㈠ 丁二烯漲價受益股有哪些
丁二烯價格上漲250元/噸,較上周已漲近15%,貨源供應偏緊延續,貿易商低價惜售;漲價已傳導至下游,丁腈橡膠、丁苯橡膠價格上漲。
相關概念股:
齊翔騰達(11.94 +0.17%,診股):擁有15萬噸丁二烯生產裝置,受益產品漲價的業績彈性較大。旗下還擁有19萬噸甲乙酮產能,占國內份額近一半,2015年半年報顯示,該業務占公司主營利潤比近50%。同時,其在建的35萬噸MTBE、20萬噸異辛烷產能將受益油品升級政策。另外,公司通過收購齊魯科力99%股權進軍能源凈化產業鏈,加碼硫磺回收、煤化工催化劑等業務布局。
華錦股份(12.04 +1.43%,診股):主營原油加工、尿素等業務,擁有6萬噸丁二烯產能。作為中國兵工集團旗下公司,資產整合預期較高,通過斥資23.77億元收購振華海外石油2015年至2022年期間收益權的49%。公司預計全年凈利為2.5億元-2.8億元,同比扭虧為盈,2015年年報凈利實現扭虧為盈,並符合撤銷退市風險警示條件,公司將及時提交材料向深交所申請。
*ST天利:新疆獨山子天利高新技術股份有限公司是新疆首家高新技術企業和石油化工行業上市公司。主營生產、銷售高鹼性環烷酸鈣、環烷酸鎂系列添加劑,高等級道路瀝青、建築瀝青、電纜、絕緣和電池封口劑等專用瀝青,聚丙烯及塑料。
㈡ 端羥基聚丁二烯的結 論
綜上所述,端羥基聚丁二烯有很多優點,可應用的范圍亦較廣泛,應根據情況權衡利弊,選擇切實可行的民用途徑,可以充分利用端羥基聚丁二烯的優點,用連續自動化生產和使用澆注工藝生產形狀復雜的汽車安全用零件和電氣絕緣材料、船用零件等。具有特殊性能和端羥基聚丁二烯塗料和膠粘劑。是很有前途的民用產品,在開發研製中不需要任何機械(除性能測試外),實際上只是配方的研究和探索。將其作為其他材料的改性劑亦是比較實際的應用途徑,有時還能收到立竿見影的效果。
在國外,隨著人工費用的高漲、能源危機和日益強調環境保護,液體端羥基聚丁二烯會日益顯出它的優越性。但存在下列問題有待進一步解決。
(1) 價格高
價格是決定產品是否有使用前途的重要依據,尤其是民用產品,價格太貴,即使性能再好亦無使用前途。降低端羥基聚丁二烯產品的價格有兩種方法:(一)改進合成工藝,從而降低大原材料端羥基聚丁二烯的價格。(二)利用液體橡膠的特點,使加工工藝連續化、自動化、機械化、減少設備費用及人工費用,最終製品價格可能不會高於固體橡膠製品的價格。然而要做到這一點並非容易,現有的固體橡膠加工工業,已有較長的發展歷史,有一套完善的加工機械和成熟的工藝過程,如換用液體橡膠,則要去掉原有機械,建立一套適合液體橡膠的加工工藝。
(2) 如前所述性能上的缺點。
(3) 有待開發液體橡膠專用的混煉機械和加工機械。
所以在端羥基聚丁二烯民用開發工作中,還有許多工作要做。在國外這種工作正在積極進行,以日本最為突出,無非是要更好地達到戰時軍用、平時民用的目的。 間二甲苯二異氰酸酯 9 ISAF炭黑 50 物性測定溫度℃ 20 -40 20 - 40 20- 40 20 -40 20 - 40 100%抗張應力, (公斤/厘米2) 14 33 60 161 17 127 56 134 32 132 300%抗張應力,(公斤/厘米2) 71 112 105 307 92 49 219 抗張強度,(公斤/厘米2) 110 255 140 500 20 230 94 290 64 250 伸長,% 470 560 420 400 150 270 310 300 430 340 硬度(肖氏A) 35 65 89 93 60 84 80 80 76 81 註:(1)每個配方中含有紫外線吸收劑Tinuvin 327 1.0份,抗養劑Irganox 565 0.1份,二丁基錫二月桂酸酯(DBTDL)0.05份。
(2)MP-9 是polytd R-45M和過剩的TDI反應而得到的端異氰酸酯預聚物。
(3)HIP-9是polycd R-45HT 和過剩的TDI反應而得的端異氰酸酯預聚物。
(4)苯胺系二醇是N,N-雙(2-羥丙基)苯胺。
(5) Isonol 93是液體多元醇。
