当前位置:首页 » 石油矿藏 » 目前发现的石油降解细菌有多少种
扩展阅读
城市置业成本多少 2025-06-30 20:16:26
石油消耗过多怎么办 2025-06-30 20:16:16
怎么开中石化石油 2025-06-30 20:09:55

目前发现的石油降解细菌有多少种

发布时间: 2022-09-24 07:47:33

A. 微生物如何净化石油污染

石油是多种烃类组成的混合物,仅是一种的细菌不可能完全分解石油。现在科学家们将能降解石油的几种基因,结合转移到一株假单孢菌中,构建“超级微生物”,能够降解掉多种原油成分。在油田、炼油厂、油轮和被石油污染了的海洋、陆地都可以用这种“超级微生物”去消除石油污染。展望21世纪,我们对治理石油污染充满了信心。

B. 什么细菌能够清除流入海洋的石油呢

目前,人们正在探索活跃细菌的变种,从中不断培育出新的灭虫“健将”,为防治植物病虫害作出新的贡献,帮助清除海洋污染的细菌。

近年来,由于工业、交通的发展,大量石油产品污染物流入海洋,导致了海洋环境的污染。有人估计,每年约有1000万吨石油流入海洋,漂浮于海面,破坏了海洋生态平衡,使海洋生物大量死亡,也给人类带来了灾难性的后果。有什么办法能够清除流入海洋的石油呢?人们又想到了生物。经过长期观察研究,生物学家发现了一种能以石油为食的海洋细菌。这种海洋细菌吃了石油,怎么不会中毒死亡呢?原来在它们体内有一种能分解石油的特殊催化剂——酶。

于是,人们让能吃石油的细菌去清除海洋中的石油。现在,生物学家成功地培育出了一种以石油为“食”的完全新型的细菌。这种“超级细菌”只要几小时就可以除去海上的浮油。如果油船在海上遇难,所造成的石油污染将会很快被这种超级细菌清除。科学工作者还进一步设想:把能吞吃石油的细菌制成菌粉,撒在被石油污染的海域,以清除海中石油;或者模仿吞吃石油的海洋微生物及海洋细菌的机理,制造出高效化学吸附剂或净化剂,以清除海洋污染,保护海洋环境。

以石油为食的海洋细菌

C. 处理石油的微生物有哪几种墨西哥石油泄漏,英国石油公司采取的方法

用于脱硫的微生物及脱硫机理
已从炼油厂污水处理的活性污泥、煤焦油污染的或煤矿附近的土壤、温泉、实验室培养菌中筛选分离出一些可用于脱硫的微生物,其中大多数微生物对脱除无机硫及非杂环硫较有效,对杂环硫的脱除效果甚微. 少数可脱杂环中有机硫的微生物有两种氧化方式: C-C键断裂氧化和C-S键断裂氧化. 在前一途径中, DBT的一个芳香环被氧化降解, 杂环硫不从环中脱除, 而是生成水溶性3-羟基-2-醛基-苯噻吩除去, 导致烃燃烧值降低. 而在后一途径中杂环硫被脱出但不引起芳香环碳骨架的断裂, 这是一个较为理想的途径,因此受到重视.
脱除无机硫的微生物主要是化能自养菌属Thiobacillus sp.以及嗜热硫化裂片菌属Sulfolobus sp.中的一些菌. 这些菌氧化无机硫化物有间接作用和直接作用两种作用机理. 间接作用机理为细菌氧化溶解Fe2+,生成的强氧化剂Fe3+再将硫化物氧化生成S0,然后Fe2+又被氧化,沉积在煤和石油中的硫再被Fe3+氧化生成水溶性硫酸盐. 直接氧化的机理则为细菌直接与硫化物的含硫部位接触, 在细菌生物膜内作用生成还原性谷光甘肽(GSH)的二硫衍生物GSSH,GSSH被一氧化酶氧化并水解成亚硫酸盐,亚硫酸盐又被氧化为硫酸盐,生成的还原性辅酶被细胞色素氧化还原剂中的溶解氧再氧化. 细菌的直接作用着重于还原性硫的酶氧化. 这两种途径作用的产物都是水溶性的,因此,脱硫的同时也脱除了燃料中的金属.
研究较多的脱有机硫菌有以有机硫化物(主要是DBT)作为碳源断C-C键的Pseudomonas sp.和Brevibacterium sp.菌,还有以DBT作为唯一硫源的专一性断CS键的Rhodococcus Strain, Sulfolobus Scidocaldarius., Desulfovibrio desulfuricans M6及Corynebacterium sp.菌\. 微生物脱有机硫有两种途径,由于中间产物和终产物的不同,C-S键专一断裂途径中又可能存在三个不同序列.

