1. 石油钻井取芯常识
石油和天然气的勘探和开发中钻成井眼所采取的技术方法。主要包括井身设计、钻头和泥浆的选用、钻具组合、钻井参数配合、井斜控制、泥浆处理、取岩心以及事故预防和处理等。石油钻井工艺的特点是:井眼深、压力大、温度高、影响因素多等。以往主要靠经验钻井,50年代开始研究影响钻井速度和成本的诸因素及其相互关系。钻井新技术、新理论不断出现。井眼方向必须控制在允许范围内。根据油气勘探,开发的地质地理条件和工程需要,分直井和定向井两类,后者又可分为一般定向井、水平井、丛式井等。
直井 井眼沿铅直方向钻进并在规定的井斜角和方位角范围内钻达目的层位,对井眼曲率和井底相对于井口的水平位移也有一定的要求(图1)。生产井井底水平位移过大,会打乱油田开发的布井方案;探井井底水平位移过大,有可能钻不到预期的目的层。井的全角变化率过大会增加钻井和采油作业的困难,易导致井下事故。影响井斜角和方位角的因素有:地质条件,钻具组合,钻井技术措施,操作技术以及设备安装质量等。为防止井斜角和井眼曲率过大,必须选用合理的下部钻具组合。常用的有刚性满眼钻具组合(图2)和钟摆钻具组合(图3)两种。前者可采用较大的钻压钻进,有利于提高钻速,井眼曲率较小,但不能纠斜,后者需控制一定的钻压,响钻速,但可用来纠斜。
定向井 沿预先设计的井眼方向(井斜角和方位角)钻达目的层位的井。主要用于:①受地面地形限制,如油田埋藏在城镇、高山、湖泊或良田之下;②海上丛式钻井;③因地质构造特殊(如断层、裂缝层,或地层倾角太大等)的需要,钻定向井有利于油、气藏的勘探开发;④处理井下事故,如侧钻,为制止井喷着火而钻的救险井等。
定向井的剖面设计,一般由直井段、造斜段、稳斜段和降斜段组成。造斜和扭方位井段常用井下动力钻具(涡轮钻具或螺杆钻具) 加弯接头组成的造斜钻具(图4)。当井眼斜度最后达到或接近水平时,称为水平井。定向钻进时,必须经常监测井眼的斜度和方位,随时绘出井眼轨迹图,以便及时调整。常用的测斜仪有单点、多点磁力照相测斜仪和陀螺测斜仪。近年来,还使用随钻测斜仪,不需起钻就可随时了解井眼的斜度和方位,按信号传输方式分有线及无线两种,前者用电缆传输信号,后者用泥浆脉冲、电磁、声波等。
丛式井 又称密集井、成组井(图5), 在一个位置和限定的井场上向不同方位钻数口至数十口定向井,使每口井沿各自的设计井身轴线分别钻达目的层位,通常用于海上平台或城市、良田、沼泽等地区,可节省大量投资,占地少,并便于集中管理。
喷射钻井 将泥浆泵输送的高压泥浆通过钻头喷嘴形成高速冲击射流(通常在m/s以上),直接作用于井底,充分利用水力能量(一般使泵水功率的50%以上作用于井底),使岩屑及时冲离井底或直接破碎地层,可大幅度提高钻井速度。合理的工作方式是采用较高的泵压、较低的排量和较小的钻头喷嘴直径。
优选参数钻井 在分析已钻井资料的基础上,以电子计算机为手段,用最优化的方法,将影响钻井速度的各种可控因素(例如钻头类型、钻压、转速、泥浆性能、水力因素等),根据最低成本原则建立数学模型,编成计算程序。进行优选配合,使钻井工作实现优质、快速、低成本。
地层孔隙压力预测和平衡压力钻井 用地震、测井和钻进时的资料(机械钻速、页岩密度、泥浆比重、温度等)进行综合分析,预测地层孔隙压力和判断可能出现的异常压力地层,及时采取措施以防止突然发生井喷、井漏和井塌等井下复杂情况。根据已知的地层孔隙压力和地层破裂压力,确定合理的泥浆比重和套管程序。在井内泥浆液柱压力和地层孔隙压力近似平衡的条件下进行钻井,称平衡压力钻井。可显着提高钻速,也有利于发现油、气藏。
井控技术 当钻达异常高压地层而发生泥浆气侵或井涌时,用计算方法和恰当的技术措施,调整泥浆比重和流动特性,配合使用液动高压防喷设备进行控制和排除井内溢流,以防止井喷。