表4 端羥基聚丁二烯固化物水解穩定性 配 方 1 2 Polybd R-45M 100 100 甲苯二異氰酸酯 7 7 二丁基錫二月桂酸酯 0.04 0.04 炭黑sterling 10R - 4.0 Ethyl 702抗氧劑 1.0 1.0 在100℃水中的天數 0 2 5 6 0 5 物理性能 抗張強度(磅/英寸2) 152 136 144 141 1268 1189 伸 長,% 174 142 172 181 299 274 100%模量(磅/英寸2) 126 125 120 113 519 499 200%模量(磅/英寸2) - - - - 922 999 肖氏硬度,A 42 42 38 38 71 66 表5 端羥基丁二烯固化的耐熱特性 1 2 3 4 5 Polybd R-45 HT
聚丁二烯預聚物 MP-9
苯胺系二醇lsonol C-100
液體MD 1
加工油AH-10
抗張強度(公斤/厘米2)
伸 長(%)
硬 度(肖氏A)
加熱後的變化率(在100℃)
加 熱(68小時)
抗張強度(%)
伸 長(%)
硬 度(%) 100
14
17
120
57
+12
+ 9
+ 8 100
16.8
38
133
260
83
-11
-17
+ 1 100
16.8
38
144
280
87
- 3
-17
- 2 100
16.8
38
100
65
300
60
+35
+35
+ 3 100
21
183
520
89
+ 5
- 8
0 表6 無簾布輪胎所要求液體橡膠的性能 高溫時要求的性能 抗張強度(100℃)
抗撕裂強度(100℃)
耐屈撓性(80℃)
室溫時的性能要求
抗張強度
伸 長
200%模量 126公斤/厘米2 以上
35公斤//厘米2 以上
2×106 循環 以上
196公斤/厘米2 以上
400% 以上
98-108 公斤/厘米2 無溶劑室溫固化,亦是端羥基聚丁二烯塗料特點之一。如一種二液型塗料:A液主要有端羥基聚丁二烯、辛酸錫、紫外線吸收劑、抗氧劑、加工油、碳酸鈣、芳族短鏈二醇、滑石粉、顏料。B液主要有4,4′-二苯基甲烷二異氰酸酯和加工油。按配料比A/B=4/1混合後即可使用,因可室溫固化,毋需大型加熱設備,因無溶劑又可消除對環境的污染及爆炸、火災等危險。它的塗層不易脫落,耐化學性能良好,將塗料浸入10%鹽酸水溶液和40%的苛性鈉水溶液中72小時(常溫),沒有發生變質現象。
端羥基聚丁二烯與環氧樹脂配合,可製成水溶性、常溫固化的電絕緣塗料,主要成份有端羥基聚丁二烯,偏苯三酸酐、環氧樹脂、四氫化酞酸酐,三乙醇胺和水,這種組成可用作電線塗料。該塗料的擊穿電壓是9.4千伏,柔性及抗鹼性良好。
由1,2-聚丁二烯二醇還可製成其他電絕緣塗料和木材地板用塗料。
除上述塗料外,還有一些其他品種的塗料,如全氟烷基碘化物與均聚或共聚的端羥基聚丁二烯反應,可製成改性的含氟的丁二烯脂肪,這種樹脂能防水、防油,可用作織物、木材、金屬等的塗料。
端羥基聚丁二烯價格較貴,因此由該預聚物製得的塗料必有獨到之處,才能在市場上站穩,有競爭力。端羥基聚丁二烯塗料是聚氨酯塗料的一種,性能的某些方面優於現有的聚氨酯塗料(參見文獻19),所以端羥基聚丁二烯塗料是有前途的民用產品。
4、端羥基聚丁二烯膠粘劑
用端羥基聚丁二烯可製成膠粘劑,用來粘結橡膠、聚酯、金屬,其特點是無溶劑常溫固化。該膠粘劑除端羥基聚丁二烯以外,還要加入固化劑。固化催化劑、補強劑等配合劑。表7列出由端羥基聚丁二烯-苯乙烯共聚物製得的膠粘劑的簡單配方和物理性能。在配方當中,改變配合劑的種類和用量可得到不同性能的膠粘
劑,如炭黑的種類及用量、固化劑及固化催化劑的用量、NCO/OH的當量比對膠的物理性能均有影響,所以要在實踐中探索最佳配方。
表7 液體橡膠粘劑的配方及物理性能 1 2 端羥丁基聚丁二烯—苯乙烯共聚物(HT-PBS)
炭黑(ISAF-LS)
TDI
MDI
NCO/OH當量比
催化劑(DBTDL)
防老劑
物理性能
100%抗張應力(公斤/厘米2)
300%抗張應力(公斤/厘米2)
抗張應力(公斤/厘米2)
伸 力,%
撕裂強度(公斤/厘米)
硬 度(肖氏A) 100
50
6.8
1.2
0.2
3.0
22
97
207
560
45
65 100
50
9.6
1.0
0.05
3.0
25
104
200
560
42
61 用端羥基聚丁二烯還可製成有彈性的粘結金屬用的膠粘劑,主要成份是端羥基聚丁二烯和甲苯二異氰酸酯反應製得的預聚物HTP-9。配方1中添加了辛基二醇,NCO/OH之比為0.9,配方2中添加了N,N-雙(2-羥丙基)苯胺,NCO/OH之比為1.0。膠在加壓下1小時即可固化,室溫下放置7天,可達以下強度(見表8)。
