⑴ 金屬是怎樣煉成的
(一)金屬礦冶煉的歷史沿革
金屬冶煉作為一門生產技術,起源十分古老。人類從使用石器、陶器進入到使用金屬,是文明的一次飛躍。人類使用天然金屬(主要是自然銅)距今已 8000 多年。但自然銅資源稀少,要使用更多的銅必須從礦石中提取。世界上最早煉銅的是美索不達米亞地區,時間大致在公元前 38 世紀到前 36 世紀。最早的青銅是在蘇米爾地區出現的,大約在公元前 30 世紀。在人類文明史中,大量使用青銅的時代稱為青銅時代。鐵器的使用是人類文明的又一大進步。最早煉鐵的是在黑海南岸的山區,大約在公元前 14 世紀。到公元前 13 世紀,鐵器的應用在埃及已佔一定的比重,一般認為這是人類文明進入鐵器時代的開端。在歐洲,公元前 11 世紀中歐開始用鐵,但向西歐傳播則極其緩慢,直到公元前 55 年,隨著羅馬人的入侵,鐵才傳入大不列顛。中世紀的一千多年內,冶金技術進展十分緩慢。直至 14 ~ 16 世紀歐洲才發展為採用水力鼓風,加大、加高煉鐵爐,生產出鑄鐵。15 世紀的歐洲,盡管熟鐵器已廣泛應用,但銅和青銅仍是生產得最多的金屬。16 世紀歐洲出現資本主義的萌芽,冶金企業轉移到資本家手中,資本家互相競爭,推動了生產技術的發展。另一方面,機器、造船等工業的發展又為冶金業開辟了市場和提供了技術裝備。在 1640 年以後的 250 年中,主要發生在英國以高爐煉鐵、煉鋼為主的冶金生產和技術變革,尤其是 1700 ~ 1890 年,一系列重要的技術發明創造使英國的煉鐵、煉鋼工業得到蓬勃發展。這些發明在煉鐵方面有:1790 年 A. 達比用焦炭代替木炭煉鐵成功,使冶鐵業擺脫了木炭資源(森林)的限制;1828 年 J.B. 尼爾森採用熱風使煉鐵煉焦比降低,生產效率成倍提高。在煉鋼方面有:1740 年 B. 亨茨曼首次採用坩堝煉鋼法生產鑄鋼件;1856 年 H. 貝塞麥發明轉爐煉鋼法,開創了煉鋼新紀元 ;1855 年 K.W. 西門子發明了蓄熱室;1864 年 P.E. 馬丁利用該原理創造平爐煉鋼法,從而擴大了煉鋼的原料來源;1879 年 S.G. 托馬斯和 P.C. 吉爾克里斯特發明鹼性轉爐煉鋼法,成功地解決了高磷生鐵煉優質鋼的問題。在軋鋼方面有:1697 年J. 漢伯里用平輥軋制出熟鐵板,供生產鍍錫鐵板之用 ;1783 年 H. 科特用孔型軋制生產熟鐵棒,這種方法後來用於生產型材。這些發明創造使英國煉鐵、煉鋼工業在 18 ~ 19 世紀走在世界最前面。煉鋼情況也是一樣,銅資源並不充裕的英國,在 19 世紀 60 年代竟成了世界上產銅最多的國家。
中國古代冶煉技術比歐洲先進,尤其是鑄鐵技術比歐洲要早 2000 年。從鑒定中國古代的鐵器表明,中國漢代生產的有些鑄鐵件中的石墨呈球絮狀,具有一定的柔韌性,與近代可鍛鑄鐵頗為相似。中國古代生產的鑄鐵和熱處理技術已能適應製造農具的要求,從漢代起鐵產量就已超過了銅。中國在春秋戰國之際即已掌握金、銀、銅、鐵、錫、鉛、汞等七種常用金屬。歐洲直到羅馬帝國末期才全部掌握上述金屬。中國在 15 世紀已有金屬鋅,較歐洲早 300 多年。綜觀古代世界冶金業的發展,金屬製品,特別是青銅器和鐵器,對人類社會生產力的發展起著巨大作用。
(二)不同金屬礦的冶煉方法
金屬冶煉是根據各種金屬的礦石的不同特性,採用不同的生產工藝和設備,經濟地從礦石或其他原料中提取金屬或金屬化合物。目前大多數金屬都採用火法冶煉方法,通過各種冶煉熔煉,加入還原劑還原出金屬。隨著技術水平的提高和環境保護的要求,濕法冶金逐步被用於許多金屬製取工藝。如鋅的濕法冶煉,黃金的浸出電解工藝等。以下簡單介紹鋼鐵、銅、鎳、鉛鋅、金冶煉方法。
1. 鋼鐵冶煉
現代煉鐵絕大部分採用高爐煉鐵,個別採用直接還原煉鐵法和電爐煉鐵法。高爐煉鐵是將鐵礦石在高爐中還原,熔化煉成生鐵,此法操作簡便,能耗低,成本低廉,可大量生產。生鐵除部分用於鑄件外,大部分用作煉鋼原料。由於適應高爐冶煉的優質焦炭煤日益短缺,相繼出現了不用焦炭而用其他能源的非高爐煉鐵法。直接還原煉鐵法,是將礦石在固態下用氣體或固體還原劑還原,在低於礦石熔化溫度下,煉成含有少量雜質元素的固體或半熔融狀態的海綿鐵、金屬化球團或粒鐵,作為煉鋼原料(也可作高爐煉鐵或鑄造的原料)。電爐煉鐵法,多採用無爐身的還原電爐,可用強度較差的焦炭(或煤、木炭)作還原劑。電爐煉鐵的電加熱代替部分焦炭,並可用低級焦炭,但耗電量大,只能在電力充足、電價低廉的條件下使用。
煉鋼主要是以高爐煉成的生鐵和直接還原煉鐵法煉成的海綿鐵以及廢鋼為原料,用不同的方法煉成鋼。主要的煉鋼方法:有轉爐煉鋼法、平爐煉鋼法、電弧爐煉鋼法 3 類。以上 3 種煉鋼工藝可滿足一般用戶對鋼質量的要求。為了滿足更高質量、更多品種的高級鋼,便出現了多種鋼水爐外處理(又稱爐外精煉)的方法。如吹氬處理、真空脫氣、爐外脫硫等,對轉爐、平爐、電弧爐煉出的鋼水進行附加處理之後,都可以生產高級的鋼種。對某些特殊用途,要求特高質量的鋼,用爐外處理仍達不到要求,則要用特殊煉鋼法煉制。如電渣重熔,是把轉爐、平爐、電弧爐等冶煉的鋼,鑄造或鍛壓成為電極,通過熔渣電阻熱進行二次重熔的精煉工藝。
2. 銅的冶煉
銅的冶煉有兩種方法,即火法煉銅及濕法煉銅。目前銅的冶煉是以火法煉銅為主,其產量約佔世界銅總產量的 85%,但濕法冶金具有成本低、環保等優點,此技術正在逐步推廣。
火法煉銅方式適於高含量的硫化銅礦,通過選礦方法將銅礦石富集到 12% 以上,作為銅精礦,在密閉鼓風爐、反射爐、電爐或閃速爐中進行造鋶熔煉,產出的熔鋶(冰銅)接著送入轉爐進行吹煉成粗銅,再在另一種反射爐內經過氧化精煉脫雜,或鑄成陽極板進行電解,獲得含量高達 99.9% 的電解銅。該法流程簡短、適應性強,銅的回收率可達 95%,但因礦石中的硫在造鋶和吹煉兩階段作為二氧化硫廢氣排出,不易回收,易造成污染。
濕法煉銅一般適於低含量的氧化銅,生產出的精銅稱為電積銅。現代濕法冶煉有硫酸化焙燒—浸出—電積,浸出—萃取—電積,細菌浸出等法,適於低含量復雜礦、氧化銅礦、含銅廢礦石的堆浸、槽浸選用或就地浸出,酸浸應用較廣,氨浸限於處理含鈣鎂較高的結合性氧化礦。處理硫化礦多用硫酸化焙燒—浸出或者直接用氨或氯鹽溶液浸出等方法。
氧化銅礦酸浸法流程:氧化銅礦一般不易用選礦法富集,多用稀硫酸溶液直接浸出。所得含銅溶液,可用硫化沉澱、中和水解、鐵屑置換以及溶劑萃取—電積等方法提取銅。
硫化銅精礦焙燒浸出法:硫化銅精礦經硫酸化焙燒後浸出,得到的含銅浸出液,經電積得電解銅。
3. 鉛的冶煉
目前從鉛精礦中生產鉛金屬的方法都是火法,濕法煉鉛還處在試驗研究階段,工業上還未採用。火法煉鉛按冶煉原理不同可分為三種。
反應熔煉法:此法是將硫化鉛精礦通過反射爐或膛式爐使一部分 PbS 氧化成 PbO 和PbSO4,然後使之與未氧化的 PbS 相互反應而生產金屬鉛。該法適用於處理高含量的(含PbS65% ~ 70%)的鉛精礦。
沉澱熔煉法:此法是將鐵屑或氧化鐵及炭質還原劑與硫化鉛混合加熱至適當高的溫度,使鉛的硫化物大部分被鐵置換產生金屬鉛。此法很少單獨應用,如在鼓風爐還原焙燒時,經常加入鐵屑以降低鉛冰銅中的含鉛量,提高金屬鉛的回收率。
焙燒還原熔煉法:此法又稱為常規煉鉛法或標准煉鉛法。目前世界上生產的粗鉛約有 90%是用該法生產的。鉛精礦和溶劑加入焙燒爐焙燒,使部分 PbS 氧化成 PbO 燒結塊,然後通過鼓風爐與焦炭熔煉成粗鉛,粗鉛通過精煉得到含量在 99% 以上的鉛錠。
4. 鋅的冶煉
冶煉鋅的方法分為火法煉鋅和濕法煉鋅兩大類,目前濕法煉鋅發展非常迅速,世界上鋅產量有 80% 來源於濕法煉鋅。
火法煉鋅是將硫化鋅礦煅燒生成氧化鋅或氧化鋅和硫化鋅的混合物,然後加入炭質還原劑,使氧化鋅在高溫下被炭質還原劑還原,使鋅揮發出來,形成鋅蒸氣,經冷凝成為液態金屬鋅。一般有平罐煉鋅、豎罐煉鋅、電法煉鋅和密閉鼓風爐煉鋅等火法煉鋅方式。密閉鼓風爐是目前主要的火法冶煉方式。
