當前位置:首頁 » 石油礦藏 » 石油探井怎麼打
擴展閱讀
漢陽北大資源怎麼樣 2025-06-21 21:48:58
鑽石世家店一個月多少錢 2025-06-21 21:44:28
新的交通工具都有哪些 2025-06-21 21:41:09

石油探井怎麼打

發布時間: 2022-05-05 22:16:33

1. 石油鑽井技術

《中國國土資源報》2007年1月29日3版刊登了「新型地質導向鑽井系統研製成功」的消息。這套系統由3個子系統組成:新型正脈沖無線隨鑽測斜系統、測傳馬達及無線接收系統、地面信息處理與決策系統。它具有測量、傳輸和導向三大功能。在研製過程中連續進行了4次地質導向鑽井實驗和鑽水平井的工業化應用,取得成功。這一成果的取得標志著我國在定向鑽井技術上取得重大突破。

2.3.1.1 地質導向鑽井技術

地質導向鑽井技術是20世紀90年代發展起來的前沿鑽井技術,其核心是用隨鑽定向測量數據和隨鑽地層評價測井數據以人機對話方式來控制井眼軌跡。與普通的定向鑽井技術不同之處是,它以井下實際地質特徵來確定和控制井眼軌跡,而不是按預先設計的井眼軌跡進行鑽井。地質導向鑽井技術能使井眼軌跡避開地層界面和地層流體界面始終位於產層內,從而可以精確地控制井下鑽具命中最佳地質目標。實現地質導向鑽井的幾項關鍵技術是隨鑽測量、隨鑽測井技術,旋轉導向閉環控制系統等。

隨鑽測量(MWD)的兩項基本任務是測量井斜和鑽井方位,其井下部分主要由探管、脈沖器、動力短節(或電池筒)和井底鑽壓短節組成,探管內包含各種感測器,如井斜、方位、溫度、震動感測器等。探管內的微處理器對各種感測器傳來的信號進行放大並處理,將其轉換成十進制,再轉換成二進制數碼,並按事先設定好的編碼順序把所有數據排列好。脈沖器用來傳輸脈沖信號,並接受地面指令。它是實現地面與井下雙向通訊並將井下資料實時傳輸到地面的唯一通道。井下動力部分有鋰電池或渦輪發電機兩種,其作用是為井下各種感測器和電子元件供電。井底鑽壓短節用於測定井底鑽壓和井底扭矩。

隨鑽測井系統(LWD)是當代石油鑽井最新技術之一。Schlumberger公司生產的雙補償電阻率儀CDR和雙補償中子密度儀CDN兩種測井系統代表了當今隨鑽測井系統的最高水平。CDR和CDN可以單獨使用也可以兩項一起與MWD聯合使用。LWD的CDR系統用電磁波傳送信息,整套系統安裝在一特製的無磁鑽鋌或短節內。該系統主要包括電池筒、伽馬感測器、電導率測量總成和探管。它主要測量並實時傳輸地層的伽馬曲線和深、淺電阻率曲線。對這些曲線進行分析,可以馬上判斷出地層的岩性並在一定程度上判斷地層流體的類型。LWD的CDN系統用來測量地層密度曲線和中子孔隙度曲線。利用這兩種曲線可以進一步鑒定地層岩性,判斷地層的孔隙度、地層流體的性質和地層的滲透率。

旋轉導向鑽井系統(Steerable Rotary Drilling System)或旋轉閉環系統(Rotary Closed Loop System,RCLS)。常規定向鑽井技術使用導向彎外殼馬達控制鑽井方向施工定向井。鑽進時,導向馬達以「滑行」和「旋轉」兩種模式運轉。滑行模式用來改變井的方位和井斜,旋轉模式用來沿固定方向鑽進。其缺點是用滑行模式鑽進時,機械鑽速只有旋轉模式鑽進時的50%,不僅鑽進效率低,而且鑽頭選擇受到限制,井眼凈化效果及井眼質量也差。旋轉導向閉環鑽井系統完全避免了上述缺點。旋轉導向鑽井系統的研製成功使定向井鑽井軌跡的控制從藉助起下鑽時人工更換鑽具彎接頭和工具面向角來改變方位角和頂角的階段,進入到利用電、液或泥漿脈沖信號從地面隨時改變方位角和頂角的階段。從而使定向井鑽井進入了真正的導向鑽井方式。在定向井鑽井技術發展過程中,如果說井下鑽井馬達的問世和應用使定向鑽井成為現實的話,那麼可轉向井下鑽井馬達的問世和應用則大大提高了井眼的控制能力和自動化水平並減少了提下鑽次數。旋轉導向鑽井系統鑽井軌跡控制機理和閉環系統如圖2.5所示。

目前從事旋轉導向鑽井系統研製的公司有:Amoco、Camco、Baker Hughes Inteq、Cambridge Drilling Automation以及DDD Stabilizers等。這些公司的旋轉導向閉環鑽井系統按定向方法又可分為自動動力定向和人工定向。自動動力定向一般由確定鑽具前進方向的測量儀表、動力源和調節鑽具方向的執行機構組成。人工定向系統定向類似於導向馬達定向方法,需要在每次連接鑽桿時進行定向。兩種定向系統的定向控制原理都是通過給鑽頭施加直接或間接側向力使鑽頭傾斜來實現的(圖2.6)。按具體的導向方式又可劃分為推靠式和指向式兩種。地質導向鑽井技術使水平鑽井、大位移鑽井、分支井鑽井得到廣泛應用。大位移井鑽井技術和多分支井鑽井技術代表了水平鑽井技術的最新成果水平。

圖2.5 旋轉導向閉環系統

(1)水平井鑽井技術

目前,國外水平鑽井技術已發展成為一項常規技術。美國的水平井技術成功率已達90%~95%。用於水平井鑽進的井下動力鑽具近年來取得了長足進步,大功率串聯馬達及加長馬達、轉彎靈活的鉸接式馬達以及用於地質導向鑽井的儀表化馬達相繼研製成功並投入使用。為滿足所有導向鑽具和中曲率半徑造斜鑽具的要求,使用調角度的馬達彎外殼取代了原來的固定彎外殼;為獲得更好的定向測量,用非磁性馬達取代了磁性馬達。研製了耐磨損、抗沖擊的新型水平井鑽頭。

圖2.6 旋轉導向鑽井系統定向軌跡控制原理

(2)大位移井鑽井技術

大位移井通常是指水平位移與井的垂深之比(HD/TVD)≥2的井。大位移井頂角≥86°時稱為大位移水平井。HD/TVD≥3的井稱為高水垂比大位移井。大位移井鑽井技術是定向井、水平井、深井、超深井鑽井技術的綜合集成應用。現代高新鑽井技術,隨鑽測井技術(LWD)、旋轉導向鑽井系統(SRD)、隨鑽環空壓力測量(PWD)等在大位移井鑽井過程中的集成應用,代表了當今世界鑽井技術的一個高峰。目前世界上鑽成水平位移最大的大位移井,水平位移達到10728m,斜深達11287m,該記錄是BP阿莫科公司於1999年在英國Wytch Farm油田M-16井中創造的(圖2.7所示)。三維多目標大位移井也有成功的例子。如挪威Gullfalks油田B29大位移井,就是將原計劃用2口井開發該油田西部和北部油藏的方案改為一口井開采方案後鑽成的。為了鑽成這口井,制定了一套能夠鑽達所有目標並最大限度地減少摩阻和扭矩的鑽井設計方案。根據該方案,把2630m長的水平井段鑽到7500m深度,穿過6個目標區,總的方位角變化量達160°。

