㈠ 高中化学必修二预习
1 化学元素周期表 元素周期律 化学键:
元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np4, IIIB族是(n-1) d1·ns2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。
现代化学的元素周期律是1869年俄国科学家德米特里·伊万诺维奇·门捷列夫(Dmitri Ivanovich Mendeleev )首先整理,他将当时已知的63种元素依原子量大小并以表的形式排列,把有相似化学性质的元素放在同一行,就是元素周期表的雏形。利用周期表,门捷列夫成功的预测当时尚未发现的元素的特性(镓、钪、锗)。1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序越大,X射线的频率就越高,因此他认为核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序)排列,经过多年修订后才成为当代的周期表。当然还有未知元素等待我们探索.
这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。
[编辑本段]元素周期表的记忆
先背熟元素周期表,然后就会慢慢找出各族元素的规律,以后见到没有学过的元素,只要是同一族的都会知道有什么特点,有什么化学性质,那就不是可以举一反三了。
元素周期表中元素及其化合物的递变性规律
1 原子半径
(1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;
(2)同一族的元素从上到下,随电子层数增多,原子半径增大。
2 元素化合价
(1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);
(2)同一主族的元素的最高正价、负价均相同
(3) 所有单质都显零价
3 单质的熔点
(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;
(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增
4 元素的金属性与非金属性
(1)同一周期的元素电子层数相同。因此随着核电荷数的增加,原子越容易得电子,从左到右金属性递减,非金属性递增;
(2)同一主族元素最外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。
5 最高价氧化物和水化物的酸碱性
元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。
6 非金属气态氢化物
元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。
7 单质的氧化性、还原性
一般元素的金属性越强,其单质的还原性越强,其氧化物的阳离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。
[编辑本段]推断元素位置的规律
判断元素在周期表中位置应牢记的规律:
(1)元素周期数等于核外电子层数;
(2)主族元素的序数等于最外层电子数。
阴阳离子的半径大小辨别规律
由于阴离子是电子最外层得到了电子 而阳离子是失去了电子
所以, 总的说来
(1) 阳离子半径<原子半径
(2) 阴离子半径>原子半径
(3) 阴离子半径>阳离子半径
(4)或者一句话总结,对于具有相同核外电子排布的离子,原子序数越大,其离子半径越小。
以上不适合用于稀有气体!
化学键(chemical bond)是指分子或晶体内相邻原子(或离子)间强烈的相互作用。
例如,在水分子H2O中2个氢原子和1个氧原子通过化学键结合成水分子 。化学键有3种极限类型 ,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。共价键是两个或几个原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。
1、离子键[1]是右正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。