参考资料: 石油和煤微生物脱硫技术的研究进展 姜成英, 王蓉, 刘会洲, 陈家镛 石油生物催化脱硫技术是采用微生物体内的酶来催化氧化油品中的有机硫,使之转化为水溶性硫化物加以除去,从而实现生物催化脱硫。
该技术在美国已实现了工业化,与加氢脱硫技术相比其设备投资低50%,操作费用降低15%。

D. 分解石油的细菌是什么菌

是超级菌

E. 油田系统中存在的细菌有哪些

太多了,你想得到什么样的答案,什么叫越详细越好?我觉得你是不是想问微生物种类啊?
总的来说,系统中的微生物分两类,有益菌和有害菌。分别都有细菌真菌霉菌等。

硫酸盐还原菌(SRB)、腐生菌(TGB)、铁细菌、产甲烷菌、油藏发酵菌等等,还有各种加入后帮助采油的如脱硫弧菌和假单胞菌、厌氧石油分解菌、梭菌、甘蓝黑腐病黄单胞菌、分枝杆菌等等,数不胜数

F. 有没有哪种生物可以在自然状态下降解石油

在二十一世纪能源是国民经济建设的重要支柱。随着工业的发展,人们对石油及其制品的需求日益增长,石油开采业由陆地走向海洋。石油的开采和海上运输业的发展,使石油泄漏事故逐年增多,受污染的海域范围不断扩展。自1969年发生第一次超级油船失事以来,世界上已有超过40处大的海洋泄漏,据估计每年都有千万公吨以上的石油污染世界海洋,对生物和生态环境造成了很大危害。石油污染问题引起了人们越来越多的关注,对之进行治理也成为了最迫切的事情。在治理中产生的生物降解方法的研究虽仍有很大争论,但也已取得了一些成果。而且有种趋势是天然微生物的生物降解作用已成为消除环境中石油烃类污染的主要机制。
一、生物降解是指由生物催化的复杂化合物的分解过程。而在石油降解中微生物首先通过自身的代谢产生分解酶,裂解重质的烃类和原油,降低石油的粘度,另外在其生长繁殖过程中,能产生诸如溶剂、酸类、气体、表面活性剂和生物聚合物等有效化合物利于驱油,然后由其他的微生物进一步的氧化分解成为小分子而达到降解的目的。
二、海洋中最主要的降解细菌属于:无色杆菌属、不动杆菌属、产碱杆菌属、节杆菌属、芽孢杆菌属、黄杆菌属、棒杆菌属、微杆菌属、微球菌属、假单胞菌属以及放线菌属、诺卡氏菌属。在大多海洋环境中,上述这些细菌是主要降解菌,在真菌中,金色担子菌属、假丝酵母属、红酵母属和掷孢酵母属是最普遍的海洋石油烃降解菌。一些丝状真菌如曲霉属、毛霉属、镰刀霉属和青霉属也应被归入海洋降解菌中。土壤中主要的降解菌除了上面提到的细菌种类外,还包括分枝杆菌属以及大量丝状真菌。曲霉属和青霉属某些种在海洋和土壤两种环境中都有分布。木霉属和被孢霉属某些种是土壤降解菌。
三、治理石油污染关键是降解烃类化合物,根据烃类的化学结构特点,烃类的降解途径主要可分两部分:链烃的降解途径和芳香烃的降解途径。直链烷烃的降解方式主要有三种:末端氧化、亚末端氧化和ω氧化。此外,烷烃有时还可在脱氢酶作用下形成烯烃,再在双键处形成醇进一步代谢。关于芳香烃的降解途径,在好氧条件下先被转化为儿茶酚或其衍生物,然后再进一步被降解。因此细菌和真菌降解的关键步骤是底物被氧化酶氧化的过程,此过程需要分子氧的参与。
具体机制如下:
1、正烷烃在正烷烃氧化酶作用下, 先转化成羧酸而后靠β-氧化进行深入降解,形成二碳单位的短链脂肪酸和乙酰辅酶A,放出CO2。该正烷烃氧化酶是双加氧酶,能催化正烷烃为正烷烃的氢过氧化物,该反应需O2 ,但不需NAD(P) H。烷烃也可先转化为酮,但不是其主要代谢方式。多分枝的烯烃主要转化成二羧酸再进行降解,甲基会影响解的进行。化学式如下:
2、环烷烃的降解需要两种氧化酶的协同氧化,一种氧化酶先将其氧化为环醇,接着脱氢形成环酮,另一种氧化酶再氧化环酮,环断开,之后深入降解。化学式如下:

3、芳香烃一般通过烃基化形成二醇, ,环断开,邻苯二酚继而降解为三羧环的中间产物。真菌和微生物都能氧化从苯到苯并蒽范围内的芳烃底物。起初细菌借助加双氧酶的催化作用把分子氧的两个氧原子结合到底物中, 使芳烃氧化成具有顺式构型的二氢二酚类。顺式-2-二氢二酚类进一步氧化成儿茶酚类, 儿茶酚类在另一种催化芳环裂解的加双氧酶的作用下进一步氧化裂解。与细菌相反,真菌则借助于加单氧酶和环水解酶的催化作用, 把芳烃氧化成反式-2-二氢二酚类化合物。(下面以萘的降解为例子)真菌将石油烃类化合物降解成反式二醇,而细菌几乎总是将之降解成顺式二醇(许多反式二醇是潜在的致癌物,顺式二醇则无毒性) 。化学式如下:
简单总结成下表:
各类烃 具体的降解过程和产物
正烷烃 正烷烃→羧酸→二碳单位的短链脂肪酸+乙酰辅酶A+CO2。
烯烃 烯烃→二羧酸
环烷烃 环烷烃→环醇→环酮
芳香烃 芳香烃→二醇→邻苯二酚→三羧环的中间产物
由上面可知道,微生物对一些难降解化学物的降解, 是通过一系列氧化酶的催化作用完成的。在自然界中这一过程通常是由多种微生物的协同作用来完成, 速度比较缓慢。为了扩大微生物降解底物的范围, 提高降解效率, 以使这些难降解化学物彻底矿化, 应该可以利用天然降解性质粒的转移构建新功能菌株。降解性质粒,是指一类编码有降解某些化学代谢途径的质粒。例如:美国Chak rabany 等为消除海上溢油污染, 曾将假单胞杆菌中不同菌株的CAM、OCT、XAL 和NAH 4 种降解性质粒接合转移至一个菌株中,构建成一株能同时降解芳香烃、多环芳烃、萜烃和脂肪烃的“多质粒超级菌”。该菌能将天然菌要花一年以上才能消除的浮油,缩短为几个小时。
四、在自然环境中,微生物对石油烃类降解与否以及快慢都是与其所处的环境密切相关。
1、液态的石油烃类在水中会形成水油界面,微生物正是在这一水油界面上降解烃类的,降解速率与水油界面的面积密切相关,能产生生物乳化剂的微生物正是乳化剂增大水油界面的面积而促进微生物对烃类的降解。
2、石油烃类的微生物降解可在很大的温度范围内发生,在0 ℃~70 ℃的环境中均发现有降解石油烃类的微生物。大多数微生物在常温下较易降解石油烃类,且由于某些对微生物有毒害的低分子量石油烃类在低温下难挥发,会对石油烃类的降解有一定的抑制作用,所以低温下石油烃类较难降解。
3、大多数的石油烃类是在好氧条件下被降解的,这是因为许多烃类的降解需要加氧酶和分子氧。但也有一些烃类能在厌氧条件下被降解。
4、氮源和磷源经常成为微生物降解烃类的限制因子。在天然水体中,为了促进石油烃类的降解而添加水溶性的氮源和磷源也受到限制,因为有限添加的氮源和磷源在水体中被高倍稀释而难以支持微生物的生长。
5、石油烃类的微生物降解一般处于中性pH值,极端的pH 值环境不利于微生物的生长。
它的效率和质量还取决于石油烃类化合物存在的数量、种类及状态。例如Chaineau 等用微生物处理被石油烃污染的土壤, 270 d 后发现, 75%的原油被降解; 饱和烃中, 正构烷烃和支链烷烃在16 d 内几乎全部降解; 22% 的环烷烃未被降解; 芳香烃有71% 被同化;占原油总重量10% 的沥青质完全保留了下来。一般而言, 各类石油烃被微生物降解的相对能力如下: 饱和烃> 芳香烃> 胶质和沥青。在饱和烃部分中, 直链烷烃最容易被降解; 在芳香烃部分中,二环和三环化合物较容易被降解,而含有5 个或更多环的那芳香烃难于被微生物所降解; 胶质和沥青则极难被微生物所降解。
结语:尽管微生物可以降解石油,可是目前为止还没有一种能在短时间内彻底降解石油的有效方法,所以在微生物降解石油方面的研究仍然任重而道远。但是随着现代微生物学和基因组计划的更进一步发展,更多微生物物种的发现和生物技术的应用,石油污染问题将会得到更有效的解决!