圖2.7 M-16井井身軌跡

我國從1996年12月開始,先後在南海東部海域油田進行了大位移井開發試驗,截至2005年底,已成功鑽成21口大位移井,其中高水垂比大位移井5口。為開發西江24-1含油構造實施的8口大位移井,其井深均超過8600m,水平位移都超過了7300m,水垂比均大於2.6,其中西江24-3-A4井水平位移達到了8063m,創造了當時(1997年)的大位移井世界紀錄。大位移井鑽井涉及的關鍵技術有很多,國內外目前研究的熱點問題包括:鑽井設備的適應性和綜合運用能力、大斜度(大於80°)長裸眼鑽進過程中井眼穩定和水平段延伸極限的理論分析與計算、大位移井鑽井鑽具摩擦阻力/扭矩的計算和減阻、成井過程中套管下入難度大及套管磨損嚴重等。此外大位移井鑽井過程中的測量和定向控制、最優的井身剖面(結構)設計、鑽柱設計、鑽井液性能選擇及井眼凈化、泥漿固控、定向鑽井優化、測量、鑽柱振動等問題也處在不斷探索研究之中。

(3)分支井鑽井技術

多分支井鑽井技術產生於20世紀70年代,並於90年代隨著中、小曲率半徑水平定向井鑽進技術的發展逐漸成熟起來。多分支井鑽井是水平井技術的集成發展。多分支井是指在一個主井眼(直井、定向井、水平井)中鑽出若干進入油(氣)藏的分支井眼。其主要優點是能夠進一步擴大井眼同油氣層的接觸面積、減小各向異性的影響、降低水錐水串、降低鑽井成本,而且可以分層開采。目前,全世界已鑽成上千口分支井,最多的有10個分支。多分支井可以從一個井眼中獲得最大的總水平位移,在相同或不同方向上鑽穿不同深度的多層油氣層。多分支井井眼較短,大部分是尾管和裸眼完井,而且一般為砂岩油藏。

多分支井最早是從簡單的套管段銑開窗側鑽、裸眼完井開始的。因其存在無法重入各個分支井和無法解決井壁坍塌等問題,後經不斷研究探索,1993年以來預開窗側鑽分支井、固井回接至主井筒套管技術得到推廣應用。該技術具有主井筒與分支井筒間的機械連接性、水力完整性和選擇重入性,能夠滿足鑽井、固井、測井、試油、注水、油層改造、修井和分層開採的要求。目前,國外常用的多分支系統主要有:非重入多分支系統(NAMLS),雙管柱多分支系統(DSMLS),分支重入系統(LRS),分支回接系統(LTBS)。目前國外主要採用4種方式鑽多分支井:①開窗側鑽;②預設窗口;③裸眼側鑽;④井下分支系統(Down Hole Splitter System)。

2.3.1.2 連續管鑽井(CTD)技術

連續管鑽井技術又叫柔性鑽桿鑽井技術。開始於20世紀60年代,最早研製和試用這一技術鑽井的有法國、美國和匈牙利。早期法國連續管鑽進技術最先進,1966年投入工業性試驗,70年代就研製出各種連續管鑽機,重點用於海洋鑽進。當時法國製造的連續管單根長度達到550m。美國、匈牙利製造的連續管和法國的類型基本相同,單根長度只有20~30m。

早期研製的連續管有兩種形式。一種是供孔底電鑽使用,由4層組成,最內層為橡膠或橡膠金屬軟管的心管,孔底電機動力線就埋設在心管內;心管外是用2層鋼絲和橡膠貼合而成的防爆層;再外層是鋼絲骨架層,用於承受拉力和扭矩;最外層是防護膠層,其作用是防水並保護鋼絲。另一種是供孔底渦輪鑽具使用的,因不需要埋設動力電纜,其結構要比第一種簡單得多。第四屆國際石油會議之後,美國等西方國家把注意力集中在發展小井眼井上,限制了無桿電鑽的發展。連續管鑽井技術的研究也放慢了腳步。我國於20世紀70年代曾開展無桿電鑽和連續管鑽井技術的研究。勘探所與青島橡膠六廠合作研製的多種規格的柔性鑽桿,經過單項性能試驗後,於1975年初步用於渦輪鑽。1978年12月成功用於海上柔性鑽桿孔底電鑽,並建造了我國第一台柔桿鑽機鑽探船。1979~1984年勘探所聯合清華大學電力工程系、青島橡膠六廠研究所和北京地質局修配廠共同研製了DRD-65型柔管鑽機和柔性鑽桿。DRD-65型柔管鑽機主要有柔性鑽桿、Φ146mm潛孔電鑽、鑽塔、柔桿絞車及波浪補償器、泥漿泵、電控系統和液控系統等部分組成。研製的柔性鑽桿主要由橡膠、橡膠布層、鋼絲繩及動力線組成。拉力由柔桿中的鋼絲骨架層承擔,鋼絲繩為0.7mm×7股,直徑2.1mm,每根拉力不小於4350N,總數為134根,計算拉力為500kN,試驗拉力為360kN。鑽進過程中,柔性鑽桿起的作用為:起下鑽具、承受反扭矩、引導沖洗液進入孔底、通過設於柔性鑽桿壁內的電纜向孔底電鑽輸送電力驅動潛孔電鑽運轉、向地表傳送井底鑽井參數等。

柔性鑽桿性能參數為:內徑32mm;抗扭矩不小於1030N·m;外徑85~90mm;單位質量13kg/m;抗內壓(工作壓力)40kg/cm2,曲率半徑不大於0.75m,抗外壓不小於10kg/cm2;彎曲度:兩彎曲形成的夾角不大於120°;額定拉力1000kN;柔桿內埋設動力導線3組,每組15mm2,信號線二根;柔桿單根長度為40、80m兩種規格。

Φ146mm型柔桿鑽機由Φ127mm電動機、減速器、液壓平衡器和減震器組成。動力是潛孔電鑽,它直接帶動鑽頭潛入孔底鑽井。Φ146mm孔底電鑽是外通水式,通水間隙寬5mm,通水橫斷面積為2055mm2

與常規鑽井技術相比,連續管鑽井應用於石油鑽探具有以下優點:欠平衡鑽井時比常規鑽井更安全;因省去了提下鑽作業程序,可大大節省鑽井輔助時間,縮短作業周期;連續管鑽井技術為孔底動力電鑽的發展及孔底鑽進參數的測量提供了方便條件;在製作連續管時,電纜及測井信號線就事先埋設在連續管壁內,因此也可以說連續管本身就是以鋼絲為骨架的電纜,通過它可以很方便地向孔底動力電鑽輸送電力,也可以很方便地實現地面與孔底的信息傳遞;因不需擰卸鑽桿,因此在鑽進及提下鑽過程中可以始終保持沖洗液循環,對保持井壁穩定、減少孔內事故意義重大;海上鑽探時,可以補償海浪對鑽井船的漂移影響;避免了回轉鑽桿柱的功率損失,可以提高能量利用率,深孔鑽進時效果更明顯。正是由於連續管鑽井技術有上述優點,加之油田勘探需要以及相關基礎工業技術的發展為連續管技術提供了進一步發展的條件,在經過了一段時間的沉寂之後,20世紀80年代末90年代初,連續管鑽井技術又呈現出飛速發展之勢。其油田勘探工作量年增長量達到20%。連續管鑽井技術研究應用進展情況簡述如下。

