當前位置:首頁 » 石油礦藏 » 石油化學元素周期是多少
擴展閱讀
2000萬噸石油多少錢 2025-06-22 03:39:15
王者鑽石奪寶滿多少出 2025-06-22 03:04:56
石油怎麼開采上來 2025-06-22 02:56:29

石油化學元素周期是多少

發布時間: 2022-05-05 02:01:35

1. 元素周期表總共有多少個元素

118個。(截至2017年1月15號)。隨著時代的發展元素周期會越來越豐富,元素種類會越來越多。

2015年12月30日,國際純粹與應用化學聯合會宣布第113,115,117,118號元素存在,它們將由日本、俄羅斯和美國科學家命名。IUPAC官方宣布,元素周期表已經加入4個新元素。

2016年6月8日,國際純粹與應用化學聯合會宣布,將合成化學元素第113號(縮寫為Nh)、115號(Mc)、117號(Ts)和118號(Og)提名為化學新元素。

2017年1月15日,全國科學技術名詞審定委員會聯合國家語言文字工作委員會組織化學、物理學、語言學界專家召開了113號、115 號、117號、118號元素中文定名會。經過參會專家熱烈討論和投票表決,形成了113號、115號、117號、118號元素中文定名方案。

(1)石油化學元素周期是多少擴展閱讀:

周期表中形成元素分區且分有七主族、七副族、Ⅷ族、0族。由於周期表能夠准確地預測各種元素的特性及其之間的關系,因此它在化學及其他科學范疇中被廣泛使用,作為分析化學行為時十分有用的框架。

俄國化學家門捷列夫於1869年發明周期表,此後不斷有人提出各種類型周期表不下170餘種,歸納起來主要有:短式表(以門捷列夫為代表)、長式表(維爾納式為代表)、特長表(以波爾塔式為代表);平面螺線表和圓形表(以達姆開夫式為代表);立體周期表(以萊西的圓錐柱立體表為代表)等。

2. 元素周期表內容

元素周期表是元素周期律用表格表達的具體形式,它反映元素原子的內部結構和它們之間相互聯系的規律。元素周期表簡稱周期表。元素周期表有很多種表達形式,目前最常用的是維爾納長式周期表。元素周期表有7個周期,有16個族和4個區。元素在周期表中的位置能反映該元素的原子結構。周期表中同一橫列元素構成一個周期。同周期元素原子的電子層數等於該周期的序數。同一縱行(第Ⅷ族包括3個縱行)的元素稱「族」。族是原子內部外電子層構型的反映。例如外電子構型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np4, IIIB族是(n-1) d1·ns2等。元素周期表能形象地體現元素周期律。根據元素周期表可以推測各種元素的原子結構以及元素及其化合物性質的遞變規律。當年,門捷列夫根據元素周期表中未知元素的周圍元素和化合物的性質,經過綜合推測,成功地預言未知元素及其化合物的性質。現在科學家利用元素周期表,指導尋找製取半導體、催化劑、化學農葯、新型材料的元素及化合物。

現代化學的元素周期律是1869年俄國科學家德米特里·伊萬諾維奇·門捷列夫(Dmitri Ivanovich Mendeleev )首先整理,他將當時已知的63種元素依原子量大小並以表的形式排列,把有相似化學性質的元素放在同一行,就是元素周期表的雛形。利用周期表,門得列夫成功的預測當時尚未發現的元素的特性(鎵、鈧、鍺)。1913年英國科學家莫色勒利用陰極射線撞擊金屬產生X射線,發現原子序越大,X射線的頻率就越高,因此他認為核的正電荷決定了元素的化學性質,並把元素依照核內正電荷(即質子數或原子序)排列,經過多年修訂後才成為當代的周期表。
在周期表中,元素是以元素的原子序排列,最小的排行最先。表中一橫行稱為一個周期,一列稱為一個族。