表8 用液體橡膠粘結金屬的強度 膠粘劑 裂 張 斷 裂 粘 結 強 度(公斤/厘米2) 不銹鋼 鐵 鋁 銅 黃銅 1 34.7(C) 40.4(C) 18.8(A) 25.7(C) 10.4(C) 2 29.8(C) 31.4(C) 28.5(C) 22.5(A) 14.1(A) 註:(A)界而剝離;(C)內聚破壞。
用端羥基聚丁二烯粘結磨料,可制面耐高溫磨具。主要成份有polybd R-15、熔化的氧化鋁磨料、硫黃、熟石灰、醛胺促進劑等。該磨具比用天然橡膠和其他合成橡膠等粘結的磨具強度要高4倍。
端羥基聚丁二烯還可製成導電膠及粘結聚酯的膠粘劑。
導電膠製法如下:polybd R-45HT 1公斤,加炭纖維30公斤,混合後加防老劑1克,紫外線吸收劑10克、二丁基錫二月桂酸酯1克、4,4′-二苯基甲烷二異氰酸酯100克,將上述組分充分混合,減壓脫泡,即可用作膠粘劑。
由於結構上的原因,聚乙撐苯二甲酸酯,聚乙撐萘二甲酸酯等聚酯材料比較難粘結,因而限制了它的使用范圍。用端羥基聚丁二烯可製成聚酯的膠粘劑,膠的配方如下:
聚乙撐苯二甲酸酯(1)99份,端羥基聚丁二烯157.9份,熔於1050份的硝基甲苯中。在該溶液中加入0.12份的二特丁基錫二月桂酸酯及24.1份的二苯基甲烷二異氰酸酯,用甲烷瘵生成物沉澱出來。所得生成物8份、六甲撐雙(乙撐脲)1.6份、N,N′-二異丙基苯並噻唑次磺酸胺2份,置於甲酚、甲苯和水的混合液中成為一種膠液,將該膠液塗在聚酯片的表面,將兩聚酯片粘在一起加壓(156公斤/厘米2),在150℃、40分鍾內兩個片即牢固地粘合在一起。
使用端羥基聚丁二烯膠粘劑粘結金屬時,粘結強度低,為提高強度,使用了1,2—聚丁二烯二醇的接枝聚合物,接枝的單體是胺類,接枝後再與多異氰酸酯反應,即可成為膠乳。
除上述膠粘劑外,抻用端羥基聚丁二烯還可製成壓敏膠、熱熔膠及膠帶等膠粘劑。
5、端羥基聚丁二烯的其它用途
(1)改性劑
(2)1,2-聚丁二烯二醇的應用
㈢ 丁二烯用什麼ziegler-natta引發劑可以得到這三種立構體
探究催化劑的原理,往往太復雜啦!!
黏貼上來的答案.
6.3 α-烯烴Ziegler-Natta聚合反應
Ziegler-Natta引發劑是目前唯一能使丙烯,丁烯等α-烯烴進行聚合的一類引發劑.本節主要討論TiCl3/AlEt3和TiCl4/AlEt3二個非均相Ziegler-Natta引發下的配位定向聚合反應,二者不僅在理論上被研究得較為透徹,而且最具工業化意義.
6.3.1 鏈增長活性中心的化學本質
Ziegler-Natta引發劑的二組分即主引發劑和助引發劑之間存在著復雜的化學反應.以TiCl4-AlEt3為例:
TiCl4 + AlEt3→ TiCl3Et + AlEt2Cl
TiCl4 + AlEt2Cl→ TiCl3Et + AlEtCl2
TiCl3Et + AlEt3→ TiCl2Et 2+ AlEt2Cl
TiCl3Et → TiCl3 + Et·
TiCl3 + AlEt3→ TiCl2Et + AlEt 2Cl
2 Et·→歧化或偶合
實際上的反應可能要更復雜,但可以肯定的是TiCl4烷基化,還原後產生TiCl3晶體,再與AlEt3發生烷基化反應形成非均相Ti-C引發活性中心.因此實際上可直接用TiCl3代替TiCl4.
6.3.2 Ziegler-Natta引發劑下的配位聚合機理
聚合機理的核心問題是引發劑活性中心的結構,鏈增長方式和立構定向原因.至今為止,雖已提出許多假設和機理,但還沒有一個能解釋所有實驗現象.
早期有: 自由基聚合機理的假設
陰離子和陽離子聚合機理
實驗結果證明,Ziglar-Natta引發的α-烯烴聚合不是傳統的自由基或離子聚合,而是嶄新的配位聚合.關於配位聚合的機理,在眾多的假設中以兩種機理模型最為重要,即雙金屬活性中心機理和單金屬活性中心機理.
6.3.2.1 雙金屬活性中心機理
雙金屬活性中心機理首先由Natta1959年提出,該機理的核心是Ziegler-Natta引發劑兩組分反應後形成含有兩種金屬的橋形絡合物活性中心:
雙金屬活性中心
上活性中心的形成是在TiCl3晶體表面上進行的.α-烯烴在這種活性中心上引發,增長.