取岩心技术 按设计要求从井下钻取所需层位的岩石样品(岩心),为勘探和开发油、气藏取得第一性资料。常用的取心工具主要由取心钻头、岩心筒、岩心抓和接头等部件组成,取心钻进时,钻头连续呈环形切削井底的岩石,使钻成的柱状岩心不断进入岩心筒。为适应特殊需要,还有密闭取心、保持压力取心和用于极疏松和破碎地层的取心工具(橡皮套取心工具)等。
2. 开采石油天然气时需往下注水吗
不一定。
在中东,地层压力大,不用注水,油藏压力大,直接往外喷。
在中国,油藏不够富饶,为了保证或者增加地层压力,有压力,油气才能出来,所以要注水。
3. 石油和天然气生成之谜
石油和天然气是非常宝贵的矿物资源,人们对石油和天然气生成的认识,是在勘探和开发实践中逐步加深的。石油和天然气的生成问题是自然科学领域中争论最激烈的一个重大研究课题,是石油地质学界的主要研究对象之一。
为了认识石油和天然气是怎样生成的,首先应该了解什么是石油和天然气。
(一)石油和天然气成分探秘
石油可分为天然石油和人造石油两种。天然石油是从油气田里直接开采出来的,如克拉玛依油田、塔河油田、大庆油田等开采出来的石油。人造石油是从油页岩或煤干馏出来的,如东北抚顺和广东茂名等地利用油页岩干馏得到的石油。石油在提炼以前称为原油。从原油中可以提炼出汽油、煤油、柴油、润滑油以及其他一系列的石油化工产品,如乙烯、化肥等。
石油有哪些特性呢?从外观上看,石油的颜色多种多样,有的油田的石油是棕黑色的,像烟袋油,如克拉玛依油田的;有的呈黑绿色,如独山子油田的;还有浅棕黄色,如柯克亚油田的;有些油气田采出来的石油无色透明,像清水一样,如巴楚地区的巴什托凝析油气田和呼图壁凝析油气田的。
闻气味也是认识石油的一种方法。石油中含有汽油和煤油,所以可以闻到特殊的煤油味。有一些石油中含有硫化氢,闻起来有一股臭鸡蛋味。还有一些石油含有较多的芳香烃(一种有机化合物),闻起来又特别香。
石油比水轻,又不溶于水。石油的相对密度(在20℃时,与同体积的水相比)介于0.75~1.0之间,相对密度小于0.9的石油称为轻质石油,相对密度大于0.9的称为重质石油。由于石油比水轻,又不溶于水,所以当石油遇到水时,就漂浮在水面上,呈现出五颜六色的油膜。
石油不像水那样容易流动,具有一定的黏性,黏度越大,越不容易流动。石油的黏度随着温度的增高而减小,有些石油在地面看起来很稠,很不容易流动,但是在地下比较高的压力和温度条件下,它的流动性可能是很好的。
以上几点突出的物理性质,可以帮助我们去认识石油。物理性质是化学组成的反映,因此,要认识石油还必须认识它的实质,即它的化学组成。
有许多有用矿产的化学组成是比较简单的,如煤,主要是由碳(C)组成的。石油的化学组成比较复杂,它既不是由单一的元素组成的,也不是由简单的化合物组成的,而是由多种元素组成的多种化合物的混合物。
石油是由碳(C)、氢(H)和少量的氧(O)、硫(S)、氮(N)等元素构成的。其中两种主要元素碳和氢构成碳氢化合物,化学上称为烃,这是取碳字中的“火”字和氢字中的“”而构成的。烃类是一种有机化合物,它占石油成分的97%~99%,其余的成分是含氧的化合物、含硫的化合物和含氮的化合物。这些化合物只占1%~3%。在自然界里,大多数含碳化合物中,除一氧化碳、二氧化碳和碳酸盐以外,都是有机化合物。所以说,石油是一种复杂的有机化合物的大家族。
石油中的碳氢化合物,按照结构的不同分为三类:
(1)烷族碳氢化合物:它是通式为CnH2n+2的饱和烃,“n”表示碳的个数。在室温下,C1—C4为气态,C5—C16是液态,是石油的主要成分;C16以上的为固态,悬浮在石油中(表4-3-1)。
探索新疆地质矿产资源奥秘
表4-3-1 石油中的部分碳氢化合物
(2)环烷族碳氢化合物:通式为CnH2n,属饱和烃。碳元素呈环状结构,以五元环和六元环最多。
探索新疆地质矿产资源奥秘
在多数情况下,环烷族烃占石油成分的主要部分。