1 H氫1.0079
2 He氦4.0026
3 Li鋰6.941
4 Be鈹9.0122
5 B硼10.811
6 C碳12.011
7 N氮14.007
8 O氧15.999
9 F氟18.998
10 Ne氖20.17
11 Na鈉22.9898
12 Mg鎂24.305
13 Al鋁26.982
14 Si硅28.085
15 P磷30.974
16 S硫32.06
17 Cl氯35.453
18 Ar氬39.94
19 K鉀39.098
20 Ca鈣40.08
21 Sc鈧44.956
22 Ti鈦47.9
23 V 釩50.94
24 Cr鉻51.996
25 Mn錳54.938
26 Fe鐵55.84
27 Co鈷58.9332
28 Ni鎳58.69
29 Cu銅63.54
30 Zn鋅65.38
31 Ga鎵69.72
32 Ge鍺72.5
33 As砷74.922
34 Se硒78.9
35 Br溴79.904
36 Kr氪83.8
37 Rb銣85.467
38 Sr鍶87.62
39 Y 釔88.906
40 Zr鋯91.22
41 Nb鈮92.9064
42 Mo鉬95.94
43 Tc鍀(99)
44 Ru釕161.0
45 Rh銠102.906
46 Pd鈀106.42
47 Ag銀107.868
48 Cd鎘112.41
49 In銦114.82
50 Sn錫118.6
51 Sb銻121.7
52 Te碲127.6
53 I碘126.905
54 Xe氙131.3
55 Cs銫132.905
56 Ba鋇137.33
57-71La-Lu鑭系
57 La鑭138.9
58 Ce鈰140.1
59 Pr鐠140.9
60 Nd釹144.2
61 Pm鉕(147)
62 Sm釤150.3
63 Eu銪151.96
64 Gd釓157.25
65 Tb鋱158.9
66 Dy鏑162.5
67 Ho鈥164.9
68 Er鉺167.2
69 Tm銩168.9
70 Yb鐿173.04
71 Lu鑥174.967
72 Hf鉿178.4
73 Ta鉭180.947
74 W鎢183.8
75 Re錸186.207
76 Os鋨190.2
77 Ir銥192.2
78 Pt鉑195.08
79 Au金196.967
80 Hg汞200.5
81 Tl鉈204.3
82 Pb鉛207.2
83 Bi鉍208.98
84 Po釙(209)
85 At砹(201)
86 Rn氡(222)
87 Fr鈁(223)
88 Ra鐳226.03
89-103Ac-Lr錒系
89 Ac錒(227)
90 Th釷232.0
91 Pa鏷231.0
92 U鈾238.0
93 Np鎿(237)
94 Pu鈈(239,244)
95 Am鎇(243)
96 Cm鋦(247)
97 Bk錇(247)
98 Cf鐦(251)
99 Es鎄(252)
100 Fm鐨(257)
101 Md鍆(258)
102 No鍩(259)
103 Lr鐒(260)
104 Rf釒盧(257)
105 Db釒杜(261)
106 Sg釒喜(262)
107 Bh釒波(263)
108 Hs釒黑(262)
109 Mt釒麥(265)
110 Ds釒達(266)
111 Rg釒侖(272)
112 Uub(285)
113 Uut(284)
114 Uuq(289)
115 Uup(289)
116 Uuh(292)
117 Uus(*) /*尚未被發現*/
118 Uuo(293)
……

門捷列夫出生於1834年,他出生不久,父親就因雙目失明出外就醫,失去了得以維持家人生活的教員職位。門捷列夫14歲那年,父親逝世,接著火災又吞沒了他家中的所有財產,真是禍不單行。1850年,家境困頓的門捷列夫藉著微薄的助學金開始了他的大學生活,後來成了彼得堡大學的教授。

幸運的是,門捷列夫生活在化學界探索元素規律的卓絕時期。當時,各國化學家都在探索已知的幾十種元素的內在聯系規律。

1865年,英國化學家紐蘭茲把當時已知的元素按原子量大小的順序進行排列,發現無論從哪一個元素算起,每到第八個元素就和第一個元素的性質相近。這很像音樂上的八度音循環,因此,他乾脆把元素的這種周期性叫做「八音律」,並據此畫出了標示元素關系的「八音律」表。

顯然,紐蘭茲已經下意識地摸到了「真理女神」的裙角,差點就揭示元素周期律了。不過,條件限制了他作進一步的探索,因為當時原子量的測定值有錯誤,而且他也沒有考慮到還有尚未發現的元素,只是機械地按當時的原子量大小將元素排列起來,所以他沒能揭示出元素之間的內在規律。

可見,任何科學真理的發現,都不會是一帆風順的,都會受到阻力,有些阻力甚至是人為的。當年,紐蘭茲的「八音律」在英國化學學會上受到了嘲弄,主持人以不無譏諷的口吻問道:「你為什麼不按元素的字母順序排列?」