1)數據和動力傳輸熱塑復合連續管研製成功。這種連續管是由殼牌國際勘探公司與航空開發公司於1999年在熱塑復合連續管基礎上開始研製的。它由熱塑襯管和纏繞在外面的碳或玻璃熱塑復合層組成。中層含有3根銅質導線、導線被玻璃復合層隔開。碳復合層的作用是提供強度、剛度和電屏蔽。玻璃復合層的作用是保證強度和電隔離。最外層是保護層。這種連續管可載荷1.5kV電壓,輸出功率20kW,傳輸距離可達7km,耐溫150℃。每根連續管之間用一種特製接頭進行連接。接頭由一個鋼制的內金屬部件和管子端部的金屬環組成。這種連續管主要用於潛孔電鑽鑽井。新研製的數據和動力傳輸連續管改變了過去用潛孔電鑽鑽井時,電纜在連續管內孔輸送電力影響沖洗液循環的缺點。

2)井下鑽具和鑽具組合取得新進展。XL技術公司研製成功一種連續管鑽井的電動井下鑽具組合。該鑽具組合主要由電動馬達、壓力感測器、溫度感測器和震動感測器組成。適用於3.75in井眼的電動井下馬達已交付使用。下一步設想是把這種新型電動馬達用於一種新的閉環鑽井系統。這種電動井下鑽具組合具有許多優點:不用鑽井液作為動力介質,對鑽井液性能沒有特殊要求,因而是欠平衡鑽井和海上鑽井的理想工具;可在高溫下作業,振動小,馬達壽命長;閉環鑽井時藉助連續管內設電纜可把測量數據實時傳送到井口操縱台,便於對井底電動馬達進行靈活控制,因而可使鑽井效率達到最佳;Sperry sun鑽井服務公司研製了一種連續管鑽井用的新的導向鑽具組合。這種鑽具組合由專門設計的下部陽螺紋泥漿馬達和長保徑的PDC鑽頭組成。長保徑鑽頭起一個近鑽頭穩定器的作用,可以大幅度降低振動,提高井眼質量和機械鑽速。泥漿馬達有一個特製的軸承組和軸,與長保徑鑽頭匹配時能降低馬達的彎曲角而不影響定向性能。在大尺寸井眼(>6in)中進行的現場試驗證明,導向鑽具組合具有機械鑽速高、井眼質量好、井下振動小、鑽頭壽命長、設備可靠性較高等優點。另外還研製成功了一種連續軟管欠平衡鑽井用的繩索式井底鑽具組合。該鑽具組合外徑為in上部與外徑2in或in的連續管配用,下部接鑽鋌和in鑽頭。該鑽具組合由電纜式遙控器、穩定的MWD儀器、有效的電子定向器及其他參數測量和傳輸器件組成。電纜通過連續管內孔下入孔底,能實時監測並處理工具面向角、鑽井頂角、方位角、自然伽馬、溫度、徑向振動頻率、套管接箍定位、程序狀態指令、管內與環空壓差等參數。鑽具的電子方位器能在鑽井時在導向泥漿馬達連續旋轉的情況下測量並提供井斜和方位兩種參數。

其他方面的新進展包括:連續管鑽井技術成功用於超高壓層側鑽;增加連續管鑽井位移的新工具研製成功;連續管鑽井與欠平衡鑽井技術結合打水平井取得好效果;適於連續管鑽井的混合鑽機研製成功;連續管鑽井理論取得新突破。

2.3.1.3 石油勘探小井眼鑽井技術

石油部門通常把70%的井段直徑小於177.8mm的井稱為小井眼井。由於小井眼比傳統的石油鑽井所需鑽井設備小且少、鑽探耗材少、井場佔地面積小,從而可以節約大量勘探開發成本,實踐證明可節約成本30%左右,一些邊遠地區探井可節約50%~75%。因此小井眼井應用領域和應用面越來越大。目前小井眼井主要用於:①以獲取地質資料為主要目的的環境比較惡劣的新探區或邊際探區探井;②600~1000m淺油氣藏開發;③低壓、低滲、低產油氣藏開發;④老油氣田挖潛改造等。

2.3.1.4 套管鑽井技術

套管鑽井就是以套管柱取代鑽桿柱實施鑽井作業的鑽井技術。不言而喻套管鑽井的實質是不提鑽換鑽頭及鑽具的鑽進技術。套管鑽井思想的由來是受早期(18世紀中期鋼絲繩沖擊鑽進方法用於石油勘探,19世紀末期轉盤回轉鑽井方法開始出現並用於石油鑽井)鋼絲繩沖擊鑽進(頓鑽時代)提下鑽速度快,轉盤回轉鑽進井眼清潔且鑽進速度快的啟發而產生的。1950年在這一思想的啟發下,人們開始在陸上鑽石油井時,用套管帶鑽頭鑽穿油層到設計孔深,然後將管子固定在井中成井,鑽頭也不回收。後來,Sperry-sun鑽井服務公司和Tesco公司根據這一鑽井原理各自開發出套管鑽井技術並制定了各自的套管鑽井技術發展戰略。2000年,Tesco公司將4.5~13.375in的套管鑽井技術推向市場,為世界各地的油田勘探服務。真正意義的套管鑽井技術從投放市場至今還不到10年時間。

套管鑽井技術的特點和優勢可歸納如下。

1)鑽進過程中不用起下鑽,只利用絞車系統起下鑽頭和孔內鑽具組合,因而可節省鑽井時間和鑽井費用。鑽進完成後即等於下套管作業完成,可節省完井時間和完井費用。

2)可減少常規鑽井工藝存在的諸如井壁坍塌、井壁沖刷、井壁鍵槽和台階等事故隱患。

3)鑽進全過程及起下井底鑽具時都能保持泥漿連續循環,有利於防止鑽屑聚集,減少井涌發生。套管與井壁之間環狀間隙小,可改善水力參數,提高泥漿上返速度,改善井眼清洗效果。

套管鑽井分為3種類型:普通套管鑽井技術、階段套管或尾管鑽井技術和全程套管鑽井技術。普通套管鑽井是指在對鑽機和鑽具做少許改造的基礎上,用套管作為鑽柱接上方鑽桿和鑽頭進行鑽井。這種方式主要用於鑽小井眼井。尾管鑽井技術是指在鑽井過程中,當鑽入破碎帶或涌水層段而無法正常鑽進時,在鑽柱下端連接一段套管和一種特製工具,打完這一段起出鑽頭把套管留在井內並固井的鑽井技術。其目的是為了封隔破碎帶和水層,保證孔內安全並維持正常鑽進。通常所說的套管鑽井技術是指全程套管鑽井技術。全程套管鑽井技術使用特製的套管鑽機、鑽具和鑽頭,利用套管作為水利通道,採用繩索式鑽井馬達作業的一種鑽井工藝。目前,研究和開發這種鑽井技術的主要是加拿大的Tesco公司,並在海上進行過鑽井,達到了降低成本的目的。但是這種鑽井技術目前仍處於研究完善階段,還存在許多問題有待研究解決。這些問題主要包括:①不能進行常規的電纜測井;②鑽頭泥包問題嚴重,至今沒有可靠的解決辦法;③加壓鑽進時,底部套管會產生橫向振動,致使套管和套管接頭損壞,目前還沒有找到解決消除或減輕套管橫向振動的可靠方法;④由於套管鑽進不使用鑽鋌,加壓困難,所以機械鑽速低於常規鑽桿鑽井;部分抵消了套管鑽進提下鑽節省的時間;⑤套管鑽井主要用於鑽進破碎帶和涌水地層,其應用范圍還不大。