参考文献:《土壤和环境微生物学》 陈文新主编
《微生物降解有机污染物研究进展》 田雷 等.
《污染物生物降解》 金志刚 张彤 朱怀兰

从石油污染的土壤和水体中富集、分离到12株高效石油降解菌,各单菌株的降油率为40.3%~57.6%,其中O-8-3、O-28-2和O-46菌可耐受40℃的温度和1.5%的盐度.经初步鉴定,这3株菌分别为假单胞菌(Pseudomonas sp.)、芽孢杆菌(Bacillus sp.)和不动杆菌(Acinetobacter sp.).与单一O-8-3菌株相比,O-8-3/O-28-2/O-46混合菌株对石油的降解率可提高20.1%,可耐受石油类初始质量浓度从2000 mg/L提高到5000 mg/L.通过在实验室接种O-8-3/O-28-2/O-46混合菌株于生物反应器中处理胜利油田采油废水的试验结果表明,72 h内石油污染物的降解率达96.9%,比接种自然细菌群落的降解率提高了60.7%.

参考文献:

〔1〕马文臣,易绍金.石油开发中污水的环境危害.石油与天然气化工,1997,6(2):125~127
〔2〕杨基先,马放,张立秋.利用工程菌处理含油废水的可行性研究.东北师大学报:自然科学版,2001,33(2):89~92
〔3〕Scholz W,Fuchs W.Treatment of Oil Contaminated Wastewater in a Membrane Bioreactor.Water Research,2000,34(14):3621~3629
〔4〕Tano-Debrah K,Fukuyama S,Otonari N,et al.An Inoculum for the Aerobic Treatment of Wastewaters with High Concentrations of Fats and Oils.Bioresource Technology,1999,69(2):133~139
〔5〕邓述波,周抚生,余刚等.油田采出水的特性及处理技术.工业水处理,2000,20(7):10~12
〔6〕王振波,李发永,金有海.油田采出水技术处理现状及展望.油气田环境保护,2001,3:40~43
〔7〕东秀珠,蔡妙英,常见细菌系统鉴定手册.北京:科学出版社,2001
〔8〕范秀容,李广武,沈萍.微生物学实验(第二版).北京:高等教育出版社,1989
〔9〕国家环保局<水和废水监测分析方法>编写组.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1998.372~374
〔10〕陈碧娥,刘祖同.湄州湾海洋细菌降解石油烃研究.石油学报,2001,17(3):31~35
〔11〕林凤翱,于占国,李洪等.海洋丝状真菌降解原油研究--石油烃降解的实验室模拟.海洋学报,1997,19(6):68~76
〔12〕丁明宇,黄健,李永祺.海洋微生物降解石油的研究.环境科学学报,2001,21(1):85~88