單體(丙烯)的p 鍵先與正電性的過渡金屬Ti配位,隨後Ti-C 鍵打開,單體插入形成六元環過渡態,該過渡態移位瓦解重新恢復至雙金屬橋式活性中心結構,並實現了一個單體單元的增長,如此重復進行鏈增長反應.
雙金屬活性中心機理一經提出,曾風行一時,成為當時解釋α-烯烴配位聚合的權威理論,但它受到越來越多的實驗事實沖擊.同時,該機理沒有涉及立構規整聚合物的形成原因.其中最有力的實驗證據是I~III族金屬組分單獨不能引發聚合,而單獨的過渡金屬組分則可以.但雙金屬活性中心機理首先提出的配位,插入等有關配位聚合機理的概念,仍具有突破性意義.
6.3.2.2 單金屬活性中心機理
單金屬活性中心機理認為,在TiCl3表面上烷基鋁將TiCl3烷基化,形成一個含Ti-C鍵,以Ti為中心的正八面體單金屬活性中心:
單金屬活性中心
單金屬活性中心機理的一個明顯弱點是空位復原的假設,在解釋這種可能性時認為,由於立體化學和空間阻礙的原因,使配位基的幾何位置具有不等價性,單體每插入一次,增長鏈遷移到另一個位置,與原位置相比,增長鏈受到更多配體(Cl)的排斥而不穩定,因此它又"飛回"到原位,同時也使空位復原.
顯然以上解釋仍然不具很強的說服力,有關空位復原的動力仍然是單金屬機理討論的熱點.
6.3.2.3 非均相Ziegler-Natta引發劑全同定向原理
已肯定丙烯等α-烯烴全同定向聚合過程與非均相Ziegler-Natta引發劑的表面結構緊密有關.
典型的TiCl3/AlR3非均相引發體系的表面結構主要決定於TiCl3晶體的結構.TiCl3晶體有α,β,γ,δ四種晶型,其中α,γ,δ晶型的結構類似,都是層狀結構(兩層氯夾一層鈦),具有較強的定向性;而β晶型為線型結構,雖然活性較大但定向性最差,一般不用於α-烯烴定向聚合.
TiCl3晶體結構示意圖(●-Ti; ○-Cl; □-空位)
在α-TiCl3晶體中,鈦原子處於氯原子組成的正八面體中心,而氯是六方晶系的緻密堆積,在這種晶格中每隔兩個鈦就有一個鈦是空的,即出現一個內空的正八面體晶格:
為了保持電中性(保持Ti/Cl比值為1:3),處於TiCl3晶體表面邊緣(圖中用虛線標示的部分)上的一個Ti原子僅與五個而不是六個Cl原子鍵合,即出現一個未被Cl原子占據的空位(用□表示).五個Cl原子中的四個與Ti原子形成比較強的Ti-Cl-Ti橋鍵,而第五個則與Ti原子形成相對較弱的Ti-Cl單鍵,當TiCl3與AlR3反應時,該Cl原子可被R取代,形成前面已提及到的正八面體單金屬活性中心.
活性中心中金屬Ti原子是手性的,由於空位□和R的空間相對位置不同,鈦原子可取兩種不同的構型,而使活性中心具有兩種構型,互成對映體:
聚合時單體首先與活性中心(a),(b)配位,由於活性中心(a)或(b)是手性的,它們只允許單體以兩個手性面中的一個面與之配位.雖然我們不清楚單體的哪一面與活性中心(a)配位,哪一面與活性中心(b)配位,但可以肯定的是若單體的一個面與活性中心(a)配位,則相反的一面與活性中心(b)配位.單體與活性中心配位後,按單金屬配位機理進行鏈增長,活性中心(a)和(b)都分別導致全同聚合物的生成.這便是非均相Ziegler-Natta引發劑的全同定向聚合機理,其本質實際上就是前面已介紹的引發劑活性中心控制機理.
用13C-NMR 對由TiCl3/AlR3非均相引發劑製得的全同聚丙烯進行結構分析,發現分子鏈的構型排列如結構Ⅰ所示:
6.3.3 Ziegler-Natta引發劑組分的影響
不同的過渡金屬和I~III金屬化合物可組合成數千種Ziegler-Natta引發劑,它們表現不同的引發性能.Ziegler-Natta引發劑的性能主要包括活性和立構定向性:
"活性"通常表示為由每克(或摩爾)過渡金屬(或過渡金屬化合物)所得聚合物的千克數.
"立構定向性"可通過測定產物的立構規整度而獲得.
活性和立構定向性隨引發劑組分及其相對含量不同而發生很大變化.由於對活性中心的結構以及立構定向機理尚未完全弄清,所以許多數據難以從理論上解釋,引發劑組分的選擇至今仍憑經驗.