我國中石油系統的研究機構也在探索研究套管鑽井技術,但至今還沒有見到公開報道的成果。目前,套管鑽井技術的研究內容,除了研製專用套管鑽機和鑽具外,重點針對上述問題開展。一是進行鑽頭的研究以解決鑽頭泥包問題;二是研究防止套管橫向振動的措施;三是研究提高套管鑽井機械鑽速的有效辦法;四是研究套管鑽井固井辦法。

套管鑽井應用實例:2001年,美國謝夫隆生產公司利用加拿大Tesco公司的套管鑽井技術在墨西哥灣打了2口定向井(A-12和A-13井)。兩井成井深度分別為3222×30.48cm和3728×30.48cm。為了進行對比分析,又用常規方法打了一口A-14井,結果顯示,同樣深度A-14井用時75.5h,A-13井用時59.5h。表層井段鑽速比較,A-12 井的平均機械鑽速為141ft/h,A-13井為187ft/h,A-14井為159ft/h。這說明套管鑽井的機械鑽速與常規方法機械鑽速基本相同。但鑽遇硬地層後套管鑽井,鑽壓增加到6.75t,致使擴眼器切削齒損壞,鑽速降低很多。BP公司用套管鑽井技術在懷俄明州鑽了5口井。井深為8200~9500ft,且都是從井口鑽到油層井段。鑽進過程中遇到了鑽頭泥包和套管振動問題。

此外,膨脹套管技術也是近年來發展起來的一種新技術,主要用於鑽井過程中隔離漏失、涌水、遇水膨脹縮經、破碎掉塊易坍塌等地層以及石油開采時油管的修復。勘探所與中國地質大學合作已立項開展這方面的研究工作。

2.3.1.5 石油鑽機的新發展

國外20世紀60年代末研製成功了AC-SCR-DC電驅動鑽機,並首先應用於海洋鑽井。由於電驅動鑽機在傳動、控制、安裝、運移等方面明顯優於機械傳動鑽機,因而獲得很快的發展,目前已經普遍應用於各型鑽機。90年代以來,由於電子器件的迅速發展,直流電驅動鑽機可控硅整流系統由模擬控制發展為全數字控制,進一步提高了工作可靠性。同時隨著交流變頻技術的發展,交流變頻首先於90年代初成功應用於頂部驅動裝置,90年代中期開始應用於深井石油鑽機。目前,交流變頻電驅動已被公認為電驅動鑽機的發展方向。

國內開展電驅動鑽機的研究起步較晚。蘭州石油化工機器廠於20世紀80年代先後研製並生產了ZJ60D型和ZJ45D型直流電驅動鑽機,1995年成功研製了ZJ60DS型沙漠鑽機,經應用均獲得較好的評價。90年代末期以來,我國石油系統加大鑽機的更新改造力度,電驅動鑽機取得了較快發展,寶雞石油機械廠和蘭州石油化工機器廠等先後研製成功ZJ20D、ZJ50D、ZJ70D型直流電驅動鑽機和ZJ20DB、ZJ40DB型交流變頻電驅動鑽機,四川油田也研製出了ZJ40DB交流變頻電驅動鑽機,明顯提高了我國鑽機的設計和製造水平。進入21世紀,遼河油田勘探裝備工程公司自主研製成功了鑽深能力為7000m的ZJ70D型直流電驅動鑽機。該鑽機具有自動送鑽系統,代表了目前我國直流電驅動石油鑽機的最高水平,整體配置是目前國內同類型鑽機中最好的。2007年5月已出口亞塞拜然,另兩部4000m鑽機則出口運往巴基斯坦和美國。由寶雞石油機械有限責任公司於2003年研製成功並投放市場的ZJ70/4500DB型7000m交流變頻電驅動鑽機,是集機、電、數字為一體的現代化鑽機,採用了交流變頻單齒輪絞車和主軸自動送鑽技術和「一對一」控制的AC-DC-AC全數字變頻技術。該型鑽機代表了我國石油鑽機的最新水平。憑借其優良的性能價格比,2003年投放市場至今,訂貨已達83台套。其中美國、阿曼、委內瑞拉等國石油勘探公司訂貨達42台套。在國內則佔領了近2~3年來同級別電驅動鑽機50%的市場份額。ZJ70/4500DB型鑽機主要性能參數:名義鑽井深度7000m,最大鉤載4500kN,絞車額定功率1470kW,絞車和轉盤擋數I+IR交流變頻驅動、無級調速,泥漿泵型號及台數F-1600三台,井架型式及有效高度K型45.5m,底座型式及檯面高度:雙升式/旋升式10.5m,動力傳動方式AC-DC-AC全數字變頻。

2. 鑽井的方法是怎樣的

在通常的一些井孔鑽鑿方法中,鑽柱,包含其下端處的鑽頭在內,在井孔中轉動,同時鑽井液被泵送穿過鑽柱中的縱向通路,這種鑽井液經由鑽柱與井孔孔壁之間的環形空間返回地面。當鑽穿不含有流體的地層時,鑽井液的重量和泵送速度的選定使得井孔孔壁處的壓力保持在使井孔成為不穩定的低水平和使井孔孔壁被壓裂的高水平之間。當井孔被鑽通含有烴類流體的地帶時,鑽井液壓力應當更加高出使烴類流體開始流入井孔的壓力,而低於使鑽井液不希望侵入地層的現象發生的壓力。這些要求將某些限制強加於鑽井過程,而特別是強加於在井孔中裝設套管的各井孔間距的長度。比如,如果在井底處鑽井液的壓力正好低於使不希望的鑽井液侵入地層的現象發生的上限,則在裸井井孔間距頂部處的鑽井液壓力可以接近於使烴類流體流入發生的下限。裸井間距的最大允許長度取決於鑽井液的比重、地層中的烴類流體壓力,以及鑽井液液柱的高度。其次,已經實踐過在低於地層流體壓力的井孔壓力下鑽穿含烴類流體地帶,即一種通常稱作欠平衡鑽井的方法。在欠平衡鑽井期間,烴類流體流入井孔,因而地面處的鑽井設備必須設計成可處理這種流入。此外,在鑽井過程期間必須採取專門措施來控制井孔中的流體壓力。美國6,305,469涉及一種在地層中產生井孔的方法,此井孔包括第一井段和穿過地層的含烴類流體地帶的第二井段,此方法包括鑽鑿第一井段;在第一井段中選定的地點處配置遠控鑽具,從該選定的地點鑽鑿第二井段;以與井孔孔壁形成密封關系的方式在第一井段中配置烴類流體生產管道,此管道配有流體流量控制裝置和與所述選定的地點形成流體連通的流體入口;操作鑽具以鑽鑿新的井段,從而在鑽具鑽通含烴類流體地帶期間,從第二井段流入生產管道的烴類流體的流量由流體流量控制裝置予以控制。

3. 石油鑽井方法有哪些

目前,世界上廣泛採用鑽井方法來取得地下的石油和天然氣。隨著石油工業的不斷發展,鑽井深度不斷增加,油氣井的建設速度也隨之加快,促使鑽井方法、技術和工藝得到很大改進。從已鑽成的千百萬口油氣井的資科中可以看到變化過程:頓鑽逐漸被旋轉鑽代替,井身結構從復雜到簡單,井眼直徑日趨縮小等等。