(3)芳香族碳氢化合物:通式为CnH2n-6,属不饱和烃,包括苯、甲苯和二甲苯等。芳香烃具有强烈的芳香气味,但是在大多数情况下,它在石油中的比例比较小。
还有其他不饱和的碳氢化合物混杂在石油中,如烯烃类(表4-3-1),但是数量很少,对石油的成分影响不大。
不同油田的石油,所含各类碳氢化合物的比例是不同的。新疆大多数油田的石油含烷烃较多,其次是环烷烃,芳香烃较少,属于烷族-环烷族石油。
组成石油的碳氢化合物,在一般情况下,有一部分呈气体状态。在油田里都含有一定数量的这种气体,称为天然气,或称油田气。
实际上,石油和天然气是个“双胞胎”,它们的生成物质和生成环境基本上是一致的。因此,当我们了解了石油的特性以后,还应该了解天然气的特性。
天然气的成分也不是单一的,是各种气体的混合物,其中主要的气体是气态碳氢化合物,其次有少量的碳酸气〔(即:二氧化碳(CO2)、一氧化碳(CO)〕、氮气(N2)、氢气(H2)、氦气(He)和氩气(Ar)等,有时还有少量硫化氢气(H2S)。
天然气中的气态碳氢化合物主要是烷烃类,而且以甲烷最多,一般占气体成分的80%~90%,另外还有少量的乙烷(C2H6)、丙烷(C3H8)和丁烷(C4H10)等。在气态的烷烃中,乙烷以上的烃类称为“重烃”。不同的油气田的天然气中,重烃的含量是不同的(表4-3-2),重烃含量较高的天然气称为“湿气”或称富气。含有很少量重烃的天然气称为“干气”或称贫气。干气常以气田的形式出现,如塔里木盆地的克拉2气田。油田中的天然气多为湿气。
表4-3-2 天然气、煤田气和沼气中各种气体成分含量百分比
天然气作为燃料已广泛用于国民经济当中,已利用天然气炼钢、发电等。在人口集中的城镇利用天然气取代煤炭作为清洁能源供居民燃烧使用。新疆的乌鲁木齐、克拉玛依、喀什、和田、阿克苏、库尔勒、石河子和呼图壁等城镇居民就已使用上了这种清洁能源,大大地改善了空气质量,保护了人类的生存环境。
(二)石油和天然气生成探秘
由于石油和天然气的成分比较复杂,而且它们又能流动,现在发现的油气矿藏往往并不是它们的出生地,这与煤、铁等固体矿藏显着不同。因此,长期以来,对于石油和天然气的生成问题,有过许多激烈的争论,直到现在对这个问题还在继续实践和认识。
从18世纪70年代到现在230多年来,人们对石油和天然气的生成问题,先后提出了几十种假说。这些假说中,大多数是根据实验室里试验、天文观测和勘探开发油气田的实践。把许多种假说归结起来,可分为两大学派,即:无机生成说和有机生成说。
1.无机生成的学说
无机生成说是根据实验室内由无机物制成甲烷、乙烷、乙炔及苯等类碳氢化合物,认为石油和天然气是由无机物变成的。在石油无机生成说中,又有碳化物说、宇宙说及岩浆说。现简介如下:
(1)碳化物说:俄国着名化学家Д·И·门捷列夫在1876年提出。他认为在地球形成时期,温度很高,使碳和铁变为液态,互相作用而成碳化铁,并保存在地球深处。后来地表水沿地壳裂缝向下渗透,与碳化铁作用产生碳氢化合物,后来又沿着裂隙上升到地壳比较冷却的部分,冷凝下来形成石油,并在孔隙性岩层中聚集而成油气矿藏。
门捷列夫还指出:在“山脊”上升时期是地球成油最有利的时期,因为这时容易造成裂隙,成为地表水向下渗透和油气向上运移的通道。他以当时大多数地表油气苗显示和油田都位于山脊附近的事实来论证自己的观点。
(2)宇宙说:俄国天文学家В·Д·索可洛夫在1889年提出。当时天文学获得了巨大成就,光谱分析证明彗星头部气圈中含有碳氢化合物,在其他行星(木星、土星等)大气中也含有碳氢化合物,有的直接存在着甲烷气体。
宇宙说主张在地球呈熔融状态时,碳氢化合物就包含在它的气圈中,随着地球冷凝,碳氢化合物被冷凝岩浆吸收,最后凝结于地壳中而成石油。
由于碳化物说和宇宙说所依据的是由无机物制成简单碳氢化合物的实验,至今未找到任何实地证据说明在自然界中也发生过这样的过程。所以,20世纪以来,上述的石油无机生成学说,逐渐被人们忘记。但是,到20世纪50年代,苏联地质界又再次兴起无机生成思潮,就是岩浆说。