㈣ MBS的生產工藝
MBS樹脂的生產過程是先以丁二烯和苯乙烯在水和乳化劑中進行乳化,在引發劑的引發作用下進行聚合,生產丁苯膠乳(SBR膠乳),再加入苯乙烯和甲基丙烯酸甲酯進行乳液接枝聚合,得到MBS樹脂接枝膠乳(MBS樹脂膠乳),最後經過凝聚、脫水和乾燥處理後得到MBS樹脂成品。
在MBS樹脂的整個生產工藝過程中,有3大關鍵技術,其一是SBR膠乳的合成技術,因為SBR膠乳的粒徑不但決定了MBS樹脂,pvc合金的抗沖擊性能,同時還決定了它的透光性能;其二是MBS樹脂膠乳的合成技術,因為核--殼比、接枝率和接枝過程單體的加料順序等對MBS樹脂膠乳的凝聚和後處理、MBS樹脂粉料的粒子形態及MBS樹脂與PVC的相容性和光學性能等均有非常顯著的影響;其三是MBS樹脂膠乳的凝聚技術,凝聚水平的高低直接決定了最終產品的粒度分布、顆粒規整性、流動性和表觀密度以及MBS樹脂在PVC中的分散性和相容性等指標。
1 丁苯膠乳的合成
將丁二烯、苯乙烯、引發劑和各種配製好的助劑按一定量和順序加到聚合反應釜中,在一定的溫度下攪拌進行乳液聚合,待反應達到一定轉化率後停止反應,脫除未反應的單體即可得到丁苯膠乳。對用於制備MBS樹脂的丁苯膠乳有其特殊的要求。首先是丁苯膠乳中丁二烯含量要為70%-80%。以保證製得的MBS樹脂在改性PVC時具有一定的抗沖擊性、耐寒性和良好的加工性。
為了盡量減少對MBS樹脂耐寒性的影響,苯乙烯含量宜控制在25%左右。此外,丁苯膠乳必須具有一定的交聯度、粒徑和粒徑分布。交聯有利於改善產品的光學性能和抗沖擊性能,便於加工。對於制備MBS樹脂的丁苯膠乳.對其粒徑及其分布均有特別的要求。在一般情況下,當MBS樹脂中橡膠含量相同時,膠乳粒徑越大,用MBS樹脂改性的PVC製品抗沖擊性能越好。
但是粒徑超過一定范圍時,改性PVC製品透明度下降,而且在彎曲時易出現發白現象,因此要同時得到具有最好的抗沖擊性、透明性和沒有彎曲發白現象的MBS樹脂,PVC共混物是極其困難的,各公司都把這一技術關鍵作為專利加以保密。
2 MBS樹脂接枝膠乳的合成
上面所得到的丁苯膠乳用水稀釋後,加入乳化劑、引發劑,再與苯乙烯和甲基丙烯酸甲酯進行接枝聚合。常見的接枝工藝有一步法、兩步法和三步法等;也可以採用連續添加的方式,目前世界上大多數生產廠家採用兩步接枝法工藝。
從MBS樹脂改性PVC的機理來看,由於甲基丙烯酸甲酯與PVC溶解度參數相近,相容性好,處於MBS樹脂外殼層,有助於增加界面間的粘合力,對提高沖擊強度有利。
橡膠相和樹脂相的比例對MBS樹脂性能有很大的影響。在橡膠含量相對少的情況下,增加橡膠含量,銀紋引發中心會增多,支化及終止速度亦增加,沖擊強度隨之提高。但達到一定的程度之後,再增加橡膠含量,樹脂相比例相對減少,影響了MBS樹脂與PVC的相容性,反而使抗沖擊強度降低。
從國外專利來看,橡膠相在45%~60%之間較好。樹脂相中的甲基丙烯酸甲酯與苯乙烯的比例根據產品性能不同而有差異。通常甲基丙烯酸甲酯與苯乙烯的質量比為3:7~7:3為宜。
3 接枝膠乳的凝聚
凝聚過程對MBS樹脂產品的顆粒形態、與PVC樹脂共混的加工性能及加工工藝條件有很大的影響。
目前的凝聚方法主要有以下幾種:
(1)單釜凝聚工藝。
該工藝是最簡單、最容易操作的,也是大多數公司在MBS樹脂技術開發初期所採用的方法。目前該方法在我國的一些中小規模生產裝置上仍採用。其主要操作過程是將膠乳加入到有凝聚劑的反應釜中,或將凝聚劑加入到有膠乳的反應釜中。由於是單釜液相間歇操作,MBS樹脂顆粒形態和大小不容易控制,而且處理能力小,不符合大規模工業化生產的要求。
(2)多釜連續凝聚工藝。
多釜連續凝聚工藝實際上是多個單釜的串聯,其優點在於其連續性,便於進行工業化大規模生產。不足之處在於MBS樹脂的顆粒形態、流動性和表觀密度等指標沒有明顯提高。