一、鑽井工藝發展概況和趨勢石油鑽井是油田勘探和開發的重要手段。一個國家石油工業的發展速度,常與它的鑽井工作量及科學技術水平緊密相關。近20年來,世界石油產量和儲量劇增,鑽井工作量相應地大幅度增加,鑽井科學技術水平也得到了飛速發展。在此期間鑽井技術發展的特點是從經驗鑽井進展到科學化鑽井。鑽井深度、斜度、區域和地區也有長足的發展。從鑽淺井、中深井發展到鑽深井和超深井;從鑽直井和一般斜井發展到鑽大斜度井和叢式井;從陸上鑽井發展到近海和深海鑽井;從地面條件好的地區鑽井發展到條件惡劣的地區(如沙漠、沼澤和寒冷地區)鑽井。在鑽井技術發展的同時,設備、工具和測量儀表也得到了相應的發展。

美國鑽井工作者曾將旋轉鑽井技術的發展進程分為四個時期:

(1)概念時期(1900—1920年)。這個時期開始把鑽井和洗井兩個過程結合在一起,開始使用牙輪鑽頭並用水泥封固套管。

(2)發展時期(1920—1948年)。這個時期牙輪鑽頭有所改進,提高了進尺和使用壽命。固井工藝和鑽井液有了進一步的發展,同時出現了大功率的鑽機。

(3)科學化鑽井時期(1948—1968年)。這個時期大力開展鑽井科學研究工作,鑽井技術飛速發展。該時期的主要技術成就有:發展和推廣了噴射鑽井技術;發展了鑲齒、滑動、密封軸承鑽頭;應用低固相、無固相不分散體系鑽井液;發展了地層壓力檢測技術、井控技術和固控技術,提出了平衡鑽井的理論及方法。

(4)自動化鑽井時期(1968年至今)。這個時期發展了自動化鑽機和井口自動化工具。鑽井參數自動測量和計算機在鑽井工程中得到廣泛應用,最優化鑽井和全盤計劃鑽井也初具規模。

目前,鑽井人員一般把鑽井技術發展的前兩個時期稱為經驗鑽井階段,把後兩個時期稱為科學化鑽井階段。時期的劃分直觀地描述了鑽井技術發展的過程,揭示了其發展規律。

任何一門科學和技術都有其自身的發展規律和要達到的主要目標。鑽井工作是為油田勘探和開發服務的重要手段。鑽井技術的發展首先要保證鑽井質量,即所鑽油氣井要滿足油氣田勘探和開發的要求,要在此基礎上來提高鑽井速度、縮短鑽井周期、降低鑽井成本。

近20年來的實踐證明,現代鑽井工藝技術將圍繞以下三個方面發展:

(1)提高鑽井速度,降低生產成本;(2)保護生產層,減少油氣層的污染和損害;(3)改善固井、完井技術,適應採油要求,延長油氣井壽命。

新中國成立以來,我國鑽井技術發展較快。特別是1978年推廣噴射鑽井、低固相優質鑽井液、四合一牙輪鑽頭等新技術後,我國的鑽井技術水平又有顯著提高,進入了科學化的鑽井階段,但與國外先進水平相比,還存在一定的差距。為了使我國的鑽井水平能滿足勘探開發的需要,努力趕上世界先進水平,必須要向鑽井技術進步要速度、要質量、要經濟效益,為加速勘探開發步伐、不斷增加油氣產量作出貢獻。

二、沖擊鑽井方法沖擊鑽井是一種古老的鑽井方法,也是旋轉鑽井方法出現以前唯一的鑽油氣井的方法。它是將破碎岩石的工具(鋼質尖頭鑽頭)提至一定高度,借鑽頭本身的重力沖向井底,擊碎岩石。然後撈取被擊碎的岩屑,以便繼續鑽進。因此,沖擊鑽井方法又被稱為頓鑽。

由於沖擊鑽井時,破碎岩屑與清除岩屑必須間斷地進行,因此鑽井速度很慢,不能滿足石油生產發展的需要。沖擊鑽井現在已基本上被旋轉鑽井所代替,僅在一些埋藏淺、壓力低的油田還能見到。

三、旋轉鑽井方法提高鑽速的根本途徑是改變鑽井方法,這正是旋轉鑽井法產生的原因。旋轉鑽井法的實質是:鑽頭在壓力作用下吃入岩石,同時在轉動力矩的作用下連續不斷地破碎岩石;被破碎的岩屑由地面輸入的鑽井液(泥漿、水、空氣等)及時帶走,鑽井液可以連續不斷地清除岩屑。這樣,一隻鑽頭可以在井底連續鑽進十幾米、幾十米甚至數百米後才起至地面進行更換。由於使用了鑽井液,可長時間穩定井眼、控制復雜地層。旋轉鑽井的鑽井速度高,能適應多種復雜情況,目前世界上大多使用這種方法鑽油氣井。旋轉鑽井通常也稱為轉盤鑽。

利用鑽桿和鑽鋌(厚壁鋼管)的重力對鑽頭加壓,鑽壓要使鑽頭能夠吃入岩石。破碎岩石所需的能量是從地面通過沉重的鋼性鑽柱傳給鑽頭的。起、下鑽的過程比較繁瑣,必須將鑽柱拆卸成許多立柱,才能起出鑽頭;而下鑽時又必須逐根接上。為了連續洗井,鑽井液從轉動的空心鑽柱里流向井底,再帶著岩屑從鑽柱外部與井壁形成的環形空間返回地面。鑽頭鑽進、清洗井底以及起、下鑽所需的動力全部由安裝在地面上的相應設備提供,這些機器設備總稱為鑽機。

現代旋轉鑽井的工藝過程表現為四個環節,即鑽進、獲取地質資料、完井和安裝。

鑽進環節由一系列按嚴格的順序重復的工序組成:把鑽柱下入井裡;旋轉和送進鑽頭使其在井底破碎岩石,同時循環鑽井液;隨著井筒的加深而接長鑽柱;起、下鑽柱以更換被磨損的鑽頭;洗井,凈化或配製鑽井液,處理復雜情況和事故等輔助作業。

為了獲得全面准確的地質資料,鑽井過程中不僅需要進行岩屑、鑽時、鑽井液錄井工作,而且還要進行鑽取岩心、測井等工作。通過各種地球物理測井方法,可以獲得井徑、井斜、方位、岩性等基本數據,掌握和了解井眼質量以及地層和油氣層的某些特性。

在鑽穿油氣層以後,需要下入油層套管,並注入水泥以隔離油氣層與其他地層,使油氣順利地流到地面上來。根據油氣井生產的要求做好井底完成工作是很重要的一道工序。

從確定井位開始,就需要平整井場、挖基礎坑、泥漿池、圓井等土方工程;為運輸機器設備而修築公路;鋪設油、水、氣管線,架設電線,以輸送油、水、氣和電力;打好地基以安裝設備、井架等。基礎工作完成後,要進行大量的井架、設備等搬運和安裝工作,還需做好開鑽前的一切准備工作,如檢查機器設備、試車、固定導管、鑽鼠洞、調配鑽井液、接好鑽具等。

旋轉鑽井過程中,驅動鑽柱旋轉、克服鑽柱與井壁的摩擦消耗了部分能量。為了減少這些無益的能量損失,1940年前後出現了井下動力鑽井方法。井下動力鑽井所用設備與旋轉鑽井基本相同,只是鑽頭不再由轉盤帶動旋轉,而是由井下動力鑽具直接驅動。典型的井下動力鑽具是渦輪鑽具,因此井下動力鑽井又常稱為渦輪鑽井。目前,井下動力鑽井在定向鑽井技術中得到了廣泛的應用。