〔13〕Lal B,Khanna S.Degradation of Crude Oil by Acinetobacter Calnoaceticus and Aicaligenes Odorans.J Appl Bacteriol,1996,81(4):355~362
〔14〕席淑琪,刘芳,吴迪.微生物对地表水中石油类污染物的降解研究.南京理工大学学报,1998,22(3):232~235
〔15〕李铭君,梁崇志,钱存柔.石油化工废水的活性污泥中优势微生物群系及其降解效能的研究.微生物学通报,1987,3:108~111
〔16〕管亚军,梁凤来,张心平等.混合菌群对石油的降解作用.南开大学学报(自然科学),2001,34(4):82~85
〔17〕冯树,周樱桥,张忠泽.微生物混合培养及其应用.微生物学通报,2001,28(3):92~95
〔18〕刘期松,齐恩山,张春桂等.石油污水灌区的微生物生态极其降解石油的研究.环境科学,1982,2(3):360~365

下面几个地址你可以参考一下。
http://www.cls.zju.e.cn/basement/abs.htm
http://www.nsfc.gov.cn/nsfc/cen/00/kxb/dq/yjjz/03_d02_liguanghe.htm
http://210.46.127.249:85/~kjqk/swdyx/swdy2002/0202pdf/020211.pdf
http://dl2.lib.tongji.e.cn/wf/~kjqk/hjkx/hjkx2004/0405pdf/040529.pdf

G. 研究现状

人们对原油生物降解进行过大量的研究工作(Bailey等,1973;Fedorak和Westlake,1981;Connan,1984;Volkman等,1984;Rowland等,1986;Palmer,1998;Douglas等,1996;Oudot等,1998;Bost等,2001),然而,很少有人将研究重点放在非烃组分上(Rontani等,1985;Lacotte等,1996)。其中,对于石油酸的研究更是寥寥无几。原油酸值不仅对原油品质和经济参数至关重要,而且可以提供原油生物降解作用过程的重要信息(Meredith等,2000)。同时,人们发现单环和多环饱和环烷酸是艾伯塔油砂矿尾矿毒性的主要来源(Herman等,1994)。

Atlas(1984)的研究成果表明,石油羧酸是石油烃组分生物降解在最终变成二氧化碳和水的过程中形成的重要过渡成分。例如,细菌降解正构烷烃需要首先将末端甲基氧化成醇,醇脱氢成醛进而形成酸;而酸最终通过β-氧化被取代。芳香烃化合物降解一般通过形成邻二羟基中间产物,后者进一步分解形成两种类型的羧酸:单芳化合物先质形成脂肪酸,而多环芳烃化合物则形成芳香酸(Haug等,1968;Gibson和Subaramanian,1984;Cerniglia,1992)。在多大程度上,这些有机酸能够抵抗生物代谢并最终在降解原油之非烃组分中保存下来并不十分清楚。