2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。
化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。
量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,物别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。
1、共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。
2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。
3、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCL这样的共用电子对形成分子的化合物叫做共价化合物
2。化学能与热能 化学能与电能 反应速率及限度:
用眼睛不能直接观察到反应中的热量变化,那么,你将采取哪些简单易行的办法
化学反应中的能量变化经常表现为热量的变化,有的放热,有的吸热。 1、中和反应都是放热反应。
2、三个反应的化学方程式虽然不同,反应物也不同,但本质是相同的,都是氢离
子与氢氧根离子反应生成水的反应,属于中和反应。由于三个反应中氢离子与氢氧根离子的量都相等,生成水的量也相等,所以放出的热量也相等。
3、中和热:酸与碱发生中和反应生成1mol水所释放的热量称为中和热。
4、要精确地测定反应中的能量变化,一是要注重“量的问题”,二是要最大限度地
减小实验误差。 化学反应的本质是反应物中化学键的断裂和生成物中化学键的形成。化学键是物质内部微粒之间强烈的相互作用,断开反应物中的化学键需要吸收能量,形成生成物中的化学键要放出能量。氢气和氯气反应的本质是在一定的条件下,氢气分子和氯气分子中的H-H键和Cl-Cl键断开,氢原子和氯原子通过形成H-Cl键而结合成HCl分子。1molH2中含有1molH-H键,1mol Cl2中含有1mol Cl-Cl键,在25℃和101kPa的条件下,断开1molH-H键要吸收436kJ的能量,断开1mol Cl-Cl键要吸收242 kJ的能量,而形成1molHCl分子中的H-Cl键会放出431 kJ的能量。这样,由于破坏旧键吸收的能量少于形成新键放出的能量,根据“能量守恒定律”,多余的能量就会以热量的形式释放出来。
[归纳小结]
1、 化学键的断裂和形成是化学反应中能量变化的主要原因。
2、 能量是守恒的。
补充练习
1、下列反应中属吸热反应的是 ( )
A 镁与盐酸反应放出氢气 B 氢氧化钠与盐酸的反应
C 硫在空气或氧气中燃烧 D Ba(OH)2•8H2O与NH4Cl反应
2、下列说法不正确的是 ( )
A 化学反应除了生成新物质外,还伴随着能量的变化
B 放热反应不需要加热即可发生
C 需要加热条件的化学反应都是吸热反应
D 1mol硫酸与足量氢氧化钠发生中和反应生成水所释放的热量称为中和热。
3、 城市使用的燃料,现大多为煤气、液化石油气。煤气的主要成分是CO、H2的混合气体,它由煤炭与水蒸气在高温下反应制得,故又称水煤气。试回答:
(1) 写出制取水煤气的主要化学方程式————————————,该反应是——————反应(填吸热、放热)。
(2) 设液化石油气的主要成分为丙烷(C3H8 ),其充分燃烧后产物为CO2和 H2O,试比较完全燃烧等质量的C3H8及CO所需氧气的质量比。
4、 比较完全燃烧同体积下列气体需要的空气体积的大小:
天然气(以甲烷计)、石油液化气(以丁烷C4H10计)、水煤气(以CO、H2体积比1:1计)
5、 两位同学讨论放热和吸热反应。甲说加热后才能发生的化学反应是吸热反应,乙说
反应中要持续加热才能进行的反应是吸热反应。你认为他们的说法正确吗?为什么?
答案:1.D2.BC3.(1)C+H2O CO+H2 吸热 (2) 70:11 4.石油液化气>天然气>水煤气5.略
第一节 化学能与热能
第2课时
教学目标:
1、能从化学键的角度理解化学反应中能量变化的主要原因,初步学会热化学方程式的书写。
2、能从微观的角度来解释宏观化学现象,进一步发展想象能力。
2、 通过化学能与热能的相互转变,理解“能量守恒定律”,初步建立起科学的能量观,
加深对化学在解决能源问题中重要作用的认识。