(3)岩浆说:1949年,苏联着名的地质学家Н·А·库得梁采夫提出了石油起源岩浆说。他认为石油的生成是同基性岩浆冷却时碳氢化合物的合成有关,这个过程是在高压条件下完成的,因而可以促使不饱和碳氢化合物聚合而成饱和碳氢化合物。他还指出,因岩浆中形成石油的过程在不断进行着,古老的油气通过扩散作用早已消失。所以,所有的油藏都是年轻的油藏。并且依靠石油才在地球上产生了生物,石油中含有生物所需要的一切元素。因此,石油不是来自有机物质,恰好相反,有机物质却是来源于石油。
2.有机生成的学说
石油有机生成说也有早期成油说和晚期成油说两种认识。
(1)石油有机生成早期成油说:早在1763年,俄国的化学家М·В·罗蒙诺索夫就提出了石油是煤在地热作用下干馏产生的有机生成说。今天用它来解释欧洲北海的油气田仍然有效。但实践表明,很多地区的油气田并不与煤共生。因此,人们开始把注意力转向了混在沉积岩中的、在数量上比煤大得多但却又分散的有机物质。经过多年对沉积岩中分散有机物质的野外观察和实验室研究,从地质、地球化学各个方面进行总结,逐渐形成了石油是由沉积岩中分散有机质生成的思想。20世纪40~50年代,石油地质工作者普遍认为:石油烃类是沉积岩中的分散有机质在成岩作用早期转变而成的,这就是有机生成早期成油说。
早期成油说的论据有:①世界上发现的2万多个油气田,99.9%都分布在沉积岩中,而且与富含有机质的细粒沉积物相伴随。②石油普遍具有旋光性,旋光性只有生物有机质才具有。③石油中的某些化合物明显来自动植物机体,如卟琳化合物、姥鲛烷、植烷等异戊二烯类化合物及甾烷类等。④石油的碳同位素组成与动植物或生物成因的物质相似,而与非生物成因的物质差别较大。⑤实验证明,动植物机体的结构,在适当条件下,能生成一定数量的烃。⑥现代沉积和古代沉积中都有烃类物质存在。⑦在实验中,用细菌作用于有机质,得到了少量比甲烷重的烃。
早期有机生成说在与无机生成说的斗争中,逐渐建立起从生油物质、生油母岩、成油环境到转化条件等一整套成油理论,为石油有机生成说打下了坚实的基础。
(2)石油有机生成晚期成油说:1963年,Р·Н·阿贝尔松提出,石油是沉积物(岩)中不溶有机质,即称之为干酪根(Kerogen)的一种物质,在成岩作用晚期,经过热解生成的。这个学说认为,大量生油的时期,已经是含有大量有机质的沉积物处于成岩作用的晚期阶段,同时生油原始物质主要是在岩石中。因此,人们常把这个学说简称为“晚期成油说”或“干酪根成油说”。
晚期成油说认为:①根据原始有机质(干酪根)类型,生成石油和天然气的母源分为三类:Ⅰ类,腐泥型干酪根,它是富含类脂物和蛋白质的分解产物,生成液态石油烃的潜力高,是生成石油的主要母源物质;Ⅱ类,腐殖型干酪根,生成液态石油烃的潜力低,是生成天然气的主要母源物质;Ⅲ类,过渡型干酪根,介于上述二类之间,其生油或生气能力取决于它与腐泥型或腐殖型的接近程度。②有机质转化成石油和天然气的过程,要经过一个物理化学作用。有机体死亡之后沉入水底堆积起来或从大陆搬运到湖泊、海洋水底堆积起来,在搬运和沉积过程中,水中的游离氧和氧化剂(NO2-、SO42-等)大量地氧化有机体的残骸,使之成为CO2和H2O。加之,水对有机质中的可溶组分的溶解,只有一部分有机质能够到达水盆底,同矿物质一起堆积起来,只有这部分有机质才能在适宜的环境条件下开始向烃的方向转化。现已查明,向烃转化过程中,生物化学作用、温度、压力和催化剂都起着重要作用。
(a)生物化学作用:与有机质转化成油气有关的生物化学作用有两类,一是细菌对有机质的分解作用,二是酵素的催化作用。
细菌的种类很多,按其生存条件可分为喜氧细菌、厌氧细菌和通气细菌三种。对油气生成来说,有意义的是厌氧细菌。厌氧细菌在缺氧的条件下,对有机质进行分解,产生稳定的分散有机质。在其他因素作用下,有机质可进一步向石油转化。