Mackenzie等(1983)在许多原油和油砂样品中见到了C14-C26范围的游离脂肪酸(包括饱和酸和带1~2个双键的C18烯酸),并发现它们的浓度主要与近期的生物降解或者水洗程度有关。原油样品中的羧酸有三种来源:源岩中带来的、原油降解过程中新生成的和/或降解细菌中残存的。而这些化合物在原油中会随着后续的水洗,进一步降解和热力作用被不同程度地消耗掉。Behar和Albrecht(1984)发现在有些原油中正构脂肪酸与藿烷酸共存,但它们的浓度则随着生物降解程度的增加而降低。巴西学者(Jaffe和Gallardo,1993;Nascimento等,1999;Galimberti等,2000)发现中等降解程度的原油中含C2-C22正构脂肪酸,但后者在严重降解油中却消失了。Thorn和Aiken(1998)利用天然地下水系统开展人工轻质脂肪族原油降解试验,发现有大量高分子量非挥发性酸类形成,包括烷基芳香酸,环烷-芳香酸和含硫有机酸等。Meredith等(2000)在实验室开展喜氧微生物降解原油试验,并发现随着正构烷烃的消耗,正构脂肪酸快速生成;伴随着烷烃的进一步严重降解,C20以上的支链和环烷酸增加,形成在色谱分析时所见到的“鼓包”;同时在降解程度最高的原油中见到了新生成的17α(H)、21β(H)-藿烷酸,表明藿烷降解的途径之一是通过侧链氧化。

需要指出的是,由于喜氧微生物降解原油的速度较快,可以在很短的人文时间内观测到原油组成发生明显的变化。因此,多年来人们习惯地认为地下原油降解主要是喜氧过程造成的。现在再分析文献中详细报道过的诸多“喜氧降解油田”(Winters和Williams,1969;Evans等,1971;Hunt,1979和1996),Horstad等(1992)发现,即使用最保守的质量平衡估算得到的结果,也说明在这些储层中“见到过的”地下水的量不足以提供降解这些油气所需要的巨大游离氧数量。甚至在那些水动力条件极其活跃的盆地,分子氧也很难进入深部的储层,这是由于在经过土壤和地下水系遭遇反应活性极强的有机质和黄铁矿后,很难在深部地层中维持较高的游离氧浓度。同时,在海相盆地中许多遭受过生物降解的深部油田水矿化度极高,说明淡水冲刷相当有限。

因此,在具有一定埋深的储层中厌氧微生物降解应该起主导作用(Kartsev等,1959)。事实上,最早从油田水中分离出的细菌也是厌氧细菌(Bastin,1926)。在近地表和有机质富集环境(如稻田)常为厌氧环境,这也为厌氧微生物主导地下原油生物降解提供了佐证(Chapelle和Lovley,1990;Zengler等,1999;Wilkes等,2001;Widdel和Rabus,2001)。尽管到目前为止只发现了一种可以在深部储层温度条件下生存的耐热烃类降解细菌(Rueter等,1994;Parkes等,1994;Pedersen,2000),前人大量的工作(Bernard&Connan,1992;Magot和Connan,1993;Magot等,1994;Connan等,1996)证实,油田水中存在多种多样的厌氧微生物,并在绝大多数情况下主导了地下烃类降解。其中甲烷生成是一种纯粹的厌氧过程,在储层原油降解时极为常见(Scott等,1994;Larter等,1999;Larter和diPrimio,2005),而生物降解形成的二氧化碳有很大一部分最终可能转化为甲烷。

综上所述,具有一定埋藏深度储层中原油的有机酸组成和分布,可能主要受厌氧微生物降解的制约。地表油苗和露头的生物降解,无疑可以在喜氧条件下快速进行。实验室中喜氧降解试验,尽管可以为弄清原油降解的先质-产物关系提供一些有益线索,但它们无法再现地下原油降解的地质过程。大量环境和地下水文献资料表明,缓慢的厌氧微生物降解可能主导了地下的烃类降解,并可以在多重氧化带进行,如硫酸盐还原带和甲烷生成带(Hunkeler,1998;Bennett等,1993;Zengler,1999)。水本身也可能参与反应,形成氧化态的有机分子(Helgeson等,1993,2000;Zengler等,1999)。