重点难点:
1.化学能与热能的内在联系及相互转变。
2.从本质上理解化学反应中能量的变化,从而建立起科学的能量变化观。
[总结]
化学反应伴随能量变化是化学反应的一大特征。我们可以利用化学能与热能及其它
能量的相互转变为人类的生产、生活及科学研究服务。化学在能源的开发、利用及解决
日益严重的全球能源危机中必将起带越来越重要的作用,同学们平时可以通过各种渠道来关心、了解这方面的进展,从而深切体会化学的实用性和创造性。
补充练习:
1、下列说法不正确的是 ( )
A 化学反应除了生成新物质外,还伴随着能量的变化
B 物质燃烧和中和反应均放出热量
C 分解反应肯定是吸热反应
D 化学反应是吸热还是放热决定于生成物具有的总能量和反应物具有的总能量
2、已知金刚石在一定条件下转化为石墨是放热的。据此,以下判断或说法正确的是( )
A 需要加热方能发生的反应一定是吸热反应 B 放热反应在常温下一定很容易发生
C 反应是放热还是吸热,必须看反应物和生成物所具有的总能量的相对大小
D吸热反应在一定条件下也能发生
3、有专家指出,如果将燃烧产物如CO2、H2O、N2等利用太阳能使它们重新组合变成CH4、CH3OH、NH3等的构想能够成为现实,则下列说法中,错误的是 ( )
A 可消除对大气的污染 B可节约燃料
C 可缓解能源危机 D此题中的CH4、CH3OH、NH3等为一级能源
4、已知破坏1mol N≡N键、H-H键和N-H键分别需要吸收的能量为946kJ、436kJ、391kJ。试计算1molN2(g)和3 molH2(g)完全转化为 NH3(g)的反应热的理论值,并写出反应的热化学方程式。
答案:1.C 2.CD 3.B 4. 92KJ N2(g)+3H2(g)=2NH3(g) △H=-92KJ/mol
第二节 化学能与电能
负极 Zn-2e-=Zn2+(氧化反应) Zn+2H+=Zn2++H2↑
正极 2H++2e-=H2↑(还原反应) 电子流向 Zn → Cu 电流流向 Cu→ Zn
组成原电池的条件 原电池:能把化学能转变成电能的装置
①有两种活动性不同的金属(或一种是非金属导体)作电极,活泼的作负极失电子
②活泼的金属与电解质溶液发生氧化还原反应 ③两极相连形成闭合电路
二次电池:可充电的电池 二次能源:经过一次能源加工、转换得到的能源
常见电池 干电池 铅蓄电池 银锌电池 镉镍电池 燃料电池
第三节 化学反应的速率和极限
化学反应速率的概念:用单位时间里反应物浓度的减少或生成物浓度的增加来表示。
单位:mol/(L·s)或mol/(L·min) 表达式 v(B) =△C/△t
同一反应中:用不同的物质所表示的表速率与反应方程式的系数成正比
影响化学反应速率的内因(主要因素):参加反应的物质的化学性质
外因 浓度 压强 温度 催化剂 颗粒大小
变化 大 高 高 加入 越小表面积越大
速率影响 快 快 快 快 快
化学反应的限度:研究可逆反应进行的程度(不能进行到底)
反应所能达到的限度:当可逆反应进行到正反应速率与逆反应速率相等时,反应物与生成物浓度不在改变,达到表面上静止的一种“平衡状态”。
影响化学平衡的条件 浓度、 压强、 温度
化学反应条件的控制
尽可能使燃料充分燃烧提高原料利用率,通常需要考虑两点:
一是燃烧时要有足够的空气;二是燃料与空气要有足够大的接触面
●主干知识整合
1.外界条件对可逆反应速率的影响规律
升温,v(正)、v(逆)一般均加快,吸热反应增加的倍数大于放热反应增加的倍数;降温,v(正)、v(逆)一般均减小,吸热反应减小的倍数大于放热反应减小的倍数。加压对有气体参加的反应,v(正)、v(逆)均增大,气体体积之和大的一侧增加倍数大于气体体积之和小的一侧增加的倍数;降压,v(正)、v(逆)均减小,气体体积之和大的一侧减小的倍数大于气体体积之和小的一侧减小的倍数。增加反应物的浓度,v(正)急剧增大,
v(逆)逐渐增大。加催化剂可同倍地改变v(正)、v(逆)。
思考讨论
对于合成氨反应,N2、H2的消耗速率逐渐减慢而NH3的生成速率是否逐渐加快?
答:N2、H2的消耗与NH3的生成是同一反应方向,只要N2、H2的消耗速率逐渐减慢,NH3的生成速率必然随之减慢。
2.改变条件对化学平衡的影响规律
(1)在相同温度下,对有气体参加的化学反应,压强越大,到达平衡所需的时间
越短。在相同压强下,温度越高,到达平衡所需的时间越短。