(3)有機介質凝聚工藝。
日本鍾淵公司利用不同密度的有機介質作為分散劑,把凝聚劑和膠乳變成微小的液滴分散在溶劑中。兩種液滴由於上升和下降的速度不同,相互碰撞發生凝聚反應,得到粉末狀聚合物。該工藝的不足之處在於使用了有機溶劑,可能會吸附在樹脂表面,造成乾燥過程中易燃易爆成分的增加,而且有機溶劑的使用及其回收利用將使生產成本也相應增加。
(4)噴流凝聚工藝。
日本三菱人造絲公司採用噴流凝聚工藝,其特點是將膠乳通過多根細管噴入到凝聚劑中進行凝聚,所得到的樹脂流動性好,表觀密度大。該工藝的關鍵因素是細管的直徑以及膠乳與凝聚劑的相對流速。
(5)噴霧凝聚工藝。
日本鍾淵公司採用該工藝,其特點是將膠乳噴霧到筒形凝聚器中,凝聚劑則以氣相形式噴入,兩種物料碰撞到一起時,發生凝聚反應。該工藝的凝聚劑只限於易氣化的酸類(如鹽酸等)。優點在於樹脂的收率高、表面規整、流動性好以及表觀密度高等。
4 接枝膠乳的乾燥
脫水、洗滌後的MBS樹脂送到乾燥工段(水含量在35%左右)。由於MBS樹脂含有不飽和雙鍵,在高溫下易老化和變色。因此要求乾燥過程的溫度不能太高(烘箱乾燥溫度應小於60℃),時間盡可能短。從經濟性和實用性考慮,氣流管一沸騰床連續乾燥法較為合理。
㈤ 1,3-丁二烯的主要來源是什麼
全球丁二烯主要來源及生產方法
目前,世界丁二烯的來源主要有兩種,一種是從乙烯裂解裝置副產的混合C4餾分中抽提得到,這種方法價格低廉,經濟上占優勢,是目前世界上丁二烯的主要來源。另一種是從煉油廠C4餾分脫氫得到,該方法只在一些丁烷、丁烯資源豐富的少數幾個國家採用。世界上從裂解C4餾分抽提丁二烯以萃取精餾法為主,根據所用溶劑的不同生產方法主要有乙睛法(ACN法)、二甲基甲醯胺法(DMF法)和N-甲基吡咯烷酮法(NMP法)3種。
(1)乙腈法(ACN法)
該法最早由美國Shell公司開發成功,並於1956年實現工業化生產。它以含水10%的ACN為溶劑,由萃取、閃蒸、壓縮、高壓解吸、低壓解吸和溶劑回收等工藝單元組成。1977年Shell公司在改造中增加了冷凝器和水洗塔,並將閃蒸和低壓解吸的氣相合並壓縮,其中約8%經冷凝送往水洗塔洗去溶劑,塔頂氣相返回原料蒸餾塔,這樣就除去了C4烴中的C5烴。其餘氣體一部分送往高壓解吸塔,另一部分送往萃取蒸餾塔塔底作為再拂氣體提供熱能,從而省去了一台再沸器,降低了蒸汽用量。水洗塔底溶劑約1%送往溶劑回收精製系統,以保證循環溶劑的質量。該法對含炔烴較高的原料需加氫處理,或採用精密精餾、兩段萃取才能得到較高純度的丁二烯。該方法以義大利SIR工藝和日本JSR工藝為代表。義大利SIR工藝以含水5%的ACN為溶劑,採用5塔流程(氨洗塔、第一萃取精餾塔、第二萃取精餾塔、脫輕塔和脫重塔)。在第一萃取精餾塔前加一氨水洗滌塔,用以除去原料中0.04%~0.08%的醛酮。炔烴由第二萃取蒸餾塔第75塊塔板側線采出,送往接觸冷凝器。脫重塔塔底和接觸冷凝器底部物料合並,其熱能回收後用於原料蒸發器。該工藝不僅能使丁二烯收率達到96%~98%,還能使丁二烯與炔烴分離,丁二烯產品純度可以達到99.5%以上。該技術的特點為流程簡單,溶劑解吸在萃取精餾塔下段完成;第一萃取精餾塔採用兩點進料,有利於改善塔內液相的濃度分布,減少該塔上段的液相負荷,降低能耗;在第一萃取精餾塔下部設置一台換熱器,起中間再沸器的作用,可充分利用塔底熱能提高烴類從溶劑中的分離效率;採用在第二萃取精餾塔第75塊塔板側線除炔烴的技術,使丁二烯與炔烴幾乎完全分離。日本JRS工藝以含水10%的ACN為溶劑,採用兩段萃取蒸餾,第一萃取蒸餾塔由兩塔串聯而成。該工藝經過了1980年和1988年兩次重大的改造。