近年來,一些工業發達國家還競相開展了熱力鑽井、高壓沖蝕鑽井、等離子射流鑽井和激光鑽井等新型鑽井方法的研究。隨著科學技術的進步,新的鑽井方法還將不斷涌現,鑽井工程也必將進入一個全新的科學化時期。

四、井身結構井身結構是油氣井全部基本數據的總稱。它包括以下數據:從開鑽到完鑽所用的鑽頭、鑽柱尺寸和鑽柱長度;套管的層次、直徑;各層套管的下入深度、鋼級和壁厚;各層套管注水泥的數據。由此可見,井身結構是全部鑽井過程計劃和施工的重要依據。圖5-1為井身結構的示意圖。

圖5-1井身結構

首先下入長度約4~6m的短套管,也稱導管,用於加固地表以免被鑽井液沖毀,保護井口完整。同時將循環的鑽井液導入泥漿凈化系統內。

第二次下入的套管叫表層套管,用於封隔地表不穩定的疏鬆地層或水層、安裝井口防噴器。一般深度為40~60m,有時可達500~600m。

當裸眼(未被套管隔離的井眼)長度超過2000~3000m或者地層剖面中存在高、低壓油層、氣層、水層和極不穩定的地層時,鑽進過程中為避免發生工程事故需要下入中間套管,又叫技術套管。目的是封隔復雜地層,防止噴、漏、卡、塌等惡性事故發生,保證安全鑽井。技術套管的層次和下入的深度根據地質和鑽井條件確定。

最後下入的套管叫油層套管,用於採油、采氣或者向生產層注水、注氣,封隔油層、氣層和水層,保證油氣井正常生產。油層套管的下入深度取決於井底的完成方法。油層套管一般從井口下到生產層底部或者只從生產層頂部下到底部。實際工作中對部分下入的油層套管,根據作用取不同的名稱,如尾管、篩管、濾管以及襯管等。

井身結構是由鑽井方法、鑽井目的、地質條件與鑽井技術水平決定的。周密考慮各種影響因素,制定合理的井身結構,是保證高速度鑽井與油氣井投產後正常產出的關鍵。

綜上所述,現代石油鑽井工程是一項復雜的系統工程。由多工序、多工種聯合作業,需要各種先進的科學技術和生產組織管理水平。

4. 油氣井是怎麼打成的

石油和天然氣埋藏在地下幾十米到幾千米深度不等的有孔隙、裂縫或溶洞的岩石中,人們為了尋找和開採石油、天然氣,從地面向地下的油氣層之間,鑽鑿出一個通道的過程稱之為石油天然氣鑽井。那麼一口油、氣井是怎麼打成的呢?
鑽井前,首先要在地面確定鑽井的位置(即鑽井井位),然後,在井位處打好安裝鑽機的基礎並安裝井架和鑽機。鑽井作業時,依靠鑽機的動力帶動鑽桿和鑽頭旋轉,鑽頭逐次向下破碎遇到的岩層,並形成一個井筒(也稱井眼),鑽井井眼尺寸的大小是由鑽頭大小來決定的。鑽頭在破碎岩層的同時,通過空心的鑽桿向地下注入鑽井液(俗稱鑽井泥漿),將鑽頭在破碎地層而產生的大量岩屑由循環的鑽井液帶到地面。地面的固控裝置將鑽井液中的岩屑清除後,通過鑽井泵再次將鑽井液打入井內。鑽井液是經過鑽桿內孔到達鑽頭水眼處,再從井壁與鑽柱的環形空間返迴流至地面的。鑽進的過程即鑽頭破碎岩石,及鑽井液通過循環不斷攜帶出鑽屑並形成井筒的過程。
鑽達設計深度後,要在井筒內下入專用儀器進行測井作業,目的是確定井下地層岩性和各個油、氣、水層的位置;然後再下入小於鑽井井眼的無縫鋼管(又稱套管);並在套管與井壁的環形空間內注入水泥漿將套管固定在井壁上;最後一道工序是對油層位置的套管進行射孔,人為的形成一個井下油氣流入套管內的孔道。油氣的地層壓力高時可自行流出地面,這種井我們稱為自噴油氣井;油氣壓力較低時需藉助外力從井下抽吸,這種井我們稱之為非自噴井。鑽井時要有一套配套完整、功能齊全的鑽機,有質量優異不易發生事故的鑽桿、套管和鑽頭,有性能優良和鑽遇地層岩性相匹配的鑽井液等。總之,石油天然氣鑽井的目的就是要鑿穿岩石,發現和保護好油氣層,並形成一個通道確保石油和天然氣通暢地流到地面。鑽井是石油工業中的一個重要工序,是勘探開發石油和天然氣必不可少的手段,是一項耗資巨大、技術復雜、風險性高的系統技術工程。

石油鑽井井架群和抽油機

5. 油氣田勘探採取何種方法

如何高速度、高水平地勘探油氣田是一項很復雜的任務。石油通常都深埋在上千米的地下,在地面看不見、摸不著。即使地面上有油氣顯示,也不能肯定地下就一定存在油氣藏。要想找到它,就必須想方設法獲取地質資料,掌握規律。隨著科學技術的發展、人類的不斷實踐和總結,尋找石油的方法越來越多,歸納起來主要有地面地質法、地球物理勘探法、地球化學勘探法和鑽井勘探法等。

一、地面地質法地面地質法是尋找石油最基本的工作方法,其研究內容十分豐富。石油勘探工作者運用地質知識,攜帶羅盤、鐵錘、放大鏡等簡單工具,在野外直接觀察天然露頭和人工露頭。了解勘探地區的地層、構造、油氣顯示、水文地質、自然地理等情況。查明有利於油氣生成和聚集的條件,從而達到找油找氣的目的。

二、地球物理勘探法地球物理勘探法是利用物理原理和技術來解決地質問題的方法。根據地下岩石不同的密度、磁性、電性以及彈性等物理性質,在地面上利用精密儀器進行測量,以了解地下岩層的起伏狀況,尋找儲油構造,達到尋找油氣藏的目的。隨著科學技術,特別是計算機的發展,地球物理勘探法有了飛躍發展。常見的地球物理勘探法有重力勘探、磁法勘探、電法勘探和地震勘探等。

1.重力勘探重力勘探是用重力儀在地面上測量由地下岩石密度的差異而引起的重力變化。主要是利用重力加速度的變化來研究地質構造和尋找地下礦產。

不同緯度的重力加速度的正常值採用下式計算:

go=9.78318×(1+0.0053024sin2Φ-0.0000058sin22Φ)(3-1)式中Ф——緯度;go——某一緯度處重力加速度的理論值,m/s2。

用重力儀測量出地殼上某一位置的重力加速度,並將其校正到對應海平面上的值。校正後的重力加速度值與根據上式算出的理論正常值不一致,則稱為重力異常。如果校正值大於理論值,則稱為正異常;反之,則稱負異常。重力異常反映出地殼內不同物質的組成和分布狀況。根據重力異常范圍的大小,又可分為區域重力異常和局部重力異常,前者范圍大,後者范圍小。研究區域重力異常可以了解地殼的內部結構,研究局部重力異常可以探礦。地下埋藏著密度較小的物質如石油、煤、鹽等非金屬礦的地區常顯示出重力負異常,而埋藏密度較大的物質如鐵、銅、鋅等金屬礦的地區常顯重力正異常。