(2)平衡向正反应方向移动,生成物的物质的量增加。而生成物的浓度、生成物的质量分数以及反应物的转化率都不一定增加或提高。
(3)加催化剂,只能同倍改变正、逆反应速率,改变到达平衡所需时间,不影响化学平衡。
(4)同一反应中,未达平衡以前,同一段时间间隔内,高温时生成物含量总比低温时生成物含量大(其他条件相同)。高压时生成物的含量总比低压时生成物的含量大(其他条件相同)。
(5)在其他条件不变时,如将已达平衡的反应容器体积缩小到原来的 ,压强将大于原来的压强,但小于或等于原来压强的2倍。
3.反应物用量的改变对平衡转化率的影响规律
若反应物只有一种时,如:aA(g)b B(g)+cC(g),增加A的量,平衡向正反应方向移动,但该反应物A的转化率的变化与气体物质的计量数有关:
(1)若a=b+c A的转化率不变
(2)若a>b+c A的转化率增大
(3)若a<b+c A的转化率减小
若反应物不止一种时,如:aA(g)+bB(g) cC(g)+dD(g)
(1)若只增加A的量,平衡向正反应方向移动,而A的转化率减小,B的转化率增大。
(2)若按原比例同倍数地增加反应物A和B的量,则平衡向正反应方向移动,而反应物转化率与气体反应物计量数有关。如a+b=c+d,A、B的转化率都不变;如a+b<c+d,A、B的转化率都减小;如a+b>c+d,A、B的转化率都增大。
第三章 有机化合物
第一节 最简单的有机化合物—甲烷
氧化反应 CH4(g)+2O2(g) → CO2(g)+2H2O(l)
取代反应 CH4+Cl2(g) → CH3Cl+HCl
烷烃的通式:CnH2n+2 n≤4为气体 、所有1-4个碳内的烃为气体,都难溶于水,比水轻
碳原子数在十以下的,依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸
同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物
同分异构体:具有同分异构现象的化合物互称为同分异构
同素异形体:同种元素形成不同的单质
同位素:相同的质子数不同的中子数的同一类元素的原子
乙烯 C2H4 含不饱和的C=C双键,能使KMnO4溶液和溴的溶液褪色
氧化反应 2C2H4+3O2 →2CO2+2H2O
加成反应 CH2=CH2+Br2 →CH2Br-CH2Br 先断后接,变内接为外接
加聚反应 nCH2=CH2 → [ CH2 - CH2 ]n 高分子化合物,难降解,白色污染
石油化工最重要的基本原料,植物生长调节剂和果实的催熟剂,
乙烯的产量是衡量国家石油化工发展水平的标志
苯是一种无色、有特殊气味的液体,有毒,不溶于水,良好的有机溶剂
苯的结构特点:苯分子中的碳碳键是介于单键和双键之间的一种独特的键
氧化反应 2 C6H6+15 O2→12 CO2+ 6 H2O
取代反应 溴代反应 + Br2 → -Br + H Br
硝化反应 + HNO3 → -NO2 + H2O
加成反应 +3 H2 →
第三节 生活中两种常见的有机物
乙醇物理性质:无色、透明,具有特殊香味的液体,密度小于水沸点低于水,易挥发。
良好的有机溶剂,溶解多种有机物和无机物,与水以任意比互溶,醇官能团为羟基-OH
与金属钠的反应 2CH3CH2OH+Na→ 2CH3CHONa+H2
氧化反应 完全氧化 CH3CH2OH+3O2→ 2CO2+3H2O
不完全氧化 2CH3CH2OH+O2→ 2CH3CHO+2H2O Cu作催化剂
乙酸 CH3COOH 官能团:羧基-COOH 无水乙酸又称冰乙酸或冰醋酸。
弱酸性,比碳酸强 CH3COOH+NaOH→CH3COONa+H2O 2CH3COOH+CaCO3→Ca(CH3COO)2+H2O+CO2↑
酯化反应 醇与酸作用生成酯和水的反应称为酯化反应。原理 酸脱羟基醇脱氢。
CH3COOH+C2H5OH→CH3COOC2H5+H2O
第四节 基本营养物质
糖类:是绿色植物光合作用的产物,是动植物所需能量的重要来源。又叫碳水化合物
单糖 C6H12O6 葡萄糖 多羟基醛 CH2OH-CHOH-CHOH-CHOH-CHOH-CHO
果糖 多羟基酮
双糖 C12H22O11 蔗糖 无醛基 水解生成一分子葡萄糖和一分子果糖:
麦芽糖 有醛基 水解生成两分子葡萄糖
多糖 (C6H10O5)n 淀粉 无醛基 n不同不是同分异构 遇碘变蓝 水解最终产物为葡萄糖