原油生物降解程度主要受储层温度控制,因此原油中有机酸的组成和分布也应该是储层温度的函数,在80℃以下其浓度随着储层温度的降低而增高(Hunt,1979;Connan,1984;Pepper和Santiago,2001)。而80℃可以考虑为生物降解的终止线,在高矿化度的储层中生物降解终止的温度可能会更低一些(Bernard和Connan,1992)。地温80℃基本上相当于油气储层中微生物大量繁殖的温度上限(Bernard和Connan,1992)。尽管原油降解程度一般随着储层温度增加而降低,在相同温度条件下通常可以见到原油物性和生物降解程度有相当大的变化范围。在80℃的储层中见到降解程度为5级(Peters和Moldowan,1993)的概率接近0,而在50℃的概率接近70%(Pepper和Santiago,2001)。显然,基于原油生物降解的温度效应以及在持续沉降的、温度在80℃以上的深部储层中很少见到生物降解油的基本现象。可以推断:在这些盆地中大多数降解油气藏的充注和降解的时间距现在都比较近,即晚期成藏和改造都发生在接近目前的埋藏深度范围之内。根据Larter等(2003)的研究成果,对于特定的原油储层,控制原油降解的主要因素是养分的供给,而不是电子受体的多寡;降解微生物的营养源是靠矿物溶解和扩散来提供的。

本章从中国渤海湾盆地辽河坳陷和西加拿大盆地Athabasca油砂矿选取3口井自然演化油藏剖面,系统开展石油烃类和羧酸分布特征研究,探讨混源、扩散和原油生物降解对原油组成和羧酸分布的影响程度,以建立动态的原油生物降解模型来预测原油的酸值分布。

H. 能分解石油的超级细菌

A、基因工程方法创造出一种能分解石油的“超级细菌”,与一般细菌相比,它的分解石油的能力强,而不是体积特别巨大,A错误;
B、普通细菌也能分解石油,一般情况下,一种细菌只能分解石油中的一种有机物,B错误;
C、“超级细菌”,与一般细菌相比,它的分解石油的能力强,“超级细菌”,与一般细菌相比,它的分解石油的能力强,C正确;
D、与一般细菌相比,它的分解石油的能力强,而不是繁殖速度极快,D错误.
故选:C.

I. 新一代更具降解污染能力的微生物菌有哪些

第一代的生物处理技术利用污水或污泥中的自发性细菌进行硝化与反硝化作用将有机污染物降解,使水体恢复氮循环的自净能力,由于菌种不全或数量不足,已经应付不了现代化高浓度与高复杂的污水;
第二代生物处理技术则是利用专业的微生物菌剂结合好氧、缺氧、厌氧等各种手段与设施来处理特定污水,由于环境适应能力与配方不全,不易全面解决污水中的高复杂污染成分与顽劣性的污水;
第三代污水处理菌技术是新一代的复合性微生物菌群,结合德丰污水处理菌微生物研发经验与全球先进微生物基因工程培植技术,遴选萃取多种微生物中对水体污染物具有优秀降解性的菌种基因,培育成新一代更具降解污染能力的微生物,经过严格的筛选与驯化,再运用专用配方将多种微生物构成生物链,最终驯养成为专治复杂污水的复合菌群,使能处理各种高难度的废水。

污水处理菌的主要分类
硝化细菌:硝化细菌 ( Nitrifying bacteria ) 是一种好氧性细菌,包括亚硝酸菌和硝酸菌。生活在有氧的水中或砂层中,在氮循环水质净化过程中扮演着很重要的角色。广泛存在大自然各个角落,空气、江河、大海、土壤都有,生物学中发现的硝化细菌有几千种之多。
反硝化细菌:反硝化细菌是一种能引起反硝化作用的细菌。多为异养、兼性厌氧细菌,如反硝化杆菌、斯氏杆菌、萤气极毛杆菌等。它们在氙气条件下,利用硝酸中的氧,氧化有机物质而获得自身生命活动所需的能量。反硝化细菌广泛分布于土壤、厩肥和污水中。可以将硝态氮转化为氮气而不是氨态氮,与硝化细菌作用不完全相反。主要应用于污水处理,如景观水治理,城市内河治理,水产养殖处理等,其中水产养殖污水处理应用最为广泛。
硝化反硝化复合菌种:具备硝化和反硝化双重作用的复合菌种,在污水处理环境日益复杂的情况下,单一使用硝化或反硝化菌种越来越难达成菌种平衡,硝化反硝化的配比多数企业对污此的掌握也并非准确,造成大量菌种资源浪费或不足,难以达成理想的污水处理效果。复合菌种可根据水质情况自我扩繁,达到菌种平衡,让污水处理工作更简单、高效。