1980年的改造是採用了熱偶合技術,即將第二萃取蒸餾塔頂全部富含丁二烯的蒸汽,不經冷凝直接送入脫重塔中段,同時將脫重塔內下降液流的一部分從中段塔盤上抽出,送往第二萃取蒸餾塔作為塔頂迴流液,這樣第二萃取蒸餾塔塔頂不需要冷凝器,這部分的熱量將全部加到脫重塔,使該塔塔底再沸器的熱負荷比熱偶合前降低40%左右,從而實現大幅度節能。1988年的改造主要解決系統熱能回收問題,即在提濃塔和脫輕塔安裝中間冷凝器,將提濃塔從進料板附近上、下兩段串聯相接,這樣即可使上塔負荷大幅度降低,又不會影響塔的操作條件。將塔分為上下兩段,下塔操作壓力提高,塔內溫度相應升高,這樣中間冷凝器就可回收到高品位的熱能。此外,溶劑回收塔塔底廢水的熱能,可用於該塔進料管線的預熱器,加上解析塔從側線采出炔烴也可回收部分熱能,因而該工藝在同類工藝中的能耗是最低的。採用ACN法生產丁二烯的特點是沸點低,萃取、汽提操作溫度低,易防止丁二烯自聚;汽提可在高壓下操作,省去了丁二烯氣體壓縮機,減少了投資;粘度低,塔板效率高,實際塔板數少;微弱毒性,在操作條件下對碳鋼腐蝕性小;分別與正丁烷、丁二烯二聚物等形成共沸物,致使溶劑精製過程較為復雜,操作費用高;蒸汽壓高,隨尾氣排出的溶劑損失大;用於回收溶劑的水洗塔較多,相對流程長。
(2)二甲基甲醯胺法(DMF法)
DMF法又名GPB法,由日本瑞翁(Geon)公司於1965年實現工業化生產,並建成一套4.5萬t/a生產裝置。該生產工藝包括四個工序,即第一萃取蒸餾工序、第二萃取蒸餾工序、精餾工序和溶劑回收工序。原料C4汽化後進入第一萃取精餾塔,溶劑DMF由塔的上部加入。溶解度小的丁烷、丁烯、C3使丁二烯的相對揮發度增大,並從塔頂分出,而丁二烯、炔烴等和溶劑一起從塔底導出,進入第一解吸塔被完全解吸出來,冷卻並經螺桿壓縮機壓縮後進入第二萃取精餾塔進一步分離。不含C4組分的溶劑從解吸塔底高溫采出,用作萃取精餾、精餾、蒸發等工序的熱源,熱量回收後重新循環使用。炔烴、丙二烯、硫化物、羰基化合物這些有害雜質在溶劑中的溶解度較高,為防止乙烯基乙炔爆炸,並進一步回收溶劑中的丁二烯,第二萃取塔底排出的富溶劑送往丁二烯回收塔,塔頂為粗丁二烯。回收塔塔頂餾出的丁二烯和少量雜質返回第二萃取塔前的壓縮機人口,塔釜含炔烴的溶劑送至第二解吸塔,從該塔塔頂分出乙烯基乙炔,稀釋後用作鍋爐燃料,釜液為溶劑,循環回萃取精餾塔。經兩段萃取精餾得到的粗丁二烯中的雜質採用普通精餾除去。比丁二烯揮發度大的C3、水分等,在脫輕塔頂除去,比丁二烯揮發度小的殘餘2-丁烯、1,2-丁二烯、C5以及在生產過程中產生的少量丁二烯二聚物在脫重塔塔底除去。脫重塔頂可以得到純度在99.5%以上的聚合級丁二烯。DMF法工藝的特點是對原料C4的適應性強,丁二烯含量在15%~60%范圍內都可生產出合格的丁二烯產品;生產能力大,成本低,工藝成熟,安全性好、節能效果較好,產品、副產品回收率高達97%;由於DMF對丁二烯的溶解能力及選擇性比其他溶劑高,所以循環溶劑量較小,溶劑消耗量低;無水DMF可與任何比例的C4餾分互溶,因而避免了萃取塔中的分層現象;DMF與任何C4餾分都不會形成共沸物,有利於烴和溶劑的分離;但由於其沸點較高,溶劑損失小。熱穩定性和化學穩定性良好,無水存在下對碳鋼無腐蝕性。但由於其沸點高,萃取塔及解吸塔的操作溫度都較高,易引起雙烯烴和炔烴的聚合;DMF在水分存在下會分解生成甲酸和二甲胺,因而有一定的腐蝕性。
(3)N-甲基吡咯烷酮法(NMP法)