纤维素 无醛基
油脂:比水轻(密度在之间),不溶于水。是产生能量最高的营养物质
植物油 C17H33-较多,不饱和 液态 油脂水解产物为高级脂肪酸和丙三醇(甘油),油脂在碱性条件下的水解反应叫皂化反应
脂肪 C17H35、C15H31较多 固态
蛋白质是由多种氨基酸脱水缩合而成的天然高分子化合物
蛋白质水解产物是氨基酸,人体必需的氨基酸有8种,非必需的氨基酸有12种
蛋白质的性质
盐析:提纯 变性:失去生理活性 显色反应:加浓硝酸显黄色 灼烧:呈焦羽毛味
误服重金属盐:服用含丰富蛋白质的新鲜牛奶或豆浆
主要用途:组成细胞的基础物质、人类营养物质、工业上有广泛应用、酶是特殊蛋白质
第四章 化学与可持续发展
开发利用金属资源
电解法 很活泼的金属 K-Al MgCl2 = Mg + Cl2
热还原法 比较活泼的金属 Zn-Cu Fe2O3+3CO = 2Fe+3CO2
3Fe3O4+8Al = 9Fe+4Al2O3 铝热反应
热分解法 不活泼的金属 Hg-Au 2HgO = Hg + O2
海水资源的开发和利用
海水淡化的方法 蒸馏法 电渗析法 离子交换法
制盐 提钾 提溴用氯气 提碘 提取铀和重水、开发海洋药物、利用潮汐能、波浪能
镁盐晶提取 Mg2+----- Mg(OH)2 -------MgCl2
氯碱工业 2NaCl+2H2O = H2↑+2 NaOH + Cl2↑
化学与资源综合利用
煤 由有机物和无机物组成 主要含有碳元素
干馏 煤隔绝空气加强热使它分解 煤焦油 焦炭
液化 C(s)+H2O(g)→ CO(g)+H2(g)
汽化 CO(g)+2H2→ CH3OH
焦炉气 CO、H2、CH4、C2H4 水煤气 CO、H2
天然气 甲烷水合物“可燃冰”水合甲烷晶体(CH4·nH2O)
石油 烷烃、环烷烃和环烷烃所组成 主要含有碳和氢元素
分馏 利用原油中各成分沸点不同,将复杂的混合物分离成较简单更有用的混合物的过程。
裂化 在一定条件下,把分子量大、沸点高的烃断裂为分子量小、沸点低的烃的过程。
环境问题 不合理开发和利用自然资源,工农业和人类生活造成的环境污染
三废 废气、废水、废渣
酸雨: SO2、、NOx、 臭氧层空洞 :氟氯烃 赤潮、水华 :水富营养化N、P
绿色化学是指化学反应和过程以“原子经济性”为基本原则 只有一种产物的反应。
够吗?
㈡ 石油是重要的化工原料吗
石油化学工业简称石油化工,是化学工业的重要组成部分,在国民经济的发展中有重要作用,是我国的支柱产业部门之一。
石油是重要的化工原料。石油化工厂利用石油产品,可加工出5000多种重要的有机合成原料。常见的色泽美观、经久耐用的涤纶、尼龙、腈纶、丙纶等合成纤维;能与天然橡胶相媲美的合成橡胶;苯胺染料、洗衣粉、糖精、人造皮革、化肥、炸药等,都是由石油产品加工而成的。
石油经过微生物发酵,还可以制成合成蛋白。它是利用一种爱吃石蜡的嚼蜡菌,放在石油中的嚼蜡菌吃食石蜡后,会以惊人的速度繁殖起来。嚼蜡菌自身含有丰富的蛋白质,每千克菌体含有相当于20只鸡蛋所含的蛋白质。如果将目前世界上年产30多亿吨石油中的石蜡(约占10%)的一半制成蛋白质,一年就可制得1.5亿吨人造蛋白。这是十分可观的人造蛋白资源。现在,人们已经用嚼蜡菌体作为饲料。不久的将来,它们会被用来制作味道鲜美、营养丰富的食品,送上餐桌。
石油化工可创造较高经济效益。以美国为例,以50亿美元的石油、天然气为原料,可生产出100亿美元的烯烃、苯等基础石油化学品,进一步加工可得240亿美元的有机中间产品(包括聚合物),最后转化为400亿美元的最终产品。当然,原料加工深度越深,产品越精细,一般来说成本也相应增加。
㈢ 石油化工企业存在哪些职业健康危害因素
石油化工生产的特殊性,决定了这一行业的职业安全健康管理极为重要。 大多数石油化工企业的生产环境都比较特殊,一线工人接触酮、噪声、粉尘、甲醛等有毒有害物质的机会较多,防治慢性职业病就显得非常重要。目前,大型企业推行一把手负责制,职业安全健康管理制度较为完善。石油石化企业都有职业病防治专业机构,建立了全面的石油石化企业卫生管理规定,提高了职业卫生管理的科学性。然而,现场安全管理与职业卫生管理有相互交叠和重复的内容,突发事件往往因安全监管而得到防控,就被误认为只要抓好了现场安全监管,职业卫生管理就不会有问题。这样一来,不少一线员工的长期慢性健康损害往往得不到足够重视,员工劳动过程中应有的合法权益难以得到保障。为预防和减少职业危害,改善作业环境,保障劳动者生命健康权益,笔者认为,要逐步建立并完善职业安全健康监管机制。一是健全机构,理顺监管职责,切实加强职业安全健康监管机构的建设,对地方和基层职业安全健康监管机构建设给予指导和支持。二是加强与卫生、人力资源和社会保障、工会等部门和组织的沟通协作,形成监管合力。针对石油和化工等职业危害突出的重点行业、重点企业和重点人群,要重点监督检查,要开展经常性的检查、抽查,发现问题给予严肃处理;建立职业危害事故调查处理的事故追究责任制;定期开展培训,建立职业健康监督员岗位制度。