2.磁法勘探用磁力儀在地面或空中測量地下岩石的磁性變化,來探明地下地質構造和尋找某些礦產的方法稱為磁法勘探。

通過設在各地的地磁台測得地磁要素數據,經校正並消除地磁短期和局部變化等影響,所獲得的全球基本地磁場數值稱為正常值。在實際測定時,若發現實測地磁要素數值與正常值不一致,則稱為地磁異常。地磁異常是地下磁性物質發生局部變化的標志,據此可勘測出地下的磁性岩體和礦體。如磁鐵礦、鎳礦、超基性岩等是強磁性的礦物和岩石,反映出地磁異常為正異常;金礦、銅礦、鹽礦、石油等是弱磁性或無磁性物質,反映出地磁異常為負異常。

3.電法勘探地殼的岩石存在著導電性差異。觀測和研究人工電流場或大地電流的分布規律,可以了解地下地質構造,尋找原油、天然氣和其他礦產。

在固定的觀測站進行連續觀測,所獲得的大量數據經過校正可得到正常的電場值。在實際測量時,實測值與正常值不一致稱為地電異常。地電異常反映可能有礦體或地質構造存在。

4.地震勘探地震勘探法主要是利用地殼岩石的彈性差異,以物理學的波動理論為依據,研究地震波的傳播規律,從而了解地下的地質構造,尋找油氣藏。

地震勘探的基本原理是在地面用人工方法產生地震波。產生地震波的常用方法是先鑽一口井,再將一定量的炸葯放入井中使其爆炸(圖3-1)。地震波向地下傳播遇到岩性不同的地層分界面就會發生反射。在地面上用精密儀器(檢波器)把來自地層分界面的反射波用大量曲線記錄下來,進行對比、整理和計算,就可得到反映岩層界面起伏變化的剖面圖。根據地震剖面圖,就可以了解地層分布情況和地下地質構造。

圖3-1地震勘探示意圖

由於地震勘探能夠高質量、高效率地解決多方面的地質問題,從而成為最主要的勘探方法。據國外不完全統計,每年在地震勘探方面的投入約佔全部石油勘探投資的70%,而在我國更是超過了90%。

三、地球化學勘探法地球化學勘探簡稱化探。該方法是對地表岩石、土壤、氣體和水中的各種成分進行化學分析。當地下存在油氣藏時,油氣就會向上擴散。盡管數量有限,但在漫長的地質歷史過程中,總會在地表土壤或岩石中出現一些烴類氣體、微量瀝青以及與烴類有關的細菌、元素和鹽類等。因此,通過檢測地下油氣向地表擴散的烴類物質以及油氣在運移過程中與周圍物質發生各種物理化學變化的產物,就可以研究地下油氣的分布。地球化學勘探法主要包括氣測法、細菌法、土壤鹽法等。

氣測法是通過測量從地下擴散到地表的微量氣體分子來尋找油氣的方法。

由於地下油氣向地表擴散,在這個地區就會發育一些與這些微量油氣有關的特殊細菌,如氧化甲烷細菌、氧化乙烷細菌等。通過檢測這類細菌,可預測地下深處有無油氣藏。

由於烴類氣體的擴散或是水的活動,在油氣藏上方的土壤中會形成特殊的鹽類。通過檢測這些特殊鹽類可以預測地下深處有無油氣藏。

四、鑽井勘探法利用地質法、物探法和化探法等間接方法可以確定地下的有利構造。這些構造中是否真的含有油氣,只有通過鑽井勘探法才能最後確定。鑽井勘探法是油氣田勘探工作中最直接的找油方法。通過所鑽井眼可以直觀地判斷油氣是否存在並且確定油氣產能的大小,還能以井筒為通道把油氣開采出來。但是由於鑽井的速度很慢,費用也很高,因此必須在上述間接方法確定的有利含油構造上才進行鑽井。

1.井的類別(1) 地質井(構造地質淺井、地層探井):在盆地或凹陷普查階段,為收集基礎地質資料、了解地層剖面和構造產狀而鑽的井。

(2) 參數井:在完成了地質普查或物探普查的盆地或凹陷內,選擇不同級別的構造單元而鑽的一口或多口井。目的是了解地層層序、厚度、岩性以及生、儲和蓋的條件,並為物探資料的解釋提供參數。參數井的設計深度要盡可能鑽穿沉積岩的全部層厚。如果沉積岩太厚,不可能在一口井內取得完整的剖面資料,則可在不同的構造單元上鑽兩三口參數井,以取得盆地或凹陷內一個完整剖面的資料。

(3) 預探井:以地震勘探詳查結果為基礎,在生、儲條件比較有利的構造或圈閉上打的第一口探井稱為預探井。目的是發現工業性油氣流。因此,在預探井內要特別重視取得系統的儲集層物性資料、中途測試和測井資料以及完井、分層試油等資料。在測試獲得油氣流後,還要取得流體樣品、油層壓力和溫度等資料,以便進行分析化驗和儲量計算。

(4) 詳探井(或稱評價井):針對已獲工業油氣流的構造或圈閉,以地震勘探精查構造圖為基礎,視油氣田面積大小、構造的復雜程度而鑽的井。目的是控制油氣田面積、掌握儲集層物性及厚度變化規律和油藏類型。除取得預探井內規定的各項地質資料外,評價井還必須對油氣層取岩心,並對岩性、電性和測試資料進行綜合研究,進行儲量計算。

(5) 開發井(包括生產井、注水井、注氣井、資料井、檢查井等):如果構造圖可靠、評價井所取的地質資料比較齊全、探明儲量的計算誤差在規定的范圍內,根據油田開發方案,為完成產能建設任務和產油氣計劃而部署的井。

(6) 調整井(包括生產井、注入井、檢查井等):油氣田全面投入開發若干年後,根據開發動態及油氣藏數值模擬資料,為提高儲量動用程度、調整油氣或油水界面的推進速度、提高採收率、保證完成規定的採油計劃所鑽的井。調整井應根據開發研究設計部門編制的油氣田調整開發方案實施。

2.地質錄井要在鑽井過程中取得地質資料應進行地質錄井。地質錄井就是用一定的方法觀察、記錄和分析鑽井過程中與油、氣、水有關的地質現象,獲得鑽遇地層的岩性及含油氣情況。地質錄井包括岩心錄井、岩屑錄井、鑽井液錄井、氣測井以及鑽時錄井等。

1)岩心錄井岩心錄井就是在鑽井過程中用專門的取心工具將地下岩石按順序取到地面上來,並對所取岩心進行分析、研究,取得各項資料的過程。

岩心能夠最直觀、最可靠地反映地下岩層的特徵。對岩心進行觀察、分析和研究,可以了解岩性、岩相特徵、生物特徵,可以測定儲集層的孔隙度、滲透率及有效厚度等。

由於鑽井取心成本高、影響鑽井速度,在油田勘探開發過程中,不可能對每口井都取心。所以,應根據具體情況針對某些層位進行取心,如主要的含油氣層、地質界線、標准層、岩性復雜層位、斷層通過層位等。