濕法煉鋅又叫電解沉積法煉鋅,是將硫化鋅氧化成氧化鋅礦或氧化鋅和硫酸鋅的混合物溶於稀酸溶液與脈石分離,浸出液經過凈化處理後進行電解作業。電解沉澱的結果是在陰極析出鋅,在陽極上析出氧,並產生硫酸。沉澱在陰極上的鋅,定期剝下,再進行溶化鑄成鋅錠。
5. 鎳的冶煉
生產鎳的方法主要有火法和濕法兩種。根據含鎳的硫化礦和氧化礦的不同,冶煉處理方法各異。含鎳硫化礦目前主要採用火法處理,通過精礦焙燒反射爐(電爐或鼓風爐)冶煉銅鎳硫吹煉鎳精礦電解得金屬鎳。氧化礦主要是含鎳紅土礦,其含量低,適於濕法處理。主要方法有氨浸法和硫酸法兩種。
火法冶煉:鎳精礦經乾燥脫硫後即送電爐(或鼓風爐)熔煉,目的是使銅鎳的氧化物轉變為硫化物,產出低冰鎳(銅鎳鋶),同時脈石造渣。所得到的低冰鎳中,鎳和銅的總含量為8% ~ 25%(一般為 13% ~ 17%),含硫量為 25%。低冰鎳的吹煉,吹煉的目的是為了除去鐵和一部分硫,得到含銅和鎳 70% ~ 75% 的高冰鎳(鎳含高硫),而不是金屬鎳。轉爐熔煉溫度高於 1230℃,由於低冰鎳含量低,一般吹煉時間較長。 高冰鎳細磨、破碎後,用浮選和磁選分離,得到含鎳 67% ~ 68% 的鎳精礦,同時選出銅精礦和銅鎳合金分別回收銅和鉑族金屬。鎳精礦經反射爐熔化得到硫化鎳,再送電解精煉或經電爐(或反射爐)還原熔煉得粗鎳再電解精煉。粗鎳中除含銅、鈷外,還含有金、銀和鉑族元素,需電解精煉回收。與銅電解不同的是這里採用隔膜電解槽。用粗鎳做陽極,陰極為鎳始極片,電解液用硫酸鹽溶液、硫酸鹽和氯化鹽混合溶液。通電後,陰極析出鎳,鉑族元素進入陽極泥中,另行回收。電鎳的純度可達到99% 以上的「合質金」。
6. 金的冶煉
自然界的金大多以自然金的形式存在,根據其在不同礦物中的賦存狀態不同,先通過物理和化學選礦的方法將金富集,然後通過火法或濕法火法聯合法得到純度超過 99.5% 以上的純金。
一般砂金礦和岩金中的粗粒金通過重選和混汞法得到沙金和汞齊(一種汞和金的絡合物),沙金和汞齊使用坩堝熔煉加入石英、等熔劑除雜後得到 99% 以上的「合質金」。
岩金中一般氧化礦石可以直接通過氰化浸出得到氰化金的絡合物溶液,原生金礦一般採用浮選法將金富集得到金精礦,金精礦,再磨後,通過氰化浸出得到氰化金的絡合物溶液。氰化浸的絡合物溶液可通過兩種方式得到合質金。一是通過鋅粉、鋅絲置換出金金屬,通過坩堝熔煉得到合質金。二是經過活性炭吸附、解析、電解、坩堝熔煉得到「合質金」。
(三)金屬冶煉在新疆的發展概況
1. 新疆鋼鐵冶金概況
新中國成立前,新疆沒有現代鋼鐵工業。新中國成立後,駐疆人民解放軍節衣縮食,艱苦奮斗,自籌資金,於 1951 年興建了新疆第一家鋼鐵企業——新疆八一鋼鐵廠。1952 年,八一鋼鐵廠煉出了第一爐鐵和鋼,軋出了第一批合格鋼材,結束了新疆沒有鋼鐵工業的歷史。1950 ~ 1957 年,新疆鋼鐵工業總投資 2307 萬元(不包括更新改造資金),全部用於建設八一鋼鐵廠,形成固定資產 2096 萬元。 至 1957 年,生產生鐵 5.15 萬噸、鋼 4.23 萬噸、鋼材 3.82萬噸,收回全部基建投資。
1958 ~ 1965 年,新疆鋼鐵工業基建投資累計 1.75 億元(不包括更新改造資金),其中生產性投資 1.59 億元。在全部基建投資中,八一鋼鐵廠為 7242 萬元,占總投資的 41.4%。期間在「大煉鋼鐵」的號召下,投資 4754 萬元建設了雅滿蘇鐵礦、哈密鋼鐵廠、伊犁鋼鐵廠、烏魯木齊第二鋼鐵廠、天龍鋼鐵廠、躍進鋼鐵廠以及庫車、康蘇等小鋼鐵廠和小礦山。1963 年,這批小鋼鐵企業在國民經濟調整中先後關停,沒有形成生產能力。僅保留了天龍鋼鐵廠等企業,企業經濟效益不佳,多處於虧損狀態。
「文化大革命」時期,新疆鋼鐵工業投資重點不突出,一些建設項目時上時下,時建時停,建設周期長,經濟效益差,多數未能達到基建投資的預期效果。1966 ~ 1980 年,鋼鐵工業基建投資累計 3.5 億元。其中八一鋼鐵廠投資 1.84 億元,占總投資的 33.9%;礦山總投資 6060 萬元,占總投資的17.3%;地方小鋼鐵廠投資1.49億元,占總投資的41.4%;其他投資 2186萬元,占總投資的 6.3%。地方小鋼鐵企業如哈密鋼鐵廠、伊犁鋼鐵廠、伊犁鐵礦、和靜鋼鐵廠、托里鉻礦等恢復建設,並形成了一定的生產規模。1978 年,新疆鋼產量達 8.46 萬噸、鋼材產量6.83 萬噸。
黨的十一屆三中全會以後,新疆鋼鐵工業迅速發展。「六五」、「七五」、「八五」期間,新疆鋼鐵工業完成基建總投資 4.33 億元(不包括更新改造資金),投資的重點為八一鋼鐵廠擴建工程,占總投資的 76.9%,礦山占總投資的 11.1%,地方小鋼鐵企業占總投資的 8%,其他投資占總投資的 4%。 1980 ~ 1994 年,八一鋼鐵廠鋼產量由 9.28 萬噸增至 61.7 萬噸,增長 3.4 倍;鋼材產量由 7.8 萬噸增至 53 萬噸,增長 5.8 倍。同期新疆鋼產量增長 5 倍、鐵產量增長 3.1 倍、鋼材產量增長 5.5 倍。1997 年,新疆鋼鐵工業完成工業總產值 27.59 億元,工業增加值 7.39 億元;實現銷售收入 25.96 億元,利稅總額 1.22 億元。
目前,八一鋼鐵廠已成為全國實現全連鑄和全一火成材的六家企業之一。許多技術指標達到國內先進水平,特別是兩座 12 噸轉爐的成功改造,使生產能力達到 100 萬噸,創出了全國鋼鐵工業改造史上的奇跡。八一鋼鐵廠的技術、裝備和效率均已達到了全國一流水平。其引進當代世界上最先進的工藝技術裝備建成的連續式小型棒材軋機,不僅帶動了產品結構和成本構成的深刻變化,而且提高了產品的質量和檔次,增強了市場的競爭力。目前,加上從德國引進的電爐形成的生產能力,八一鋼鐵廠的煉鋼生產能力已達 150 萬噸,軋鋼能力已達 130 萬噸,分別佔全區煉鋼、軋鋼生產能力的 80% 和 77% 以上。1999 年的鋼和鋼材產量分別達到 105 萬噸和 117 萬噸。近年來,鋼鐵生產迅速發展,2006 年,有鐵礦山 125 個,其中大型 1 個,中型26 個,年開采礦石 1095 萬噸;生產粗鋼 362 萬噸,生鐵 270 萬噸。2007 年生產粗鋼約 445 萬噸,鋼材約 469 萬噸,生鐵約 387 萬噸。
2. 新疆有色及稀有冶金概況
據史料記載,在先秦時期,新疆的銅冶煉技術就已達到了較高的水平。20 世紀 80 年代考古工作者在新疆尼勒克縣城南奴拉賽和圓頭山發現了多處冶煉場遺跡。
新中國成立前,新疆主要以煉銅為主,其次是鉛鋅。但規模不大,沒有形成工藝體系。
新中國成立後,新疆冶金局從 1958 ~ 1961 年在烏魯木齊先後建起了八一銅廠、電解銅廠、紅旗冶煉廠(烏魯木齊鋁廠前身)等小型有色金屬冶煉企業。由於當時新疆還沒有發現大中型銅礦,銅資源沒有保障,鋁電解的成本又過高,致使這幾家冶煉廠沒能生存下來。
1978 年中共十一屆三中全會後,新疆的有色金屬工業有了較大的發展。1981 ~ 1989 年烏魯木齊鋁廠經過三期技術改造和擴建,形成 2 萬噸 / 年鋁錠的生產能力,另外,可可托海礦務局利用其充沛的水電資源,在 1987 年建成 2400 噸的鋁錠的可可托海選廠。1989 年新疆有色公司和伊犁電力局合資的 5000 噸鋁錠廠投產。1990 年新疆已形成 3 萬噸 / 年鋁錠生產能力。
1989 年,新疆有色金屬公司新建的喀拉通克銅鎳礦投產,形成 7285 噸高冰鎳生產能力,新疆現代銅鎳工業開始起步。1993 年底,建成阜康冶煉廠,採用先進的濕法精煉新工藝生產電解鎳,形成了 2040 噸 / 年的電解鎳生產能力。