㈣ 石油化工品罐区存在的主要风险
石油化工品罐区存在的主要风险
1、人为因素
石油储存区所储存的材料都是易燃易爆的,一不小心就会引起火灾甚至爆炸。在这种环境下工作,人的心理将会面临高强度的压力,一旦压力超出心理承受能力,就容易引起作业动作的不协调,进而产生事故。
2、物的因素
油罐区的主要设施工具如果有缺陷,或者出现防护的缺陷,石油储罐区将有很大可能发生事故。另外,影响石油储罐区发生事故的因素还有:储罐区用电不正确产生的电伤害;温度较高,但或是报警信号缺失,无法进行有效的预警;最主要的就是储罐区所储存的易燃易爆的石油化工产品。
(4)石油化工什么因素最重要扩展阅读
罐区消防设计的原则消防设计的原则就是以“预防为主,防消结合”。
第一是防止火灾发生,在罐区按需设置多个可燃气体报警探头,并和储罐液相出口紧急切断阀联锁,一旦发现泄漏,紧急切 断阀可立即关闭,防止液化烃大量泄出。
第二是一旦发生火灾能自救,消灭初期火灾,控制较大火灾,防止火灾扩大,给消防队前来灭火争取时间。
㈤ 什么可以衡量一个国家石油化工发展水平
由于石油化工可创造较高经济效益,已成为发达国家的重要基础工业,所以将
乙烯产量作为衡量一个国家石油化工发展水平的重要标志之一。
因为乙烯工业是石油化工产业的核心,乙烯产品占石化产品的75%以上,而石油化工产品已应用到国防、国民经济及人民生活各个领域。
拓展资料:
石油化学工业,简称石油化工。一般指以石油和天然气为原料的化学工业。范围很广,产品很多。
原油经过裂解(裂化)、重整和分离,提供基础原料,如乙烯、丙烯、丁烯、丁二烯、苯、甲苯、二甲苯、萘等。从这些基础原料可以制得各种基本有机原料如甲醇、甲醛、乙醇、乙醛、醋酸、异丙醇、丙酮、苯酚等。
意义作用
一、石油化工是能源的主要供应者
石油化工,主要指石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应石油
者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。
二、石油化工是材料工业的支柱之一
金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。
三、石油化工促进了农业的发展
农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。
四、各工业部门离不开石化产品
现代交通工业的发展与燃料供应息息相关,可以毫不夸张地说,没有燃料,就没有现代交通工业。金属加工、各类机械毫无例外需要各类润滑材料及其它配套材料,消耗了大量石化产品。全世界润滑油脂产量约2千万吨,我国约180万吨。建材工业是石化产品的新领域,如塑料关材、门窗、铺地材料、涂料被称为化学建材。
轻工、纺织工业是石化产品的传统用户,新材料、新工艺、新产品的开发与推广,无不有石化产品的身影。当前,高速发展的电子工业以及诸多的高新技术产业,对石化产品,尤其是以石化产品为原料生产的精细化工产品提出了新要求,这对发展石化工业是个巨大的促进。
㈥ 石油化工是什么导向型的
动力导向型.把石油当燃料不是原料.
㈦ 石油化工存在的风险岗位有哪些存在的主要危险有害因素是什么
石油化工是易燃易爆的企业,安全生产是最重要的。炼油厂是原油的加工单位,生产出来的产品馏分较重(与化工比),所以毒性远比化工厂低。要注意硫化氢是有毒有害的,正常生产装置的泄漏是很少的,但是在装置开、停工、事故处理、检修的时候,泄漏和气味较大,还有就是地漏、污水处理池等地方;
常减压、催化裂化、气体分离、烷基化等装置压力较低,加氢裂化、加氢精制等装置压力很高,要注意防爆。只要严格遵守操作规程和炼油厂的安全防火规定,定能防范安全隐患。