酵素,是动植物和微生物产生的一种高分子胶体物质,是一种有机催化剂。它在有机质改造中,可以加速有机质的分解,在有机质向油转化过程中起着催化作用。
(b)温度:无论是实验室还是对含油气盆地沉积岩剖面研究,都指出沉积岩中的有机质,在加热温度达400℃~500℃就能得到石油中的烷烃、环烷烃以及少量芳香烃及烯烃。因此,温度对有机质转化成油有决定性影响,只有当温度增加到一定门限值(成熟温度),有机质才能大量转化成石油。由于这个原因,凡地温梯度较高的盆地,一般地说,油气就比较丰富,如塔里木盆地。
(c)压力:究竟在多大的压力下,有机质才能生成石油和天然气?至今还没有得到正确的答案。不过实验证明,中温高压有利于石油的生成,如,大约50℃这样的中等温度,在30~70兆帕压力时,有机质就可以产生出石油烃。实验还证明,在1500~3000米深处,是有机质向石油转化的主要阶段,即主要生油期。
从一般化学反应来看,单纯压力作用,不利于低分子烃(尤其是气态烃)生成,而有利于液态烃的保存,使之不易于甲烷化。故压力对生成油气作用的影响,不是表现在数量方面,而是主要表现在质量方面。
4. 为什么将石油液化气灶具改为天然气灶具,要将进空气管道口缩小
由于液化石油气与天然气成分的不同,燃烧时所需要的氧气量不同,正常情况下天然气燃烧所需氧气量小于液化石油气完全燃烧所需的氧气量,原炉具改烧天然气后需要减小通风口或增大进气口。
液化气灶具和天然气灶具运行的原理是相同的,两者之间最大的差别就在于喷嘴的大小不同,液化气的喷嘴口径大约在0.68mm左右,天然气的口径大约在1.1mm左右。
如果是人工煤气需要更大口径的喷嘴。所以将天然气改液化气灶具理论上是可以的,但是一定要把喷嘴换掉,最好将炉头也一起换掉,那样才可以最大程度的减少安全隐患。
(4)石油天然气取芯为什么要投球扩展阅读:
注意事项:
1、平时使用要注意灶面清洁,特别是电子脉冲嵌入式点火灶,要注意灶芯的两根针的清洁,不能有污物包裹,一根是脉冲点火针,一根是点火感应针,这根针比较特殊,在点燃火后必须有火烤着,如果灶芯气孔被污物堵住,没有火烤着这根针,一松旋纽,火就会自动熄灭。
2、平时注意检查气管两头是否松动,年久气管僵化的管子必须更换,防止漏气引发火灾。
3、减压阀与罐头总成接口是反丝的,向右为松。减压阀上面有个旋纽,也是反丝,向右到拧不动为零压力为最大火力。这些都是出于安全设计,防孩童。
5. 石油是怎么采集到地面上来的
很早很早以前,人们用最简单的提捞方式开采原油,就像用吊桶在水井中提水一样,用绞车把原油从油井中提取上来。但这种方法只适用于油层非常浅、压力很小、产量很低的油井。如1907年中国延长油矿的延1井,井深81米,日产油1~1.5吨。1911年打的延2井,井深157米,日产油100千克。当时都是用转盘绞车把原油从油井中提捞上来的。
随着石油工业的发展,越来越多产量高、油层埋藏很深的油田被发现,原来那套人工提捞的方法无法在这些油井上使用,所以逐渐被淘汰,自喷采油和各种人工举升采油的方法应运而生。
一口油井用钻井的方法钻孔、下入钢管连通到油层后,原油就会像喷泉那样沿着油井的钢管自动向地面喷射出来。油层内的压力越大,喷出来的油就越快、越多。这种靠油层自身的能量将原油举升到地面的能力称为自喷,用这种办法采油称为自喷采油,它常发生在油井开发的初期。
那么油井为什么会自喷呢?石油和天然气深埋于地下封闭的岩石构造中,在上覆地层的重压下,它们与岩石一起受到压缩,从而集聚了大量的弹性能量,形成高温高压区。当油层通过油井与地面连通后,在弹性能量的驱动下,石油、天然气必然向处于低压区的井筒和井口流动。这就像一个充足气的汽车轮胎一样,当拔掉气门芯后,被压缩的空气将喷射而出。油层与油井的沟通一般情况下靠射孔完成。射孔是用特殊的枪和子弹把套管、水泥环、油层射开。一旦射孔完成,就像拔掉了封闭油层的气门芯,油气将通过油井喷射到地面。