新中國成立後,新疆黃金的生產也有了長足的發展,新疆境內已建成中小型金礦 32 個,其中阿希金礦、哈圖金礦、哈巴河多拉納薩依金礦、富蘊縣薩爾布拉克金礦、鄯善康古爾金礦等岩金礦規模較大。尤其是阿希金礦採用國際先進的氰化樹脂提金工藝,年產量達到 3 萬兩以上。
新疆是全國最早從事稀有金屬開發冶煉的省區,經過 40 多年的努力,新疆已建成我國第一個,全國最大、產品質量最好、具有自主研發能力的稀有金屬技術工業基地。目前能夠提供30 多種稀有金屬產品,包括鋰、銣、銫金屬及其化合物。
(四)金屬冶煉的發展方向
在冶煉過程中的生產自動化,將是今後金屬冶煉發展的重要方向。20 世紀下半葉以來,冶金生產工藝與自動化技術的結合日益緊密。氧氣轉爐煉鋼、連續鑄錠、軋鋼高速化和連續化等新工藝,把鋼冶金的生產效率不斷推向新的高度,這在很大程度上,應歸功於應用計算機的自動控制。倘若沒有自動控制,氧氣轉爐就難以充分發揮它的快速煉鋼能力,連續鑄鋼就難於保證質量並獲得高效率,軋鋼就難以實現高速化和連續化。
研究開發新的提取冶金技術也是今後冶金發展的一個方向。單純從提取金屬著眼,運用今天擁有的自然科學知識和技術手段,即使礦石含量再低,組成再復雜,都可以把金屬提取出來,問題在於消耗的能源是否過大,花費的成本是否合算。因此,在提取冶金方面仍然有很多研究課題。例如:擴大資源范圍,把在以往技術水平、經濟條件下還不能利用的資源,通過新工藝、新裝備變為可利用的資源;減少或消除生產過程對環境的污染,發展資源的綜合利用,形成無公害工藝或無廢料工藝;充分利用氧氣等進一步強化冶煉過程,大大節約能源等。
圖6-2-1 磁鐵礦照片(肖昱攝)
圖6-3-1 黃銅礦和孔雀石照片(肖昱攝)
圖6-3-2 方鉛礦與閃鋅礦照片(肖昱攝)
圖6-3-3 新疆尼勒克縣阿吾拉勒環狀銅礦帶
圖6-3-4 新疆西昆侖鐵克列克-庫斯拉甫礦產分布圖
圖6-3-5 環塔里木中新生代砂岩型銅鉛鋅礦帶及礦產分布圖
圖6-4-1 自然金照片(張素蘭攝)
圖6-4-2 新疆民豐縣南山巴西其其干河下游階地砂金采坑(肖昱攝)
圖6-4-3 細脈狀自然金(張素蘭攝)
圖6-4-4 浸染狀自然金(張素蘭攝)
圖6-5-1 阿爾泰山花崗偉晶岩稀有金屬礦集區與地質構造關系略圖(據新疆有色地質研究所)
圖6-5-2 電氣石和綠柱石
圖6-5-3 錳鉭鐵礦和鈮鉭鐵礦聚晶
圖6-5-4 可可托海稀有金屬礦3號脈露天采場(楊青山攝)
圖6-5-5 3號脈立體示意圖
圖6-5-6 可可托海3號礦脈結構單元分布圖
圖6-6-1 清代察合奇鑄幣廠古銅幣(楊青山攝)
圖6-6-2 平硐(劉增仁攝)
圖6-6-3 斜井(劉增仁攝)
圖6-6-4 豎井(楊青山攝)
圖6-7-1 選礦流程圖
圖6-7-2 康蘇選礦廠優選浮選工藝流程圖
圖6-7-3 八一鋼鐵廠優選浮選工藝流程圖
圖6-7-4 喀拉通克銅鎳礦簡易選礦工藝流程圖
圖6-7-5 哈圖金礦混汞浮選工藝流程圖
圖6-7-6 可可托海「87-66」選廠工藝流程圖
⑵ 金屬礦產資源
我國金屬礦產品種比較齊全。黑色金屬礦產中,鐵錳礦資源較豐富,但以貧礦為主;鈦、釩探明儲量多,居世界前列;鉻鐵礦嚴重短缺。有色金屬礦中,鋁、鉛、鋅、鉬、鎳礦資源較豐富,銅礦以貧礦為主,鉛鋅礦分布較廣泛,而鎳礦卻十分集中。鎢、錫、鉬、銻、汞等礦是我國傳統出口的優勢礦產,探明儲量居世界前列。貴金屬礦產中,金銀礦探明儲量較多,資源遠景較大,鉑族礦產十分短缺。稀有、稀土和分散金屬品種很多,以稀土金屬資源最為豐富,居世界首位。金屬礦產幾乎遍布全國各省區。
(一)鐵礦
鐵礦資源總量豐富,總保有儲量居世界第5位,但貧礦占總儲量的90%以上。鐵礦全國各地均有分布,以東北、華北地區資源為最豐富,西南、中南地區次之。就省(區)而言,遼寧位居探明儲量榜首,河北、四川、山西、安徽、雲南、內蒙古次之。
從鐵礦成因類型來看,主要有與鐵質基性、超基性岩漿侵入活動有關的岩漿型鐵礦床,如四川攀枝花鐵礦床;與中酸性岩漿侵入活動有關的接觸交代—熱液鐵礦床,如湖北大冶、福建馬坑、內蒙古黃崗等;與中性鈉質或偏鈉質火山—侵入活動有關的鐵礦,如江蘇、安徽兩省的寧蕪鐵礦、雲南大紅山鐵礦等;沉積型赤鐵礦和菱鐵礦床如鄂西、贛西、湘東地區的赤鐵礦;火山沉積變質鐵礦,如鞍山鐵礦、冀東鐵礦等;風化淋濾殘積型鐵礦,如廣東大寶山、貴州觀音山等。鐵礦成因類型以分布於東北、華北地區的火山沉積變質磁鐵礦為最重要。該類型鐵礦含鐵量雖低(35%左右),但儲量大,約佔全國總儲量的1/2,且可選性能良好,經選礦後可以獲得含鐵65%以上的精礦。
從成礦時代看,自元古宙至新生代均有鐵礦形成,但以元古宙為最重要。
(二)錳礦
我國錳礦資源較多,分布廣泛,在全國21個省(區)有產出。礦石總保有儲量居世界第3位。從地區分布看,以廣西、湖南為最豐富,佔全國總儲量的55%;貴州、雲南、遼寧、四川等地次之。
從礦床成因類型來看,有沉積型、風化型及熱液型,以沉積型錳礦為主,其次為火山—沉積礦床。從成礦時代來看,自元古宙至第四紀均有錳礦形成,以震旦紀和泥盆紀最為重要。
(三)銅礦
我國是世界上銅礦較多的國家之一,礦區幾乎遍布全國各省(區、市),總保有儲量銅居世界第7位。江西銅儲量位居全國榜首,佔20.8%;西藏次之,佔15%;雲南、甘肅、安徽、內蒙古、山西、湖北等省銅儲量均在300萬噸以上。
礦床類型以斑岩型銅礦為最重要,其次為銅鎳硫化物礦床、矽卡岩型、火山岩型、沉積岩中層狀型、陸相砂岩型銅礦以及少量熱液脈狀銅礦等。
從形成時代來看,從太古宙至第三紀皆有銅礦形成。但從儲量規模和礦床數量來看,主要集中在中生代和元古宙。中生代銅礦多與侵位淺的中酸性岩漿活動有關,元古宙銅礦多與海相火山岩漿活動有關。
(四)鉛鋅礦
我國鉛鋅礦資源比較豐富,鉛、鋅保有儲量均居世界第4位。
我國鉛與鋅礦比例為1:2.4,是一個突出的資源優勢。鉛鋅礦產地廣布全國,而探明儲量的76%卻集中於滇、蒙、湘、粵、甘、贛、桂、川等8省(區)。
礦床類型有花崗岩型、矽卡岩型、斑岩型礦床;有與海相火山、陸相火山有關的礦床;有產於海相碳酸鹽、泥岩—碎屑岩系、海相或陸相砂岩和礫岩中的鉛鋅礦等。成礦時代從太古宙到新生代皆有,以古生代鉛鋅礦資源為最豐富。
(五)鋁土礦
我國鋁土礦資源屬中等水平,總保有儲量居世界第7位。山西鋁資源最多,保有儲量佔全國41%;貴州、廣西、河南次之,各佔17%左右。
鋁土礦類型主要是沉積型—水硬鋁石,其儲量佔全國探明儲量的95%以上,其餘為堆積型和風化殼型鋁土礦。
從成礦時代來看,鋁土礦主要產於石炭紀和二疊紀地層之中,鋁土礦的質量和厚度與地層沉積間斷呈正相關關系。
(六)鎢礦
我國是世界上鎢礦資源最豐富的國家,分布於23個省(區),總保有儲量居世界第1位。鎢產量也居世界首位,是我國傳統出口的礦產品。就產地來看,以湖南(白鎢礦為主)、江西(黑鎢礦為主)為多,儲量分別佔全國總儲量的33.8%和20.7%;河南、廣西、福建、廣東等省(區)次之。
礦床類型有熱液型、斑岩型、接觸交代型。熱液型以黑鎢礦為主,接觸交代型以白鎢礦為主,斑岩鎢礦集中分布於河南盧氏—架川一帶。從成礦時代來看,最早為早古生代,晚古生代較少,中生代形成鎢礦最多,新生代鎢礦則罕見。
(七)錫礦
我國是世界上錫礦資源豐富的國家之一,總保有儲量居世界第2位。礦產地分布於15個省(區),以廣西、雲南兩省(區)儲量最多,分別佔全國的32.9%和31.4%,湖南、廣東、內蒙古、江西次之,以上6省(區)共佔全國儲量的93%。
錫礦礦床類型主要有與花崗岩類、中酸性火山—潛火山岩類、沉積再造變質作用有關的礦床。成礦時代比較廣泛,以中生代錫礦最為重要,前寒武紀次之。
(八)銻礦
我國是世界上銻礦資源最為豐富的國家,總保有儲量居世界第1位。礦產地分布於18個省(區),以廣西壯族自治區儲量最多,佔全國的41.3%,其次為湖南、雲南、貴州、甘肅、廣東等省。