2)岩屑錄井地下岩石被鑽頭破碎後,隨著泥漿被帶到地面上,這些岩石碎塊就叫岩屑。鑽井時,地質人員按照一定的深度間隔及時收集岩屑,進行觀察和描述的工作稱為岩屑錄井。

在勘探工作中,為了查明探區內的含油氣情況,盡快找到新油田,在一般取心少或不取心的情況下,要獲得大量的地層、構造、含油氣情況等第一手資料,就必須採用岩屑錄井的工作方法。岩屑錄井具有成本低、簡便易行、了解地下情況及時等優點,它在油氣田勘探過程中佔有很重要的地位。

3)鑽時錄井地層的軟硬直接影響鑽進的速度。疏鬆的軟岩層鑽進快;緻密堅硬的岩層鑽進慢。因此,根據鑽進的快慢可以了解地層情況。表示鑽進快慢可以用鑽時和鑽速兩個不同的概念。鑽速是單位時間內所鑽的深度,用m/h表示;鑽時是每鑽進1m所需的時間,用min/m表示。由於地質錄井的需要,現場常採用鑽時而不採用鑽速。根據鑽時的變化,既可以幫助我們判斷井下地層岩性的變化,反映地層的可鑽性和縫洞發育情況,又能幫助鑽井工程技術人員掌握鑽頭的使用情況。提高鑽頭利用率,並改進鑽進措施,提高鑽速,降低成本。鑽時錄井資料可以用於以下地質和鑽井工程方面:

(1) 判斷岩性,幫助解釋地層剖面。在砂泥岩分布地區,可以幫助分辨滲透層。結合其他錄井資料可以幫助發現油層、氣層和水層。

(2) 判斷縫洞發育的井段。鑽速突然加快、鑽具放空等說明井下可能遇到了縫洞。配合岩屑、鑽井液錄井資料,可判斷是否鑽遇縫洞以及縫洞的大小和發育程度等。

(3) 根據鑽時錄井可以計算純鑽進時間,進行時效分析;根據不同類型鑽頭對各類岩石的破碎強度以及實際記錄的鑽時大小,合理選擇鑽頭;根據鑽時的突變,推斷是否鑽遇油層、氣層,並確定工程上應採取的措施。

4)鑽井液錄井鑽井液是鑽井的血液,它對鑽井工程極其重要,是保證優質、快速、安全鑽井的重要因素之一。在鑽進過程中鑽井液性能常常會發生變化,而這種變化主要與所鑽岩層的性質有關。因此,人們常利用鑽進過程中鑽井液性能的變化來分析研究井下油層、氣層和水層的情況,判斷特殊岩性的地層。

5)氣測井氣測井是直接測定鑽井液中可燃氣體含量的一種測井方法。隨鑽隨測、無須停鑽。氣測井能及時發現油氣顯示並預報井噴,對於新探區和高壓氣區的鑽井工作具有特殊的意義。

氣測井的實質是通過分析鑽井液中可燃氣體的含量,進而分析是否存在工業價值的油氣藏。氣測井是分析與油氣田有關的氣體。各油氣田的天然氣組成相差甚遠。同一油氣田,油層和氣層的天然氣組成也並非一樣。在氣測中,所分析的烴包括輕烴和重烴兩類。輕烴指甲烷,重烴指相對分子質量比甲烷大的烴類氣體。輕烴與重烴之和稱為全烴或總烴。

氣測井按其測試方法可分為非色譜氣測和色譜氣測。非色譜氣測是利用各種烴氣的燃燒溫度不同將甲烷與重烴分開。色譜氣測法又稱氣相色譜法,是利用色譜分析原理將天然氣中的各種組分(主要是甲烷至戊烷)分開。色譜氣測准確、速度快、得到的分析數據多,因此它正在逐步取代非色譜氣測。

6. 石油的鑽井通常都有上千米深,大概的工作原理是怎樣的

通俗簡單的說吧:

能源是電力,

機械傳動,通過方鑽桿,轉動的力在地面傳給方鑽桿,方鑽桿下面是鑽桿,鑽桿下面是鑽頭,跟我們在地面上用電鑽鑽一個孔原理差不多

不同的是鑽桿之間用螺紋連接,鑽到一定深度,就得擰開中間再加一節鑽桿,這樣一節一節鑽下去,就可以達到幾千米深了。

每鑽一定深度,還得測量,有專門的測井公司,如發生偏差及時修正,

現在的鑽井水平,十分厲害,可以在直著鑽上千米深後再拐彎90度,鑽孔能拐彎這種情況,在其它行業,是完全不可能的,

7. 石油怎麼開采呢

採油方法主要有自噴採油和人工舉升兩種。在油井的開發過程中,當對油井試油後,會根據油井的油層物性、壓力,選擇合適的開采方式。

在實際生產中,油層物性好、壓力高的油井,油氣可自噴到地表,即自噴採油。油層物性差、壓力低的油井,當地層能量不足以將油氣舉升到底表時,應人工補充能量,進行人工舉升。

油井自噴生產,一般要經過四種流動過程:

(1)原油從油層流到井底;

(2)從井底沿著井筒上升到井口;

(3)原油到井口之後通過油嘴;

(4)沿著地面管線流到分離器、計量站。

(7)石油探井怎麼打擴展閱讀

石油的成分主要有:油質(這是其主要成分)、膠質(一種粘性的半固體物質)、瀝青質(暗褐色或黑色脆性固體物質)、碳質。石油是由碳氫化合物為主混合而成的,具有特殊氣味的、有色的可燃性油質液體。

嚴格地說,石油以氫與碳構成的烴類為主要成分。構成石油的化學物質用蒸餾能分解。原油作為加工的產品,有煤油、苯、汽油、石蠟、瀝青等。嚴格地說,石油以氫與碳構成的烴類為主要成分。分子量最小的4種烴,全都是煤氣。

8. 石油鑽井的一般流程

我來說說陸地鑽井流程:舉個例子
搬家安裝設備 - 鑽26「導眼50米 -下20」導管 - 固井 - 開鑽:鑽17-1/2"井眼500米 - 下13-3/8" 表層套管 - 固井 - 測聲幅(測固井質量的,有的表層不測)- 鑽12-1/4"井眼2500米 - 電測 - 下9-5/8" 技術套管 - 固井 - 測聲幅(測固井質量)- 鑽8-1/2" 井眼3500米 - 電測 - 下7" 油套 - 固井 - 測聲幅(測固井質量)
基本情況是這樣的,有些井比較簡單,比較淺(1500米),程序就比較簡單;復雜的深井(5000米),流程就很復雜了。

9. 請問油田從打探井開始到完井到生產的簡單流程

鑽井都是一開打表層,一般幾十到幾百米,然後下表層套管,固井,然後二開,鑽至目的層後完鑽電測,之後根據錄井、測井解釋確定下油層套管的深度,下套管、固井、測固井質量,然後就完井了。這是簡單的,有的5、6千米的深井還要下好幾層技術套管才能完井,反正每次都是完鑽後測井然後下套管固井、測固井質量再繼續打直至結束,如果最底層是灰岩之類的裂縫儲層則不下套管裸眼完井。開發井也一樣,也要進行裸眼測井的,只不過測井項目較探井簡化了許多。

10. 石油鑽井的一般流程是什麼

石油鑽井的一般流程: 在油氣田開發方案確定之後,進入開發流程,這其中包括鑽井和生產兩個主要環節。鑽井環節涉及的設備有鑽機設備系統(其中又包括八大系統)、測錄井設備,生產環節涉及的設備有採油設備、測錄井設備。 鑽井前,首先要在地面確定鑽井的位置(即鑽井井位),然後在井位處打好安裝鑽機的...