自喷井的产量一般来说都是比较高的。例如:中东地区有些油井每口油井日产油量可高达1~2万吨。中国华北油田开发初期,很多油井日产千吨以上,大庆油田的高产井日产200~300吨。据统计,目前世界上约有50%~60%的原油都是靠自喷方法开采出来的,特别是在中东地区,大多数油井有旺盛的自喷能力。由于这种方法不需要复杂昂贵的设备,油井管理比较方便,是一种高效益的采油方法。所以,在油田开发过程中,人们都设法尽可能地保持油井长期自喷。到了开发的中后期,油层的压力会逐渐减小,不足以将地层内的原油驱替到井底并举升到地面,这时就需要给油层补充能量,如注入水或注入天然气等,增加油层的压力,以延长油井的自喷期。
自喷井示意图当通过注水、注气仍不能满足油井的自喷条件时,人们将采用特殊的机械装置将原油从井底抽吸出来,这就是人工举升采油方法。
6. 岩芯取样规范
桩基础岩心取样频率:工程地基岩为泥岩,执行重庆地标DB50/5001-1997,取样频率为10%,进行岩芯抗压(自然)检测。
岩芯取样:待旋挖桩钻至设计桩底位置时,向监理报验,会同监理甲方进行实地见证取样,并按实验室要求进行岩心修整。
取样合格后应在其上下面用记号笔写上“上”“下”标记并立即将见证卡及取样部位记录与岩石样心一起用塑料袋进行封闭,派专人送往实验室,试验室出具报告后将立即告知监理、业主、设计及地勘单位等相关负责人。
适用范围
(1)上部土层软弱不能满足承载力和变形要求,而下部存在较好的土层时.用桩穿越软弱土层,将荷载传递给深部硬土层。
(2)一定深度范围内不存在较理想的持力层,用桩使荷载沿着桩杆依靠桩侧摩阻力渐渐传递。
(3)基础需要承受向上的力,用桩依靠桩杆周围的负摩阻力来抵抗向上的力,即“抗拔桩”。
(4)基础需要承受水平方向的分力时,可用抗弯的竖桩来承担。
(5)地基软硬不均或荷载分布不均,天然地基不能满足结构物对不均匀变形的要求时,可采用桩基础。
7. 探测石油为什么要震动
探测石油震动的原因是:采用人造地震波来勘探石油,所以会感到震动。
可控震源车是利用机械连续震动激发产生地震波,利用相关技术使连续震动信号变为脉冲信号,从而获得地下各层的反射,通过资料的采集、处理、解释而获取地质构造、物理特性的勘探手段。而这种震波均为纵波,是由上向下传输,不会向周边散开,因此不会对周边建筑造成损坏。
地震又称地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。全球每年发生地震约五百五十万次。地震常常造成严重人员伤亡,能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。
地震勘探 是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法叫作地震勘探。地震勘探是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用。
8. 海上采油石油井为什么要点火那些助燃物能收集起来并利用吗
油井中还包含油田气或天然气。如果不具备气体的搜集和输送设备,或气量太小,没有收集价值,这些气体就要放空。而这些气体都是可燃的,直接排到大气中,很不安全,一旦遇火会发生火灾,甚至爆炸。因此专门安装了燃烧嘴(也称火炬),在可控制的条件下将这些气体烧掉,确保安全。
9. 井喷的发生条件
如下摘要一段,看是否有所帮助?详见参考资料
引言
2003年12月23日晚10时左右,由四川石油管理局川东钻探公司承钻、位于重庆开县的罗家16H井发生特大天然气井喷失控事故,导致243人死亡,其中井场周围的居民241人,职工2人。该特大井喷事故是天然气开采史上最惨重的事故,也是一起特大环境污染事故[1]。