礦床類型有層控熱液型及熱液型兩種。層控熱液型銻礦床含礦岩層多為碳酸鹽岩,熱液型銻礦床其含礦圍岩多為碎屑岩,常與汞、金、鎢共生。從成礦時代來看,除侏羅紀和白堊紀地層中尚未發現有工業礦床外,自前震旦紀到第四紀都有銻礦分布,但其改造成礦的時代主要集中在中生代的燕山期。
(九)金礦
我國金礦資源比較豐富,總保有儲量居世界第7位。礦產地幾乎分布於全國各地,以山東獨立金礦床為最多,金礦儲量佔全國的14.37%;江西伴生金礦床最多,占總儲量的12.6%;黑龍江、河南、湖北、陝西、四川等省,金礦資源也比較豐富。
金礦床分內生、外生兩大類,內生礦床中以岩漿—熱液破碎帶蝕變岩型和石英脈型為最重要,沉積改造微細粒型具有較大的找礦潛力,砂金礦亦佔有重要地位。成礦時代的跨度很大,從太古宙到第四紀皆有金礦形成,但56%的金礦集中在前寒武紀,其次為中生代和新生代,占總儲量的36%,古生代金礦相對較少。
(十)稀土礦產
我國素有「稀土王國」之稱,總保有儲量居世界第一位,已探明的儲量相當於世界總儲量的43%。礦產分布於全國16個省(區),以內蒙古最多,儲量佔全國的95%,湖北、貴州、江西、廣東省次之。我國稀土礦產不僅儲量大,而且品種多、質量好,礦床類型獨特。如內蒙古白雲鄂博含鈮—稀土鐵礦,稀土儲量規模巨大,為世界之冠,現已在包頭建成我國最大的稀土原料基地。
稀土礦產多與其他礦產共生,南方以重稀土為主,而北方以輕稀土為主。稀土礦自元古宙至新生代均有礦床形成,尤以中生代的燕山期為盛。
⑶ 各種金屬礦是如何形成的
原因:岩石風化並被流體運搬到某地,其中金屬成分富集沉積形成。岩漿噴發或者岩石風化沉積形成的礦床,經過漫長地質歲月變質後形成。
1、黑色金屬:鐵、鉻、錳三種。
2、有色金屬:鋁、鎂、鉀、鈉、鈣、鍶、鋇、銅、鉛、鋅、錫、鈷、鎳、銻、汞、鎘、鉍、金、銀、鉑、釕、銠、鈀、鋨、銥、鈹、鋰、銣、銫、鈦。
3、常見金屬:如鐵、鋁、銅、鋅等。
4、稀有金屬:如鋯、鉿、鈮、鉭等。
5、輕金屬:密度小於4500千克/立方米,如鈦、鋁、鎂、鉀、鈉、鈣、鍶、鋇等。
擴資料:
金屬礦物探按所承擔的地質任務分為區測、普查、勘探3個階段。
1、普查階段:
在根據地質和物探方法劃出的成礦遠景區,用物探直接或間接地尋找和發現金屬礦床。最常用的作圖比例尺為 1:50000、1:25000和1:10000。金屬礦普查常用的物探方法包括航空物探和地面磁法、電法、重力法、地震法等。
2、區測階段:
研究深部和表層地質構造,進行構造分區和成礦遠景的預測。通常採用小於1:200000的比例尺作圖。區測中採用的物探方法,一般包括地震法(天然地震、人工地震)、磁法、重力法、大地電磁法和熱流法等。
3、勘探階段:
此階段的物探任務是,探查礦體的產狀和規模,追索已知礦體沿走向的延伸和向下延深,研究礦體間是否相連,圈定和發現鑽孔打漏的礦體,探明鑽孔或坑道間的隱伏礦體等。常用的作圖比例尺為1:5000、1:2000或更大。
⑷ 金子是怎麼提煉的
1、砂礦開采
砂礦開采經常用於貴金屬礦床(尤其是金)和寶石,這兩種礦床都經常出現在沖積礦床中——現代或古代河床中的沙子和礫石礦床,或偶爾的冰川礦床。金屬或寶石被來自原始來源(如礦脈)的水流移動,通常僅占總礦床的極小部分。由於寶石和黃金等重金屬比沙子密度大得多,因此它們往往會積聚在砂礦床的底部。
2、平移
淘金主要是一種將黃金與其他材料分離的手工技術。寬而淺的盤子里裝滿了可能含有黃金的沙子和礫石。將平底鍋浸入水中並搖晃,從礫石和其他材料中分揀出黃金。
由於黃金的密度比岩石大得多,它很快就會沉澱到鍋底。淘選材料通常從河床中取出,通常在溪流的內部轉彎處,或從溪流的基岩架中取出,金的密度使其能夠集中,這種類型稱為砂金礦床。
淘金是尋找黃金的最實用、最快捷的技術,但在從大型礦床中提取黃金時在商業上不可行,除非勞動力成本非常低或黃金痕跡量很大。淘金區經常被宣傳為以前金礦區的旅遊景點。在使用大型生產方法之前,必須確定新的來源,並且淘選有助於確定要評估商業可行性的砂金礦床。
3、泄洪
長期以來,使用水閘箱從砂礦中提取黃金一直是勘探和小規模采礦中非常普遍的做法。水閘箱本質上是一個人造通道,底部設有淺槽。淺灘的設計目的是在水流中形成死區,讓黃金從懸浮狀態中脫離出來。盒子被放置在溪流中以引導水流。
含金材料放置在盒子的頂部。材料由電流攜帶通過伏特,其中金和其他緻密材料沉澱在淺灘後面。密度較低的材料作為尾礦流出箱外。
較大的商業砂礦開采作業使用篩分設備或滾筒篩去除較大的沖積材料,如巨石和礫石,然後將剩餘物濃縮到閘箱或跳汰機中。這些操作通常包括柴油動力的土方設備,包括挖掘機、推土機、輪式裝載機和岩石卡車。
4、搖桿箱
也稱為搖籃,它使用位於高壁盒子中的凹槽以類似於水閘盒的方式捕獲黃金。搖桿箱比水閘箱使用更少的水,非常適用於水資源有限的地區。搖擺運動提供了砂金材料中黃金的重力分離所需的水運動。
5、硬岩開采
硬岩金礦開采提取包裹在岩石中的黃金,而不是鬆散沉積物中的碎片,並生產世界上大部分的黃金。有時使用露天采礦,例如在阿拉斯加中部的諾克斯堡礦。巴里克黃金公司在內華達州東北部的Goldstrike 礦區擁有北美最大的露天金礦之一。
其他金礦使用地下開采,通過隧道或豎井提取礦石。南非擁有世界上最深的硬岩金礦,地下深達 3,900 米(12,800 英尺)。在這樣的深度,熱量是人類無法忍受的,為了工人的安全需要空調。第一個安裝空調的礦井是Robinson Deep是當時世界上任何礦物中最深的礦山。
開采污染
低品位金礦石可能含有少於 1ppm 的金金屬;將這種礦石研磨並與氰化鈉混合以溶解金。氰化物是一種劇毒化學品,微量暴露即可殺死生物。許多來自金礦的氰化物泄漏發生在發達國家和發展中國家,這些事故導致受災河流長長的河流中的水生生物死亡。
環保主義者認為這些事件是重大的環境災難。三十噸用過的礦石作為廢料傾倒以生產一金衡盎司黃金。
金礦場是許多重元素的來源,如鎘、鉛、鋅、銅、砷、硒和汞。當這些礦石堆中的含硫化物礦物暴露在空氣和水中時,硫化物會轉化為硫酸,硫酸又會溶解這些重金屬,從而促進它們進入地表水和地下水。這個過程稱為酸性礦山排水。這些金礦場是僅次於核廢料場的長期、高度危險的廢物。
⑸ 金屬礦選礦奧秘
(一)金屬礦選礦的定義和作用
1. 選礦的定義
選礦最早英文解釋為 Ore Dressing 或 concentration,意為礦砂富集。隨後延伸為礦物處理,英文為 Mining process。選礦是利用礦物的物理或物理化學性質的差異,藉助不同的方法,將有用礦物同無用的礦物分離,把彼此共生的有用礦物盡可能地分離並富集成單獨的精礦,排除對冶煉和其他加工過程有害的雜質,提高選礦產品質量,以便充分、合理、經濟地利用礦產資源。
礦物是在地殼中由於自然的物理化學作用或生物作用,所產生的自然元素和自然化合物,如金、銀、銅自然元素和黃鐵礦、黃銅礦、方鉛礦等自然化合物。這些元素和化合物都具有各自的物理性質,如粒度、形狀、顏色、光澤、密度、摩擦系數、磁性、電性、放射性、表面潤澤性等。這些不同的性質為不同的選礦方法提供了依據。
2. 選礦的作用和地位
自然界蘊藏著極為豐富的礦產資源,但是,除少數富礦外,一般含量都較低,例如,很多鐵礦石含鐵只有 20% ~ 30%;銅礦石含銅小於 0.5%;鉛鋅礦石中鉛鋅的含量不到 5%;鈹礦石氧化鈹含量 0.05% ~ 0.1%;這樣的礦石直接冶煉,極不經濟。一般冶金對礦石的含量有一定的要求。如鐵礦石中鐵的含量最低不得低於 45%;銅礦石中銅的含量最低不得低於 12%;鉛礦石含鉛不得小於 40%;鋅礦石含鋅不得小於 40%;氧化鈹含量不小於 8%。對於采出的礦石在冶煉之前,必須經過選礦工藝,將主要金屬礦物的含量富集幾倍、幾十倍乃至幾百倍才能滿足冶煉工藝的要求。
