塑料盖板、较安全 塑料盖板
较安全 注:API:平流式隔油池;PPI:平行板式隔油池;CPI:波纹板式隔油池;
TPT:斜板式隔油池等
① 电脱盐装置含油污水
电脱盐含油污水中的油组成较为复杂,主要成分为乳化较为严重的劣质、重质原油。由于原油是一组成、极性和相态都非常复杂的有机混合体。根据胶体化学理论,按污水中原油油滴粒径大小及稳定性通常分为浮油、分散油、乳化油、溶解油四类。
从电脱盐含油污水含油形态分析来看,重力沉降难以对电脱盐污水含油进行有效分离,因此必须采用更为有效的旋流分离方法。含油污水的性质对旋流器性能的影响包括油滴粒径分布、污水粘度和温度、油水密度差等因素。
图11是我室为某炼油厂电脱盐装置污水旋流分离器设备安装现场图片,图12为分离流程示意图。
图12 电脱盐装置污水旋流分离流程示意图
表8 电脱盐含油污水旋流分离有关操作参数及性能指标 参 数 数 值 操作参数 入口压力Pi MPa >0.40 入口温度t ℃ 30~80 污水含油浓度Ci mg/l ~200000(20%v/v) 油水密度差Δρ g/cm3 >50 性能指标 处理能力Q t/h 3~500(根据需要设计) 操作压力降 MPa 0.25~0.35 净化水含油浓度Cu mg/l 入口Ci <5000时:Cu <500
入口Ci >5000时:分离效率>90~95 污油回收率 % >90 其 他 结构材料 根据要求选材。 ② 催化裂化装置污水处理
催化装置的污水超标时会携带大量污油进入原料水罐,虽然经过沉降分离,但是仍有部分污油进入污水汽提装置,使汽提塔的操作紊乱,汽液相平衡很难恢复,从而引起净化水及酸性气、氨气质量恶化,直接影响到下游装置的生产。因此,考虑在污水管线上增加油水分离设施,以减少进入原料水罐的污油量。
工艺流程及配套设备
基本工艺流程如图12、图13所示。
旋流分离系统工作时,装置油水分离器来液经离心泵增压后进入水力旋流器入口,经旋流处理后的净化水经流量计计量后排向污水气提装置;从溢流口出来的富油液流经流量计计量后返回装置油水分离器上部。旋流油水分离器的处理量由泵的变频调速根据装置油水分离器的液位控制。另外,该系统还可以实现不走旋流器的旁通流程。
图12 有泵污水分离流程 图13 无泵污水分离流程
技术指标:
处理能力:根据需要设计;
分离器压力降ΔP<0.4MPa;
净化水含油浓度<300mg/l或分离效率>95。
③ 延迟焦化冷焦水(循环)旋流除油
以旋流器为中心对焦化冷焦水进行处理,基本原则流程如图18所示。其溢流部分(污油)返回冷焦水罐进行循环除油,底流(水)经空冷系统冷却到50℃后进入冷焦水池。
技术指标:处理能力可根据需要进行设计,分离器压力降ΔP<0.4MPa,净化水含油浓度<300mg/l或分离效率>90。
④ 常减压装置减顶水预处理(图15)
图15 减顶油水旋流分离流程示意图
⑵ 液固旋流分离技术
① 催化裂化油浆去除催化剂(液固分离)
针对油浆催化剂分离这一技术问题,自93年以来,中国石油大学(华东)多相流分离实验室相继开展了催化油浆过滤技术、油浆旋流分离技术研究。研究结果表明对于FCC油浆的在线分离,旋液分离是一种可行的技术路线。采用旋液分离技术进行油浆中催化剂的分离,分离效率完全可以达到90%~97%,分离后油浆可以用作燃料油使用;若油浆需要作高附加值产品(譬如针状焦、碳纤维等),增加过滤分离流程是必要的,过滤技术较为成功的厂家主要有Mott和Pall公司。但对于高固含量油浆来说,过滤器前采取预分离手段是极为必要的,采用旋液分离技术进行油浆预分离,可以大大延长过滤器的反冲洗周期、提高过滤器的分离效果、延长过滤介质使用寿命。
图16为催化油浆旋液分离流程方案示意图。
图16 FCC油浆旋液分离流程方案示意图
② 渣油除焦
中国石油大学(华东)所开发的重油悬浮床加氢新工艺,达到世界先进水平。但从国内、外试验过程中发现,运行过程中胶质以微细催化剂颗粒和其它机械杂质为载体逐渐生成焦碳,由于排出不及时,出现焦炭堵塞反应器现象,影响了反应器正常运行,能否将焦炭等固相颗粒及时排出系统成为影响该工艺的工业化实现和长周期安全运转的关键因素。
根据重油悬浮床加氢循环尾油高温、高压、大流量、高固含量、高胶质沥青质含量以及液固两相之间密度差较小等特点,对比分析石油化工生产中常用的重力沉降、旋流分离、过滤分离以及静电分离等液固分离方法,旋流分离法具有设备结构简单、工艺流程简单、操控容易等优点,尤其是具有工艺适应性好、操作稳定的优点,因而成为最为简单可行的技术路线。图17为悬浮床加氢循环尾油除焦用旋流器安装图片(1、2级)。
a.一级安装图 b. 二级安装图