事故发生地距离高桥镇约1.5 km,海拔在500 m左右,相对于周围地形而言位于凹处,地形复杂,近地面大气流动性差。在静风条件下,受重力的影响,天然气井喷事故排放的硫化氢扩散有其空间分布上的特殊性,无法使用国家规范推荐的烟羽扩散模式,而国外一些软件应用的结果与实际情况存在明显的差异。
为研究复杂地形条件下,井喷事故排放的硫化氢扩散运动规律,在北京大学环境学院环境风洞试验室进行了井喷事故硫化氢扩散的风洞模拟试验研究。
根据对参加事故处理人员和当地居民等的访谈,以及死亡人员分布情况的调查,说明事故发生时当地处于静风状态,事故发生18个小时后点火成功,导致大量事故人员伤亡的直接因素是硫化氢中毒[2],且获取了当地的地形矢量坐标。基于获得的基础数据,以几何相似、空气动力学粗糙等为主,该试验研究内容主要对事故发生地的周边地理环境、地面低速风场进行模拟,进行地表硫化氢浓度时间序列测量,对8个风向低速情况下硫化氢浓度给出在井喷过程中的时间演化趋势,以及硫化氢最高浓度分布等值线,从而可以对井喷事故过程中硫化氢浓度的分布进行预测判断。
其中对浓度的时间序列测量在国内外都是不多见的,要求获得的浓度数据能够反映出对时间的变化关系,研究中以采样管中示踪气在空间上的位置来反映出硫化氢浓度与时间的关系,该测量方法在试验技术上具有一定的创新意义。
1 风洞试验分析
1.1 试验风速
井喷事故发生时大气近地面层流动风速很低,几乎为静风。试验风速的确定以排放源处距离地面10m高风速U10为参考风速,统一取U10=0.5m/s,其风洞自由流风速为1.0m/s。对应到现场,这个风速可归为蒲氏1级风,但风向标不能转动。
1.2 点源描述
该试验模拟的点源为井喷事故地表源,尽管在现场的喷射流达到10m量级,按照1:2000的比例,经几何缩比后也只有5mm,淹没在地表粗糙中,其相应参数如表1所示[3-5]。
参考资料:
http://www.safety.com.cn/anlifx/fileview.asp?title=%C6%F8%CC%EF%BE%AE%C5%E7%C1%F2%BB%AF%C7%E2%B7%E7%B6%B4%C4%A3%C4%E2%CA%D4%D1%E9%D1%D0%BE%BF&filename=ns108476.txt
一、事故背景与经过
南方石油公司打2号预探井,该井位于我国南方某市郊区,周边地势平坦,该井口周边2 km范围内有居民7 800余人,井口与周边居民住宅距离不足60m。设计井深550m,目的层为上第三系上新统茨营组第三段气层,不含硫化氢等有害气体。该井由北方石油勘探局钻探公司660钻井队承钻。该井钻井工程设计单位是北方石油勘探局工程技术研究所,该设计的审批部门是南方石油公司勘探开发分公司。
2号预探井于11月22日开钻,11月29日二开钻进。12月1日钻至井深491m后,按设计要求下钻取芯。取芯钻进至498 80 m后起钻,未发生异常现象。12月1日22:30再次下钻到井底,因下钻时疏忽,钻具未按设计要求将回压阀组合到钻具中。石油公司监督虽已发现这一问题,但以剩余进尺不多为由,未下达立即起钻更换钻具组合的指令,致使这一重大隐患未能及时消除。12月2日凌晨1:20钻至井深550 m完钻,循环至2:10后开始起钻。当时钻井液密度、黏度符合工程设计要求,井口无任何异常显示。当2:50起出第3柱钻具,正在起第4柱钻具时,发现钻井液从钻具内突然涌出,井喷随之发生。井队抢接回压阀失败,井喷失控。喷至7:00,井下压力开始减弱,660钻井队立即抢接上回压阀和方钻杆,井喷得到控制。井喷失控约4个小时,险情于7:30解除,随后恢复正常施工。井喷期间,风力1~2级,喷出的天然气和泥浆随风向扩散。
井喷发生后,北方石油勘探局和南方石油公司主要领导及时赶到事故现场,启动应急预案,在当地政府配合下,采取了设立警戒线、向地方政府报告、疏散周边群众等一系列措施。