通過選礦手段為冶煉提供「精料」,減少冶煉的物料量,大大提高冶煉的技術經濟指標。在選礦過程中大量的廢石被排除,減少了爐渣量,一方面減低了能耗和運輸成本,同時也相應地減少了爐渣中的金屬損失,大大提高了冶煉的回收率。例如,某冶煉廠將銅精礦含量提高1%,每年可多生產粗銅 3135 噸。某鋼鐵公司將鐵精礦含量提高 1%,高爐產量提高 3%,節約石灰石 4% ~ 5%,減少爐渣量 1.8% ~ 2%。目前,我國要求入爐煉鐵磁鐵礦含量在 65% 以上,如果鐵精礦含量達到 68% 以上,可以採用直接煉鋼工藝,大大簡化冶煉流程。
通過選礦工藝可以減少冶煉原料中有害元素的危害,變害為利,綜合回收金屬資源。自然界中的礦石往往含有多種有用成分,例如,銅、鉛、鋅等有色金屬往往共生或伴生於同一礦床中;鐵既有單一的鐵礦石,也有鐵-銅、鐵-硫、釩鈦鐵等共生礦石。冶煉過程中對原料中某些共生或伴生元素,常視為有害雜質。例如,煉銅的原料中含鉛、鋅都是有害雜質。煉鐵原料中含硫、磷和其他有色金屬都是有害雜質。但將這些雜質提前通過選礦工藝使之分離分別富集後,分別冶煉,變害為利。
選礦也作為冶煉工藝中的一個中間過程,用以提高選礦、冶煉兩個過程的總的經濟效益。例如,我國金川有色金屬公司冶煉廠現有的生產流程是將銅-鎳混合精礦用電爐熔煉、轉爐吹煉,產出高冰鎳,經過緩冷後,再破碎磨礦,用浮選法獲得銅精礦和鎳精礦,用磁選法得到合金。此後分別進入各自的冶煉系統提取金屬銅、鎳和貴金屬。
選礦是冶金、化工、建材等工業部門必不可少的極其重要的一環。選礦技術的發展,大大地擴大了工業原料基地,從而使那些以前因為含量太低或成分復雜而不能在工業上應用的礦床變為有用礦床。
近 20 多年來,隨著科學技術和經濟建設的迅猛發展,對礦產資源的需求量與日俱增,礦產資源開采量翻番,周期愈來愈短,易采易選的單一富礦愈來愈少,嵌布粒度細、含量低的難選復合礦的開采量愈來愈大,對礦產品加工過程中的環保要求越來越高,這些都需要通過選礦方法來解決。
(二)選礦方法
目前常用的選礦方法主要是重選、浮選、磁選和化學選礦,除此而外還有電選、手選、摩擦選礦、光電選礦、放射性選礦等。
重力選礦法(簡稱重選法),是根據礦物密度的不同及其在介質(水、空氣、重介質等)中具有不同的沉降速度進行分選的方法,它是最古老的選礦方法之一。這種方法廣泛地用來選別煤炭和含有鉑、金、鎢、錫和其他重礦物的礦石。此外,鐵礦石、錳礦石、稀有金屬礦、非金屬礦石和部分有色金屬礦石也採用重選法進行選別。
磁選法,是根據礦物磁性的不同進行分選的方法。它主要用於選別鐵、錳等黑色金屬礦石和稀有金屬礦石。
浮游選礦法(簡稱浮選法),是根據礦物表面的潤澤性的不同選別礦物的方法。目前浮選法應用最廣,特別是細粒浸染的礦石用浮選處理效果顯著。對於復雜多金屬礦石的選別,浮選是一種最有效的方法。目前絕大多數礦石可用以浮選處理。
化學選礦法,基於礦物和礦物組分的化學性質的差異,利用化學方法改變礦物組成,然後用相應方法使目的組分富集的礦物加工工藝。目前對氧化礦石的處理效果非常明顯,也是處理和綜合利用某些貧、細、雜等難選礦物原料的有效方法之一。
電選法是根據礦物電性的不同來進行選別的方法。
手選法是根據礦物顏色和光澤的不同來進行選別的方法。
摩擦選礦是利用礦物摩擦系數的不同對礦物進行分選的方法。
光電選礦是利用礦物反射光的強度不同對礦物進行選別的方法。
放射性選礦是利用礦物天然放射性和人工放射性對礦物進行選別的方法。
(三)選礦過程
選礦是一個連續的生產過程,由一系列連續的作業組成,表示礦石連續加工的工藝過程為選礦流程(圖 6-7-1)。
礦石的選礦處理過程是在選礦廠里完成的。不論選礦廠的規模大小(小型選礦廠日處理礦石幾十噸,大型選礦廠日處理礦石量高達數萬噸以上),但無論工藝和設備如何復雜,一般都包括以下三個最基本的過程。
選別前的准備作業:一般礦石從采礦場采出的礦石粒度都較大,必須經過破碎和篩分、磨礦和分級,使有用礦物與脈石礦物、有用礦物和無用礦物相互分開,達到單體分離,為分選作業做准備。
選別作業:這是選礦過程的關鍵作業(或稱主要作業)。它根據礦物的不同性質,採用不同的選礦方法,如浮選法、重選法、磁選法等。
產品處理作業:主要包括精礦脫水和尾礦處理。精礦脫水通常由濃縮、過濾、乾燥三個階段。尾礦處理通常包括尾礦的儲存和尾水的處理。
有的選礦廠根據礦石性質和分選的需要,在選別作業前設有洗礦,預先拋廢(即在較粗的粒度下預先排出部分廢石)以及物理、化學與處理等作業,如赤鐵礦的磁化焙燒等作業。
(四)選礦技術在新疆礦山的應用
新疆應用選礦技術可追溯到古代,新疆遠在 300 年前,就在阿勒泰地區的各個溝內利用金的比重大的特點,從砂金礦中淘洗黃金,這就是重選的原始雛形。但在新中國成立之前,新疆沒有一處正規的選礦廠,全部都是採用人工方式手選和手淘,生產效率極其低下,只能處理比重差異大的砂金礦和根據顏色手選出黑鎢礦石。新中國成立後,新疆選礦技術有了長足的發展,磁選技術應用於鐵礦山,建成年處理量 80 萬噸的磁選礦廠,為鋼鐵企業源源不斷地提供高品質的鐵精粉。浮選應用於鉛鋅礦、銅礦、金礦山,先後建成康蘇鉛鋅浮選廠、喀拉通克銅鎳浮選廠、哈圖金浮選廠,促進了新疆有色工業的發展。重選、浮選、磁選聯合應用於新疆北部阿勒泰地區的稀有金屬礦山,為我國的早期國防建設提供所需的鋰、鈹、鉭、鈮等稀有金屬資源。以下是目前新疆有代表性的選礦廠。
1. 康蘇鉛鋅礦浮選選礦
康蘇選礦廠是新疆第一座機械化浮選廠,1952 年開始建設,設計生產規模為 250 噸 / 天,1954 年投產。該廠是由前蘇聯專家參與指導設計,前期主要處理喀什地區沙里塔什的方鉛礦和閃鋅礦,1961 年開始處理烏拉根氧化鉛鋅礦。康蘇選廠最初投產時是採用蘇聯專家設計的流程和葯劑制度進行浮選,流程採用氰化物與硫酸鋅作閃鋅礦的抑制劑,以蘇打作 pH 值的調整劑,並添加了少量的硫化鈉,先將鉛礦優先選出後,再將鋅礦物選出。該流程沒有取得較好的經濟指標,大部分鋅礦被選入鉛礦中。後經過我國工程技術人員和蘇聯專家的共同努力,通過幾次技術改造,在流程結構、技術參數和生產管理方面進行了革新和改進。將部分德國式的浮選機改成蘇式米哈諾貝爾 5A 型充氣量大的浮選機,使用水力旋流器代替螺旋分級機,加強了中礦再磨循環,增加了鋅浮選時間,降低了鋅浮選礦漿鹼度,合理控制破碎粒度和鋼球裝入量,嚴格貫徹技術操作規程和技術監督等。使各項指標得到穩步提升。鉛回收率由 71% 提高到 90%,鋅回收率由 13% 提高到 41%。其選礦過程見浮選工藝流程圖(圖 6-7-2)。
2. 新疆八一鋼鐵廠磁鐵礦浮磁選選礦
新疆八一鋼鐵選礦廠與 1989 年建成投產,設計處理能力 80 萬噸 / 年,主要處理高硫磁鐵礦。礦石由礦山采出後,運輸到選礦廠,經兩段破碎一段磨礦後,礦漿進入浮-磁車間。選出的硫精礦銷售給新疆境內的一些化工廠和化肥廠,鐵精礦供球團和燒結使用。尾礦濃縮後,用水隔泵輸送至尾礦庫,晾乾後,一部分尾礦成為八鋼西域水泥廠鐵質校正原料。新疆八一鋼鐵廠簡易浮磁選流程圖(圖 6-7-3)。
3. 喀拉通克銅鎳礦浮選選礦
喀拉通克銅鎳礦是新疆目前最大的銅鎳生產基地,礦山一期為采冶工程,采出的特富礦塊直接進入鼓風爐熔煉成低冰鎳,經過幾年的生產特富礦逐漸減少。為充分利用礦產資源,在二期改造中增加了優先選銅-銅鎳混合浮選流程,日處理原礦 900 噸。
原礦直接從采場經豎井提升到地面,通過窄軌輸送到原礦倉,原礦倉的礦石經群式給礦機由帶式輸送機送至中間礦倉。經重型板式給礦機、帶式輸送機,送至自磨機進行一段磨礦,自磨機排礦給入與格子型球磨機閉路的高堰式雙螺旋分級機,進行二段磨礦。分級機溢流經砂泵揚送至水力旋流器組,沉砂進入溢流型球磨機,進行三段磨礦。三段磨礦排礦與第一段分級機溢流合並,經砂泵揚送至水力旋流器組,旋流器溢流,自流至浮選廠房的攪拌槽內,加葯後進入浮選作業。浮選採用一次銅粗選、一次銅精選、一次銅鎳混合浮選、一次銅鎳掃選、三次銅鎳精選後,產出銅精礦、銅鎳混合精礦及尾礦,分別送至脫水廠房。銅精礦、銅鎳混合精礦經過脫水後分別送入銅精礦庫和冶煉廠原料庫。浮選尾礦經高效濃密機脫水後,用泵楊送至采礦場充填站,作為充填原料。喀拉通克銅鎳礦簡易選礦工藝流程圖(圖 6-7-4)。