图17 重油悬浮床加氢循环尾油除焦用旋流安装图(1、2级)
③ 乙烯急冷油除焦
HCC工业化试验所产生的急冷油浆中含有较高含量的催化剂颗粒等固态杂质,如果不能及时排除,急冷油浆系统中固体浓度将持续升高,会导致固体沉积和管路堵塞,从而影响了整套工艺的长周期运转和经济性。因而采用适宜分离技术排除油浆中固体、降低固含量,对于保证HCC工艺的长周期运行具有非常重大的实际意义。由于HCC油浆所处环境的特殊性:高温、高压、易燃以及油浆本身所具有高粘性,使得分离的难度很大。
图18为“重油接触裂解直接制乙烯”工艺(工业试验)中急冷油液固体系分离用的旋流分离器现场安装图
图18 重油接触裂解直接制乙烯工业试验中急冷油除焦用旋流分离器安装图
④ 用于泵密封冲洗系统
利用旋液分离器将泵出口中的部分液体进行净化除杂,净化液用于泵的密封冲洗系统。如图19所示。
图19 泵密封冲洗系统用旋流器
⑤海上油气井气固、气液分离
海上油气一般采用经压缩机压缩后高压往陆上输送,但由于采出是油气中会带有部分细小砂粒和液滴,这就需要在压缩机设置气液或气固分离器将这些砂粒和液滴去除,其设计指标为:
●基本去除5μm以上颗粒或液滴,大于10μm100%去除;
●总分离效率大于98.5%;
●总压降不大于50kPa。
E. 化学分离法的原理,及特点,应用范围是什么
萃取:适用于一种溶质在两种互不相溶的溶剂中的溶解度相差很大的情况,如果想把这种溶质从溶解度较小的溶剂中提取出来,就选择萃取的方法,如四氯化碳和水互不相溶,且四氯化碳比水更容易溶解碘,于是就可以用分液漏斗把碘单质从饱和碘水中萃取出来,溶解到四氯化碳里,再通过蒸馏把碘和四氯化碳分离开来。
其实“萃取”和“分液”经常合在一起用,不然的话没法把溶质分离出来。需要的情况下,还和“蒸馏”合用,就像上述的情况,要将溶质和溶剂彻底分离。
分液:适用于分离两种互不相溶,且密度相差较大的液体。如水和植物油的混合物,静置后会上下分层,水在下层,植物油在上层。这时就可以用分液漏斗,打开活塞至下层的水恰好流尽,用烧杯承接;再打开玻璃塞让植物油从上口倒出。
分馏:适用于分离沸点相近的液体混合物,如石油就是通过分馏的方法得到各组分,它们都是重要的化工产品:汽油、柴油、酒精等等。
蒸馏:适用于分离沸点相差较大的液体混合物,利用各组分的沸点不同,按沸点由低到高的顺序分离出来。或除去易挥发、难挥发或不挥发的杂质。如用蒸馏的方法减少自来水的Cl-杂质。或把溶液中的溶剂分离出来,如食盐水通过蒸馏得到较为纯净的蒸馏水。
蒸发:适用于分离溶液中的易挥发溶剂和溶质,和我说的“蒸馏”的第二种情况差不多,但如果是要得到纯净的食盐而不是水的话,一般采用蒸发的方法而不是蒸馏。还有就是我所说的“萃取”和“蒸发”合用的方法。
总之,化学分离方法是多种多样的,要根据情况选择合适的方法,有些方法则是相通的,要本着科学性、安全性和简洁性的原则选择方法。
F. 石油油层怎么做到油水分离
分离过程:
含油污水流经板块堆分离
FREYLIT油水分离器采用疏油材料聚丙烯波纹板作为材料,波峰为6mm或12mm,因此,一个油滴要向上升6mm或12mm到下一个波纹板。
油滴接触到波纹板自然分离。由于油滴比重小,在波纹板下,则沿着波纹板上升到波峰。
波峰顶点的钻孔孔径12mm,油聚集在波峰顶点并上升到油层。事实上由于波纹板在其波峰段是渐缩、层叠的,从而油水顺着板变速运动,这就增加了油滴的碰撞几率,使油滴集聚。油滴变大,加快了上升的速度。从而油在上层被收集。
板的长590mm、260mm。
FREYLIT油水分离器加速了自然分离过程,被称为“增强重力分离”。在油水混合物中,由于油的比重比水小,将上浮。FREYLIT加速该自然分离过程,并且不投加任何化学药剂。
设计和制造在奥地利,遵循严格的质量管理制度。
运行和维护成本低,无需能耗。无需更换备件。
超长工作年限,波纹板10年质量保证。
无机械制动单元,因此消除了系统的磨损。
特殊材料制成的波纹板,确保在其端工作条件和温度下板的形状和之间距离不变。这对长时间工作并保证分离效果来说是至关紧要的。
波纹板表面经特殊处理增强油滴的聚集效果。
完整的工程设计和安装技术的支持,全球运用。
FREYLIT模块系统:
FREYLIT油水分离器设计采用模块化系统以满足客户对规格和流量的要求。流量范围为3L/s到100L/s适用于加油站、停车场、汽车维修厂。大型油水分离器适用于电厂、石油码头、油库、钢铁厂、油田、环保改造工程等,其流量可达到2000L/s以上。
FREYLIT提供分离器的池体可为混凝土、聚丙烯、钢或不锈钢。混凝土池体用在分离器安装在地下并且表面负荷高的条件下,比如公路地下。另一种,较轻的聚丙烯池体造价低便于运输和安装