整个抢救过程中,疏散村民3 000多人,没有造成火灾等二次事故的发生,没有人员伤亡。
与事故发生有关的其他因素:
为防止起钻过程发生井喷,工程设计要求“每起一个立柱灌满一次泥浆”。而在实际操作中,实行“两柱一灌”,致使灌浆时间滞后;同时,在岗人员经验不足,加上夜晚不易观察,不能准确判断实际灌浆效果。
工程设计要求.二开后钻具组合中的回压阀要安装在钻头的上部。钻至491~498.80m井段取芯时,因取芯钻进需投球割芯,故必须将回压阀从钻具组合中拆除。取芯结束后,又重新下钻到井底,但此时忘记将回压阀组合到钻具组合中,而是将回压脚安装到方钻杆保护接头下,当钻井完毕起钻时,回压阀随同方钻杆一同卸下,使得钻具组合完全不具备内防喷功能。以致完钻起钻发生气浸时,井下流体顺利进入钻具内,加之该井系550 m的浅井,流体上升行程短,一经发生气浸,短时便可形成井涌,并迅速造成井喷。
井口安装了全封和半封防喷器,但不具备剪切功能。
二、事故原因分析
(1)井内液柱压力不能有效平衡地层压力,从而导致气浸和井涌。
为防止起钻过程发生井喷,工程设计要求“每起一个立柱灌满一次泥浆”,而在实际操作中,实行“两柱一灌”,致使灌浆时间滞后。同时,坐岗人员经验不足,加上夜晚不易观察,不能准确判断实际灌浆效果。使得井筒内、钻具内液柱压力低于井下地层压力,从而造成气体浸入钻具造成井涌。
(2)未按设计要求组合钻具,是造成井喷失控的直接原因。
工程设计要求,二开后钻具组合中的回压阀要安装在钻头的上部。钻至491~498.80m井段取芯时,因取芯钻进需投球割芯,故必须将回压阀从钻具组合中拆除。取芯结束后,又重新下钻到井底,但此时忘记将回压阎组合到钻具组合中,而是将回压阀安装到方钻杆保护接头下,当钻井完毕起钻时,回压阀随同方钻杆一同卸下,使得钻具组合完全不具备内防喷功能。以致完钻起钻发生气浸时,井下流体顺利进入钻具内,加之该井系550 m的浅井,流体上升行程短,一经发生气浸,短时便可形成井涌,并迅速造成井喷。
(3)现场监督管理不严,是事故发生的间接原因。
钻井过程中,南方石油公司不认真履行监督职责,随意降低工作标准,是造成事故发生的重要原因。660钻井队违反灌浆规定,擅将“一柱一灌”改为“两柱一灌”,甲方监督未及时制止;完钻钻具组合缺少井下回压阀,南方石油公司监督已经发现,却未能果断下达起钻变更钻具组合的指令。致使这些重大隐患未能及时消除,导致井喷事故的发生。
三、防范措施
(1)钻井队必须配齐所有内防喷工具。二开后各趟钻具人井,必须在钻头处安装回压阀。
(2)钻井队除应配备远程控制台外,还必须同时配备使用司钻控制台,确保井下突现异常时,最大限度缩短关、封井时间。
(3)采用连续灌浆,并配备使用专用小型灌浆罐,提高泥浆灌人量的计量精度。
(4)起钻前,充分循环泥浆3周以上,先短起2~3柱,静止一段时间再下至井底,循环测试后,确信井下无气体侵人方可正式起钻。
(5)安装剪切式闸板防喷器。
10. 济华燃气 为什么要圈存
1、使用的技术:天然气,ETC卡,中石油的加油卡都是使用银联卡PBOC3.0交易的离线电子钱包技术,交易的金额都是离线保存在实体卡中,和借记卡的现金余额不一样,借记卡的余额是保存在银行的后台数据库里,通过在线的方式实时获取余额。由于金额是保存在卡片中的,那么充值(向卡中增加余额),消费(减少卡中的余额)都是要通过读卡器和卡片通讯才能完成交易,这种交易就叫做圈存。圈存机就是个厂商用交易的设备
2、补充说明: 目前手机NFC的普及,ETC设备部分地区已经开通了手机圈存(例如:粤通卡),即使用手机的NFC读卡器(替代圈存机)来进行卡片的圈存。一些厂商也开始使用蓝牙进行圈存,技术原理是:ETC设备或者天然气表内置蓝牙模块+读卡器,手机通过蓝牙来和设备通讯完成圈存交易。一些厂商为了利润,卖圈存设备,不提供手机圈存技术给用户使用。