4. 哈圖金礦黃金混汞-浮選選礦
哈圖礦區是新疆歷史上有名的岩金產地,早在乾隆年間便開始開采,主要採用的是土法重選法,將采出的礦石用石碾盤碾碎,通過淘洗的方式回收比重大的金粒。大量的細粒金無法回收,致使許多淘金者虧損嚴重。
1983 年通過實驗研究,採用「混汞—浮選—部分焙燒—氰化」原則流程,哈圖金礦建成了新疆第一座現代化的黃金生產礦山,日處理原礦 100 噸。1986 年通過改進破碎工藝,新增 100噸 / 天的浮選系列,使產能達到 200 噸 / 天。哈圖金礦混汞浮選工藝流程圖(圖 6-7-5)。
原礦由采廠通過汽車運到原礦倉,原礦經顎式破碎機進行一段破碎。然後經皮帶運輸機運到圓錐破碎機,進行二段破碎,破碎產物由圓振篩篩分後,篩下礦物由皮帶運輸機運送至粉礦倉,篩上礦物返回圓錐破碎機再破。粉礦倉經給礦機和皮帶運輸機送至格子型球磨機磨礦,磨礦排礦自流通過鍍銀銅板(俗稱汞板)進行混汞作業,通過汞板表面粘附的汞吸附單體解理的金形成汞齊,通過冶煉回收部分黃金。礦漿經過汞板後,用高堰式螺旋分級機,溢流進入浮選工序,返砂進進球磨機再磨。浮選工序採用一次粗選、二次精選、一次掃選流程選的浮選精礦。浮選精礦脫水經過焙燒和進行冶煉後得到金錠。
5. 可可托海稀有金屬礦重、磁、電、浮聯合選礦
可可托海以稀有金屬儲量大,品種多而聞名中外,鈹、鋰、鉭、鈮、銣、銫、鋯、鉿等稀有元素在許多礦帶中均有不同程度的分布,因而造成選礦上的復雜性和難度。經過眾多科技人員 10 年的反復實驗研究,從手工選礦到單一礦物選礦,發展到最後的重磁浮聯合選礦流程,分選出鋰精礦、鈹精礦、鉭鈮精礦,突破了這一世界性的難題,促進了選礦技術的發展。
1953 年,為回收綠柱石和鉭鈮礦在 3 號礦脈小露天采場東北角興建了一座簡易的 30 多米長的手選室,改善了手選的工作環境,提高了手選效率。另外,在 3 號礦脈尾礦堆附近興建了一座 20 噸 / 天的鉭鈮重選廠,採用對滾一段破碎、跳汰、搖床、溜槽進行重選,回收鉭鈮礦。1957 ~ 1958 年,將手選篩下的尾礦,用方螺旋溜槽進行富集,每年產出的氧化鋰精礦接近萬噸。
1963 年,經過科研院所近 8 年的選礦試驗研究,國家計委批准興建 750 噸 / 天的選礦廠(「87 - 66」機選廠),綜合回收氧化鋰精礦和鉭鈮精礦。選廠工藝流程簡圖(圖 6-7-6)。根據可可托海礦偉晶岩體分帶開採的特點,選廠採用三個系統分別對三種類型的礦石(鈹礦石、鋰礦石、鉭鈮礦石)進行選別。採用聯合選礦工藝綜合回收礦石中的鋰鈹鉭鈮礦物。先利用重力-磁法-電磁法選礦,從原礦含量只有 0.01% ~ 0.02%(Ta、Nb)203 的原礦中選50% 以上的(Ta、Nb)203 鉭鈮精礦,然後再用鹼法鋰鈹優先浮選,先優浮選鋰再選鈹。
可可托海選廠選礦工藝的不斷改進,使我國花崗偉晶岩類型礦石鉭鈮、鋰、鈹選礦工藝水平進入世界先進行列。
6. 選礦技術的發展方向
在美國、日本、德國等國家對選礦技術的發展非常重視,選礦技術的不斷進步和創新,促進了這些國家礦產資源的開發和綜合利用沿著可持續發展前進。在礦物破碎方面,美國開發了超細破碎機和高壓對滾機,降低球磨機入料粒度,節約了能耗。同時在不斷研究外加電場、激光、微波、超聲、高頻振盪、等離子處理礦石對粉碎和分選的影響。在礦物分選方面,已經或正在研究「多種力場」聯合作用的分選設備,並不斷將高技術引入選礦工程領域,諸如將超導技術引入磁選,將電化學及控制技術引入浮選等。在選礦工藝管理方面,將工藝控制過程自動化,並將「專家控制系統」與「最優適時控制」相結合,以達到根據礦石性質調整控制參數,使選礦生產工藝流程全過程保持最優狀態。
隨著我國國民經濟的快速發展,對礦產品的需求不斷增長,選礦工程技術面臨著資源、能源、環保的嚴峻挑戰和發展機遇。以下領域的技術創新將是今後選礦的發展方向:
一是研究開發高效預選設備、高效節能新型破磨與分選設備,以及固液分離新技術與裝備,大幅降低礦石粉碎固液分離過程的能耗。
二是研究各種能場的預處理對礦物粉碎和分選行為的影響,開發利用各種能場的預處理新技術,以提高粉碎效率和分選精度。
三是開發高效分選設備、高效無毒的新葯劑,重點研究復合力場分選新設備、多種成分協同作用的新葯劑以及處理貧、細、雜難選礦石的綜合分選新技術。
四是在礦石綜合利用研究中,開發無廢清潔生產工藝,加強尾礦中礦物的分離、提純、超細、改性的研究,使其成為市場需要的產品,為礦物物料工業向礦物材料工業轉化提供新技術。
五是大力將高新技術引進礦物工程領域,重點開展礦物生物工程技術、電化學調控和電化學控制浮選技術、過程自動尋優技術,以及高技術改造傳統產業的新技術研究。
六是加強基礎理論與選礦技術相結合的新型邊緣科學研究,促進新一代礦物分選理論體系的形成,並派生出新興的礦物分選和提純技術。
⑹ 金屬是如何開採的
(一)新疆金屬礦開采歷史回顧
新疆金屬礦產開采,遠可追溯到距今 2400 ~ 2600 年前的青銅器時代,尼勒克縣奴拉賽銅礦就是本期開採的對象,這里古采坑和深達 20 米豎井十餘處,沿奴拉賽小溪兩岸階地分布,可見木炭與冰銅多次重疊,冰銅厚度 1 ~ 5 厘米,銅含量大於 60%。在昭蘇縣洪那海銅礦古開采坑道,比比皆是,河穀草原上煉渣成堆。查布察爾縣烏孫山北麓合抱松樹長在爐渣堆之上。尼勒克北山松樹中,爐渣廣布,松樹長於其中。從上述簡單列舉可以看出伊犁地區在遠古時期,先民們已介入銅礦業的開采與冶煉。
新疆金礦開采也有 2000 年的歷史,據史書記載,唐代採金業明顯發展,設有金山都督府。明代仍有採金記錄,清代為新疆採金業全盛時期。乾隆年間,和田砂金開采點有 12 處,乾隆三十六年(1771 年)設奎屯金廠,後相繼在烏蘇、瑪納斯、呼圖壁、昌吉和烏魯木齊到吐魯番間設金廠 10 余處,屯兵採金,採金業一直延續到光緒年間,道光到咸豐時哈圖山金礦曾設五廠十區,金夫達數萬人。據《新疆圖志》記載,清代阿爾泰山採金最盛時,年採金5萬~6萬兩,民國時代曾達 10 萬兩。《新疆志稿》稱光緒年間和田每年產金 2 萬~ 3 萬兩,到民國採金業才衰敗。
阿爾泰砂金開采幾起幾落,最大井深可達 150 米,在西岔河曾采出 240 克重的「駱駝金」。據說還曾有 64 兩的狗頭金出現。
據古書記載,龜茲國(庫車)、姑墨國(拜城)銅山十數,礦脈延長百餘十里,銅色蒼翠,柔潤如脂,堪稱上品。焉耆銅礦苗上下寬 30 丈,長 1 里許。漢代庫車產紅銅,官督民辦,省官錢局鑄錢全賴此山之銅,其質柔粹良美,一歲交銅 10 萬斤上下,所煉之鐵恆充三十國用。清代從採到煉並鑄造錢幣取自滴水銅礦。「察合奇」據傳這里是清代在新疆的重要鑄幣廠(圖 6-6-1)。
(二)開采方式
現代金屬礦產開采,依據其礦體出露與埋藏程度而分為露天開采和地下開采兩種。露天開采適用於地表出露的礦體,一般較大者多用機械開采,利用多功能裝載汽車或電動火車運輸。地下開采礦山較多,開采方式與方法多樣,機械化程度差異較大,當前新疆地下金屬礦開采基本上可歸為三種形式:
平峒開采:即利用水平坑道運輸出礦。將礦石裝入礦車,通過鋪設鐵軌的坑道,直接將礦車推出地面(圖 6-6-2)。
斜井開采:即利用斜井運輸出礦。將采出的礦石裝入礦車,通過地下鋪設鐵軌的坑道,將礦車推向斜井下口(石門區),再利用鋼纜繩通過卷揚機牽引礦車,沿著斜井斜坡軌道,將礦車斜向拉向地面(圖 6-6-3)。