第三代污水处理菌的优势
零污泥污水处理技术,一举攻坚污水处理程序中污泥排放之痛
具备超强去除BOD、COD、SS、氨氮、磷等污染物质,有效率达90-95%以上。
二沉池出水可直接达到国家一级A标准或相关标准。
应对染料及染整废水及其他具有难消除颜色之废水,投放可直接脱色。
具备显着的除臭效果,消除 NK3、P、H2S及有机酸之能力超强。
一次投放,系统稳定后无需持续添加菌种
超强的繁殖与适应能力,基因升级,能应对未来复杂的污水环境
降解农药、多氯联苯、塑化剂、合成洗涤剂、生物合成塑料等合成化合污染物。
抑制病毒、病菌与寄生虫。
抑制藻类繁殖,净化水体与水色。
去除生活污水中的重金属污染,如锌、锰、铁、铬…等。
德丰第三代污水处理菌种系列易培养、繁殖快、对环境有较强的适应能力和自然进化等特性,一旦出现新的污染化合物,它们也能逐步通过自发或诱导产生新的酶系,具备新的代谢功能,从而降解或转化新的化合物。

污水处理菌的使用方法
将活性污泥池或生物池之进水与出水关闭,并保持曝气状态,PH值调适到6.5-7.8之间较佳。
按1立方水投放1公斤的比例,将菌剂一次性全部均匀投入曝气池中,比例可以依污水情况适量增减。
持续曝气24小时,使微生物激活,附着菌床并进行繁殖,达到活跃状态。
建议采用阶段式调适进水,以减小对微生物之冲击,运行第一天打开正常进水量的1/3,第二天打开2/3,第三天即可全开。如进水量设计偏小,则可一次性全开。
监测与调适系统运行,约30天后若系统稳定,则无需再添加菌剂。

污水处理菌的作用机理
好氧性微生物污水处理菌种利用水中的溶氧(DO),将有机污染物质分解成水和二氧化碳,或转化为污水处理微生物的营养物质,并利用这些养分进行繁殖,其过程正好可以降解污染物质,达到除污除臭的目的,此种处理法称为好氧性处理,利用最多的就是活性污泥法。
通用厌氧性污水处理微生物是在没有溶氧的环境下将硝酸盐还原(利用硝酸盐中的氧),进行脱氮反应,使其产生氮气,此种方广泛运用于含有氮气的废水处理。而酸生成菌(通用厌氧性微生物)常用于绝对厌氧微生物污水处理工法中的前期酸化反应。
绝对厌氧性生物处理是利用酸生成菌进行酸化反应,将污水中的醣类或蛋白质分解成单醣类、胺基酸或低级脂肪酸(有机酸)。再以醋酸生成菌(绝对厌氧性微生物)将污水中的单醣类、胺基酸或有机酸分解成醋酸。最后再以甲烷生成菌(绝对厌氧性微生物)分解醋酸生成甲烷。
多数的污水处理微生物以污染物为食,比如碳水化合物类、蛋白质类和脂肪类等污染物,都能被各种污水处理微生物分解,使其成为自身生长繁殖的养分。而利用光合细菌和芽孢杆菌等,能将恶臭气体硫化氢转化成自身生长所需要的硫元素,进而达到除臭的目的。
微生物污水处理菌种本身具有的多糖类黏性物质,能利用来吸附环境中的污染物,此种特性常被运用来对重金属离子的吸附。
经过特殊微生物污水处理菌群进入到污水中时,会成为环境中的优势菌,能抑制病原菌和腐败菌的生长,比如乳酸菌等成为优势菌后,就能抑制环境中大肠杆菌等的生长,从而减少氨气等臭味的产生。

J. 石油分解菌有哪些

烃类分解菌,超级细菌。