N-甲基吡咯烷酮法由德國BASF公司開發成功,並於1968年實現工業化生產,建成一套7.5萬t/a生產裝置。其生產工藝主要包括萃取蒸餾、脫氣和蒸餾以及溶劑再生工序。粗C4餾分氣化後進入主洗滌塔底部,含有8%水的N-甲基吡咯烷酮萃取劑由塔頂進入,丁二烯和更易溶解的組分及部分丁烷和丁烯被吸收,同時不含丁二烯的丁烷和丁烯從塔頂排出。主洗塔底部的富溶劑進入精餾塔,在此溶劑吸收的丁烷和丁烯被更易溶的丁二烯、丙二烯和乙炔置換出來,含有乙炔和丙二烯的丁二烯從精餾塔側線以氣態采出進入後洗塔。在後洗塔中,用新鮮溶劑將其他組分溶解,粗丁二烯由其塔頂蒸出後冷凝液化進入蒸餾工序,塔釜富溶劑返回精餾塔的中段。精餾塔釜的富溶劑先進入閃蒸罐中部分脫氣,再進人脫氣塔脫烴,並控制NMP中的水平衡,少量炔烴從側線離開脫氣塔,其餘脫下的烴經冷卻塔進入循環壓縮機,最後返回精餾塔底部。從後洗塔出來的粗丁二烯在第一蒸餾塔脫除甲基乙炔,在第二蒸餾塔中脫除1,2一丁二烯和C5烴,由第二蒸餾塔頂得到丁二烯產品。汽提後的溶劑抽出總量的0.2%進行再生,以免雜質積累。NMP法工藝的特點是溶劑性能優良,毒性低,可生物降解,腐蝕性低;
原料范圍較廣,可得到高質量的丁二烯,產品純度可達99.7%~99.9%;C4炔烴無需加氫處理,流程簡單,投資低,操作方便,經濟效益高;NMP具有優良的選擇性和溶解能力,沸點高、蒸汽壓低,因而運轉中溶劑損失小;它熱穩定性和化學穩定性極好,即使發生微量水解,其產物也無腐蝕性,因此裝置可全部採用普通碳鋼;為了降低其沸點,增加選擇性,降低操作溫度,防止聚合物生成,利於溶劑回收,可在其中加入適量的水,並加入亞硝酸鈉作阻聚劑。
--- 詳細信息
㈥ 聚丁二烯的聚合法
自由基乳液聚合典型的乳液體系含水、單體、引發劑和乳化劑(皂)。常用引發劑有:過硫酸鉀、過氧化二苯甲醯、對異丙苯過氧化氫和偶氮二異丁腈。調節劑為硫醇,主要起鏈轉移作用,可調節分子量。乳液聚合不能得到結構規整的聚丁二烯。例如,丁二烯於5~50℃進行乳液聚合,所得聚合物的微觀結構如下:順式-1,4佔13%~19%;反式-1,4佔69%~62%;1,2結構佔17%~19%。
負離子聚合最老的方法是用鈉作催化劑,德國和蘇聯都生產過丁鈉橡膠;美國用丁基鋰生產聚丁二烯。由於用烷基鋰容易控制引發過程,廣泛用來研究丁二烯的負離子聚合。用金屬鋰或丁基鋰在烴類溶劑中聚合得到的聚丁二烯中,順式-1,4結構含量約為35%,可用於生產低順丁橡膠;而在四氫呋喃溶液中主要形成1,2結構。
配位聚合用齊格勒-納塔催化劑可合成出不同立體結構的聚丁二烯(見配位聚合)。工業上重要的催化劑有四種:鈦、鈷、鎳和稀土催化劑體系。①鈦催化劑:採用TiI4與AlR3或 TiCl4與AlI3-AlH3-mXm(X為鹵素),可製得高順式聚丁二烯, 但催化劑用量較大, 凝膠較多。不含碘的鈦催化劑得不到高順式聚丁二烯。TiCl4與CdR2可得高反式-1,4-聚丁二烯,而Ti(OR)4與AlR3可得高全同1,2-聚丁二烯;改變烷基金屬或配位體可得到完全不同的結構。鈦系催化劑最先被工業上採用,所得聚丁二烯中順式-1,4結構的含量為90%~94%。②鈷催化劑:鈷鹽和氯化二乙基鋁可形成均相催化劑,用水或氧作活化劑。催化效率有的可達105克聚丁二烯/克鈷,順式結構的含量,高的可達99%。③鎳催化劑:雖然開發較晚,但它是工業化的優良催化劑,由環烷酸鎳、三氟化硼和三烷基鋁組成,聚合可在脂肪烴中進行。當 Al/B(摩爾比)為0.3~0.7時活性最高。在庚烷中制備的聚合物, 其分子量約比在甲苯中制備的高一倍。順式結構的含量達98%。④稀土催化劑:這是中國發展的一個體系,是由環烷酸稀土〔Ln(naph)3〕、氯化二乙基鋁和三異丁基鋁組成的三元體系,均用脂肪烴作溶劑。所得聚丁二烯的順式-1,4結構的含量可達99%,分子量可達數百萬,分子量分布寬。在義大利曾採用烷氧基稀土三元體系和鈾系催化劑均已合成高順式聚丁二烯。此外,用釩催化劑可合成高反式聚丁二烯。釩、鉻和鉬催化劑在一定條件下可合成1,2-聚丁二烯。不同配位催化劑所得聚丁二烯的微觀結構見表2。
㈦ 格氏試劑可以引發mma聚合,為什麼不能引發丁二烯聚合
氯乙烯中氯原子很不活潑,難以發生取代反應,但在四氫呋喃中可以與鎂形成格氏試劑...在引發劑存在下,可進行自由基聚合反應生成聚氯乙烯,也可與丁二烯、丙烯腈