豎井開采:即利用豎井運輸出礦。將采出的礦石裝入礦車,通過地下鋪設鐵軌的坑道,運往豎井下口(石門區),把礦車(一般為 2 輛)推入罐籠,由地面卷揚機的鋼纜繩牽引,垂直將礦車提升到地面(圖 6-6-4)。
(三)開采方法
鑒於金屬礦的成礦多樣性,空間狀態的差異性,礦石質量與圍岩條件的不固定性,致使金屬礦的開采方法具多樣性。當前運用最多的開采方法,是崩落-充填法,該方法的優點是能保持開采安全高度,利於安全生產,減少廢石轉送量,低開采成本投入,故而得到開礦者的普遍利用。
礦石爆破:金屬礦屬於固體礦產,需要打眼放炮爆破開采,一般多用壓風機帶動風槍打眼,用硝酸銨炸葯,電爆破作業,而獲得有用礦石。
坑道開掘與維護:地下礦山建設之初,首先施工的是運輸工程(坑道、斜井、豎井)和地下坑道,為了安全起見,並要對已經開掘的坑道利用快乾水泥噴塗護壁,在坑道底面兩側開掘排水溝,鋪設軌道,以及安裝通風管和照明電線等。
礦石運輸:當外部運輸(坑道、斜井、豎井)建設完畢後,內部運輸坑道(由采場到石門)是礦山運輸的關鍵和安全的關鍵。一般礦山的礦石多由人工裝卸,地下機械化裝卸很少;運輸設備在新疆多用礦車,關內不少的正規礦山多用電動機車。
通風:礦山開采處於地下,因此施工必須保證在有充裕新鮮空氣的環境條件下進行。同時,由於爆破煙塵、生產粉塵也要及時排除,故均需要通風。礦山採用的通風量要視礦山生產量與礦石性質而定,合理地選擇與匹配通風機及應鋪設風管的規格與數量。並及時檢查送風量以及采場、坑道、礦倉的空氣質量。
排水:地下開采,尤其是較深部的地下開采,地下涌水量大是必然的,需要購置排水設備,設計合理而科學的排水系統,准確而及時地將礦坑積水導入儲水倉,並視地下水的流速和流量制定出定期和經常性向地面泵水的方案。金屬礦山除要注意冒頂偏幫的生產事故外,透水也是金屬礦山的一大安全生產隱患。
照明:地下生產礦山,照明是生產的第一要素。礦山照明多由坑口電站供電,並與地區電網連通。礦山根據自身的生產需要而鋪設電纜,確定照明點及照明度,屬於生產系統的如采場、運輸坑道、石門區、地面礦石堆積場等地段必須保證合乎生產要求的能見度。為保證 24小時照明,礦山也要採取持續照明的應急措施。
安全:礦山生產屬於高危行業,要牢固樹立安全第一的思想,要配備一定數量的安全人員(含管理人員),配置充裕的安全設備,制定一系列行之有效的安全生產規章制度,不斷地對生產有關人員進行持續性地安全生產教育。對安全要警鍾長鳴,常抓不懈。
(四)礦山建設
新疆金屬礦產採掘業,是在新中國成立之後逐步建設起來的。
鐵礦圍繞著八一鋼鐵廠開發而建立起硫磺溝、大黃山菱鐵礦開采礦山,繼而又建設雅滿蘇鐵礦、蒙庫鐵礦、磁海鐵礦。由於莫托沙拉鐵錳礦勘探完畢,躍進鋼鐵廠和靜鋼鐵廠也相繼建立。新源鐵廠是利用預須開普鐵礦作為礦山資源而生產。另如天龍鋼鐵廠等出現使新疆鋼鐵業有了一個競爭建設環境和良好的生產氛圍。
銅礦生產起步很早,在 1958 年時就有布倫口、尼勒克、木壘等銅選廠建立,並生產出冰銅行銷國內。20 世紀末有色金屬採掘業得到系統發展,先後有喀拉通克和黃山銅鎳礦生產,21世紀初阿舍勒銅礦、哈密銅鎳礦又得到進一步發展,新疆有色集團公司的工業園建設把有色金屬生產提高了一個新的生產台階,形成阿舍勒、喀拉通克、黃山、鄯善縣、阿克陶縣、烏恰縣等,銅鉛鋅集中生產基地。
金礦目前在新疆僅阿希一處具有較大的生產能力,「西准」、「東准」、「北山」、「金窩子-馬庄山」,乃是衛星式礦山進行一定的規模生產。
稀有金屬礦產的生產布局,仍是可可托海和阿爾泰兩個基地。
⑺ 有誰可以告訴我金屬怎麼形成的有什麼用途
金屬的用途
「大地之子」-----鈦
鈦是一種銀白色的金屬,早在1791年,英國科學家威廉姆·格里戈爾在英國密那漢郊區找到這種神奇的元素時,首先發現了這種新元素。過了4年,德國化學家克拉普洛特又從匈牙利布伊尼克的一種紅色礦石中,發現了這種元素,便以希臘神話中的英雄來命名。鈦的意思是「地球的兒子」。鈦的外形很像鋼鐵,但遠比鋼鐵堅硬,且體重只有鐵的一半。在常溫下,鈦可以安然無恙地「躺」在各種強酸、強鹼中;就連最兇猛的酸------ 王水,也不能腐蝕它。有人曾把一塊鈦片扔進大海,經過5年以後取出來,仍然閃閃發亮,沒有半點銹斑。俗話說:「真金不怕火煉」。可是鈦的熔點比黃金還高出600多攝氏度。正因為鈦的本領非凡,所以有著廣泛用途。現在,鈦是製造飛機、坦克、軍艦、潛艇不可缺少的金屬。在宇宙飛船和導彈中,也大量用鈦代替鋼鐵。鈦與氮、碳結合生成的氮化鈦、碳化鈦,也是非常堅硬的化合物,它們的耐熱本領甚至還比鈦高1倍。這樣堅硬而耐熱的材料,可以代替超級鋼,製造高速切削刀具。鈦的許多特殊性能,還在化工、超聲波和超導技術中得到應用。然而,鈦有個最大的缺點,就是提煉比較困難。這主要是因為鈦在高溫下可以與氧、碳、氮以及其他許多元素化合。所以人們曾把鈦當作「稀有金屬」,其實,鈦的含量約佔地殼重量的6‰,比銅、錫、錳、鋅的總和還要多10多倍。在世界上,我國鈦的儲藏量最多,四川的攀枝花,鈦的儲藏量佔全國90%以上,是世界上罕見的大鈦礦。
鋁的外衣
將銀白色的鋁放在空氣中,沒有多久,便穿上了一件極薄的、近乎透明的白色外衣——氧化膜。
真使人難以相信,鋁的這件外衣,同光彩奪目的紅、藍寶石的主要成分竟是一個東西,都是氧化鋁(A1203)。它們的區別,只是晶體的結構不同。然而,你可別瞧不起鋁的這件貌不驚人的外衣,它對於鋁的使用卻作出了傑出的貢獻哩!
大家都知道,鋼鐵是具有多種寶貴性能的材料。將鋼鐵放在空氣中,也會穿上一件外衣——鐵銹(主要成分是氧化鐵)。可是鋼鐵的這件外衣結構很疏鬆,大氣中的氧、水蒸氣、二氧化碳分子都能穿過這件外衣的無數孔隙,深入到鋼鐵內部,繼續把鋼鐵變成鐵銹,直至整塊鋼鐵都變成無用的「爛鐵」為止。所以,為了保護鋼鐵不被銹蝕,人們常讓鋼鐵製品另外穿上一件保護衣——防銹物質。
鋁的外衣與鋼鐵的外衣不同,它雖然非常薄,但是卻「天衣無縫」,非常緻密。即使把鋁塊拉長、壓扁、扭轉或彎曲,它也不會鬆掉、脫落,仍能牢牢地裹在鋁的表面。氧氣、水蒸氣、二氧化碳分子對它都無可奈何,鑽不過去。
鋁的外衣——氧化鋁不溶於水,熔點高達2050℃。把鋁製品加熱到660℃時,金屬鋁已熔化成為液體,可是氧化鋁仍然覆蓋在液態鋁表面,防止氧氣與鋁接觸。
鋁的外衣稱得上是一副不怕水浸、火燒,能夠保護自己免受大氣腐蝕的盔甲。
但是,鋁的外衣也有關中不足之處:一是天然形成的這件防護衣太薄了,厚度只有萬分之二到萬分之四毫米,一張普通的紙也比它厚五百倍,因此經不起機械的損傷;二是怕酸、怕鹼。如果這件外衣能夠再厚一些,能更堅硬、耐磨損、耐腐蝕,就更好了。
為了使鋁的外衣增厚,人們想到,鋁的外衣——氧化鋁膜,是鍋與空氣中的氧發生氧化反應生成的。如果用比氧具有更強的氧化性物質來和鋁發生氧化反應,那末,生成的氧化鋁膜豈不是可以更厚實一些了嗎?
於是,人們先用磷酸鈉(Na3PO4)、氫氧化鈉(NaOH)、硅酸鈉(Na2SiO3)等溶液洗去鋁製品表面的油污,再讓它在熱水中洗個澡,然後浸在鉻酸鈉(Na2CrO4)、碳酸鈉(Na2CO3)及氫氧化鈉混和液中進行氧化處理。由於鉻酸鈉是一種強氧化劑,鋁的外衣一—氧化鋁膜果然大大增厚了。
在工業上,人們將鋁製品浸在電解質溶液中作陽極,通入直流電使鋁氧化,也生成了較厚的氧化鋁膜。人工加厚的氧化鋁膜比天然形成的厚八十多倍,達0.015—0.017毫米。
有趣的是,人工加厚的鋁製品外衣,還真象人穿的衣服一樣可以染上各種顏色。這樣,鋁製品就不再是一律穿銀白色的外衣了,而是可以穿上金黃、大紅、寶藍、翠綠等五光十色的漂亮衣服。你們看到的逗人喜愛的金黃色筆套、彩色金屬鈕扣、打火機等等鋁製品,它們穿的就是染了色的氧化鋁外衣。
燈泡的化學
當我們輕輕一按開關,亮起書桌上的台燈來溫習時,我們又對這個助手有多少認識呢?
想一想 你知道一個普通燈泡怎樣發光嗎?
燈泡所以能夠發光,是因為電流經過鎢的金屬絲(又稱鎢絲)時產生高熱所引致的。我 們所以選用鎢絲,是因為它是熔點最高的金屬(其熔點為3422oC),在攝氏1000多度的環境下仍舊保持不變,而其他金屬在這環境下早已熔掉了。
鎢和很多金屬一樣,在高溫時很快便會被氧化和燒斷,所以燈泡里不能存有氧氣。但如果抽出所有空氣令燈泡真空,高溫的鎢又很容易蒸發成為氣體,縮減了燈泡的壽命。那怎麼辦呢?為了延長燈泡的壽命,燈泡里會載滿氬這種惰性氣體,並且加了點壓力,以減低蒸發的機會。此外,燈泡里還加點碘,同樣是為了減慢鎢蒸發的速度。這是因為鎢和碘在約1000oC 的環境下會變成碘化鎢,但當碘化鎢再接觸高熱的鎢絲時,又再變回鎢和碘。這樣,便可以使燈泡的壽命延長一點了。
水不能撲救哪些物質造成的火災
當火災發生時,很多人會習慣的用水去滅火,但事實上有些時候卻不能這么做,下面這些著火的情況便不能用水去滅火,否則變成了「火上澆油」。
(1)鹼金屬不能用水撲救。因為水與鹼金屬(如金屬鉀、鈉)作用後能使水分解而生成氫氣和放出大量熱,容易引起爆炸。
(2)碳化鹼金屬、氫化鹼金屬不能用水撲救。如碳化鉀、碳化鈉、碳化鋁和碳化鈣以及氫化鉀、氫化鎂等遇水能發生化學反應,發出大量熱,可能引著火和爆炸。
(3)密度小於水的和不溶水的易燃液體,原則上不可以用水撲救。
(4)熔化的鐵水、鋼水不能用於撲救。因為鐵水、鋼水溫度約在1 600 ℃,而水蒸氣在1 000 ℃以上時便能分解出氫氣和氧氣,有引起爆炸危險。
(5)高壓電器裝置火災,在沒有良好接地設備或沒有切斷電流的情況下,一般不能用水撲救。
鋼鐵和合金
鋼鐵和合金統稱為金屬材料。金屬材料一般利用它們的物理性質,如延展性、硬度、抗拉強度、導熱性、導電性等。有時也利用它們的化學性質,如抗氧化、抗酸鹼性等。除了作導線、儀器儀表的零部件、廚房用具等外,很少用金屬單質,常用的是它們的合金,因為合金的性能和使用價值都比單質高。
通常所指的合金是有色合金的泛稱,如銅合金、鋁合金等。實際上鋼也是合金,普通的鋼材是鐵和碳的合金,所以也叫碳素鋼。鋼里除鐵、碳外,加入其他的元素,就叫合金鋼。另加入一種元素的合金鋼,即是三元合金鋼。如錳鋼、硅鋼(也叫矽鋼,矽是硅過去的中文名稱)等。另外加入兩種或兩種以上元素的叫多元合金鋼。合金鋼還常按用途命名,如工具鋼、高速鋼、不銹鋼等。
我國的鋼鐵工業發展較快,特別是一些大型鋼鐵廠的建成投產,鋼的年產量迅速增加(目前寶鋼的年產量為600萬噸,到1999年可達1000萬噸),1993年已達8688萬噸,居世界第三位。
下面介紹一些重要的鋼種。
在碳素鋼中有一般碳素鋼和優質碳素鋼。前者含碳量在0.4%以下的用作鐵絲、鉚釘、鋼筋等建築材料,含碳量0.4~0.5%的用作車輪、鋼軌等,含碳量0.5~0.6%的用來製造工具、彈簧等。後者含硫、磷等雜質比一般碳素鋼低,常用作機械零件,在機械製造業中應用最多。
在合金鋼中有錳鋼、硅鋼等。錳鋼一般含錳1.4~1.8%,用於製造汽車、柴油機上的連桿螺栓、半軸、進汽閥和機床的齒輪等。硅鋼是含硅量高的鋼,具有很高的電阻,在電氣工業中有廣泛應用。例如,變壓器用的鋼即是含碳量小於0.02%、含硅3.8~4.5%的硅鋼。
在按用途命名的鋼中,常見的有工具鋼、高速鋼和不銹鋼。
工具鋼是用作車刀、刨刀、銼刀、鋸條、拉絲工具等的合金鋼。常用的有鉻鋁工具鋼(含鉻1.2~1.5%、含鋁1.0~1.5%)、鉻鉬釩工具鋼(含鉻11~12%、含鉬0.4~0.6%、含釩0.15~0.3%)、鉻錳鉬工具鋼(含鉻0.6~0.9%、含錳1.2~1.6%、含鉬0.15~0.3%)等。
高速鋼也叫鋒鋼,是含鎢的合金鋼,用於製造高速運轉的切削工具。它一般含鎢8.5~19%、含鉻3.8~4.4%、含釩1~4%。
不銹鋼主要指含鉻、鎳的合金鋼,品種很多,常見的有含鉻17~20%、含鎳8~11%。如果再加入鈦(1%左右),鋼的耐酸能力更強。
重要的有色金屬合金中,銅合金較多,下面介紹其中的5種。鋁青銅含銅90~95%、鋁5~10%,用作裝飾品和用具。
青銅含銅67~89%、鋅2~33%、錫0~9%(不含錫的也叫無錫青銅)、鉛0~2%,用作製造機械零件。此外還有特種青銅,如磷青銅、鈹青銅、硅青銅等,具有耐腐蝕、高導電性能,用於儀表工業。
黃銅含銅66~73%、鋅27~34%,常用於製造船舶機械零件。
鋁黃銅含銅68~70%、鋅27~31%、鋁1~3%,用於製造船的推進機翼、舵等。
德國銀含銅45~62%、鋅20~30%、鎳15~18%,呈銀色、硬度高、電阻大,用來製作裝飾品和電熱器。
鋁合金中主要有堅鋁和鋁鎂合金。堅鋁含鋁95.5%、銅3%、錳1%、鎂0.5%,堅硬而輕,用於製造汽車和飛機。
鋁鎂合金含鋁90~94%、鎂6~10%,可製作儀器及天平梁。
易熔合金有鑄字合金、巴比特合金、伍德合金和焊錫等。鑄字合金(也稱活字金)含鉛70%、銻18%、錫10%、銅2%,用於製造鉛字。
巴比特合金含錫70~90%、銻7~24%、銅2~22%,它是包含堅硬晶體的過冷液體,受到壓力時會自動調整而減少磨損,用於製造機械的軸承。
伍德合金含鉍38~50%、鉛25~31%、錫12.5~15%、鎘12.5~16%,熔點低(60~70℃),用於製作汽鍋的安全閥等。
焊錫含鉛67%、錫33%,熔點為275℃,用於熔接金屬。
此外,含鎳60~75%、鐵12~26%、鉻11~15%、錳1~2%的鎳鉻合金,電阻大、耐腐蝕,常用作電熱絲(鎳鉻絲)。
返回
新型金屬材料
新型金屬材料種類繁多,它們都屬合金。
形狀記憶合金 形狀記憶合金是一種新的功能金屬材料,用這種合金做成的金屬絲,即使將它揉成一團,但只要達到某個溫度,它便能在瞬間恢復原來的形狀。形狀記憶合金為什麼能具有這種不可思議的「記憶力」呢?目前的解釋是因這類合金具有馬氏體相變。凡是具有馬氏體相變的合金,將它加熱到相變溫度時,就能從馬氏體結構轉變為奧氏體結構,完全恢復原來的形狀。
最早研究成功的形狀記憶合金是Ni-Ti合金,稱為鎳鈦腦(Nitanon)。它的優點是可靠性強、功能好,但價格高。銅基形狀記憶合金如 Cu-Zn-Al和 Cu-Al-Ni,價格只有Ni-Ti合金的10%,但可靠性差。鐵基形狀記憶合金剛性好,強度高,易加工,價格低,很有開發前途。表7-3列出一些形狀記憶合金及其相變溫度。
形狀記憶合金由於具有特殊的形狀記憶功能,所以被廣泛地用於衛星、航空、生物工程、醫葯、能源和自動化等方面。
在茫茫無際的太空,一架美國載人宇宙飛船,徐徐降落在靜悄悄的月球上。安裝在飛船上的一小團天線,在陽光的照射下迅速展開,伸張成半球狀,開始了自己的工作。是宇航員發出的指令,還是什麼自動化儀器使它展開的呢?都不是。因為這種天線的材料,本身具有奇妙的「記憶能力」,在一定溫度下,又恢復了原來的形狀。
多年來,人們總認為,只有人和某些動物才有「記憶」的能力,非生物是不可能有這種能力的。可是,美國科學家在五十年代初期偶然發現,某些金屬及其合金也具有一種所謂「形狀記憶」的能力。這種新發現,立即引起許多國家科學家的重視。研製出一些形狀記憶合金,廣泛應用於航天、機械、電子儀表和醫療器械上。
為什麼這些合金不「忘記」自己的「原形」呢?原來,這些合金都有一個轉變溫度,在轉變溫度之上,它具有一種組織結構,面在轉變溫度之下,它又具有另一種組織結構。結構不同性能不同,上面提及美國登月宇宙飛船上的自展天線, 就是用鎳鈦型合金作成的,它具有形狀記憶的能力。這種合金在轉變溫度之上時,堅硬結實,強度很大;而低於轉變溫度時,它卻十分柔軟,易於冷加工。科學家先把這種合金做 成所需的大半球形展開天線,然後冷卻到一定溫度下,使它變軟,再施加壓力,把它彎曲成一個小球,使之在飛船上只佔很小的空間。登上月球後,利用陽光照射的溫度,使天線重新展開,恢復到大半球的形狀。
形狀記憶合金問世以來,引起人們極大的興趣和關注,近年來發現在高分子材料、鐵磁材料和超導材料中也存在形狀記憶效應。對這類形狀記憶材料的研究和開發,將促進機械、電子、自動控制、儀器儀表和機器人等相關學科的發展。
高溫合金 渦輪葉片是飛機和太空梭渦輪噴氣發動機的關鍵部件,它在非常嚴酷的環境下運轉。渦輪噴氣發動機工作時,從大氣中吸入空氣,經壓縮後在燃燒室與燃料混合燃燒,然後被壓向渦輪。渦輪葉片和渦輪盤以每分鍾上萬轉的速度高速旋轉,燃氣被噴向尾部並由噴筒噴出,從而產生強大的推力。在組成渦輪的零件中,葉片的工作溫度最高,受力最復雜,也最容易損壞。因此極需新型高溫合金材料來製造葉片。
貯氫合金 氫是21世紀要開發的新能源之一。氫能源的優點是發熱值高、沒有污染和資源豐富。貯氫合金是利用金屬或合金與氫形成氫化物而把氫貯存起來。金屬都是密堆積的結構,結構中存在許多四面體和八面體空隙,可以容納半徑較小的氫原子。如鎂系貯氫合金如MgH2,Mg2Ni等;稀土系貯氫合金如LaNi5,為了降低成本,用混合稀土 Mm代替La,推出了MmNiMn, MmNiAl等貯氫合金;鈦系貯氫合金如TiH2,TiMn1.5。貯氫合金用於氫動力汽車的試驗已獲得成功。隨著石油資源逐漸枯竭,氫能源終將代替汽油、柴油驅動汽車,並一勞永逸消除燃燒汽油、柴油產生的污染。
非晶態合金 非晶態合金又稱為金屬玻璃,具有拉伸強度大,強度、硬度高,高電阻率、高導磁率、高抗腐蝕性等優異性能。適合做變壓器和電動機的鐵芯材料。採用非晶態合金做鐵芯,效率為97%,比用硅鋼高出10%左右,所以得到推廣應用。此外,非晶態合金在脈沖變壓器、磁放大器、電源變壓器、漏電開關、光磁記錄材料、高速磁泡頭存儲器、磁頭和超大規模集成電路基板等方面均獲得應用。