門捷列夫顧不了這么多,他以驚人的洞察力投入了艱苦的探索。直到1869年,他將當時已知的仍種元素的主要性質和原子量,寫在一張張小卡片上,進行反復排列比較,才最後發現了元素周期規律,並依此制定了元素周期表。

先背熟元素周期表,然後就會慢慢找出各族元素的規律,以後見到沒有學過的元素只要是同一族的都會知道有什麼特點,有什麼化學性質,那就不是可以舉一反三了

橫著看叫周期,是指元素周期表上某一橫列元素最外層電子從1到8的一個周期循環
豎著看叫族,是指某一豎列元素因最外層電子數相同而表現出的相似的化學性質

主族元素是只有最外層電子沒有排滿的,但是副族有能級的躍遷,次外層電子也沒排滿。

這張表揭示了物質世界的秘密,把一些看來似乎互不相關的元素統一起來,組成了一個完整的自然體系。它的發現,是近代化學史上的一個創舉,對於促進化學的發展,起了巨大的作用。看到這張表,人們便會想到它的最早發明者——門捷列夫。
德米特里·伊萬諾維奇·門捷列夫生於一八三四年二月七日俄國西伯利亞的托波爾斯克市。這個時代,正是歐洲資本主義迅速發展時期。生產的飛速發展,不斷地對科學技術提出新的要求。化學也同其它科學一樣,取得了驚人的進展。門捷列夫正是在這樣一個時代,誕生到人間。門捷列夫從小就熱愛勞動,熱愛學習。他認為只有勞動,才能使人們得到快樂、美滿的生活;只有學習,才能使人變得聰明。

門捷列夫在學校讀書的時候,一位很有名的化學教師,經常給他們講課。熱情地向他們介紹當時由英國科學家道爾頓始創的新原子論。由於道爾頓新原於學說的問世,促進了化學的發展速度,新元素被發現了。化學這一門科學正激動著人們的心。這位教師的講授,使門捷列夫的思想更加開闊了,決心為化學這門科學獻出一生。

門捷列夫在大學學習期間,表現出了堅韌、忘我的超人精神。疾病折磨著門捷列夫,由於喪失了無數血液,他一天一天的消瘦和蒼白了。可是,在他貧血的手裡總是握著一本化學教科書。那裡面當時有很多沒有弄明白的問題,纏繞著他的頭腦,似乎在召呼他快去探索。他在用生命的代價,在科學的道路上攀登著。他說,我這樣做「不是為了自己的光榮,而是為了俄國名字的光榮。」——過了一段時間以後,門捷列夫並沒有死去,反而一天天好起來了。最後,才知道是醫生診斷的錯誤,而他得的不過是氣管出血症罷了。

由於門捷列夫學習刻苦和在學習期間進行了一些創造性的研究工作,一八五五年,他以優異成績從學院畢業。畢業後,他先後到過辛菲羅波爾、敖德薩擔任中學教師。這期間,他一邊教書,一邊在極其簡陋的條件下進行研究,寫出了《論比容》的論文。文中指出了根據比容進行化合物的自然分組的途徑。一八五七年一月,他被批准為彼得堡大學化學教研室副教授,當時年僅二十三歲。

攀登科學高峰的路,是一條艱苦而又曲折的路。門捷列夫在這條路上,也是吃盡了苦頭。當他擔任化學副教授以後,負責講授《化學基礎》課。在理論化學里應該指出自然界到底有多少元素?元素之間有什麼異同和存在什麼內部聯系?新的元素應該怎樣去發現?這些問題,當時的化學界正處在探索階段。近五十多年來,各國的化學家們,為了打開這秘密的大門,進行了頑強的努力。雖然有些化學家如德貝萊納和紐蘭茲在一定深度和不同角度客觀地敘述了元素間的某些聯系,但由於他們沒有把所有元素作為整體來概括,所以沒有找到元素的正確分類原則。年輕的學者門捷列夫也毫無畏懼地沖進了這個領域,開始了艱難的探索工作。

他不分晝夜地研究著,探求元素的化學特性和它們的一般的原子特性,然後將每個元素記在一張小紙卡上。他企圖在元素全部的復雜的特性里,捕捉元素的共同性。一但他的研究,一次又一次地失敗了。可他不屈服,不灰心,堅持幹下去。

為了徹底解決這個問題,他又走出實驗室,開始出外考察和整理收集資料。一八五九年,他去德國海德爾堡進行科學深造。兩年中,他集中精力研究了物理學、化學,使他探索元素間內在聯系的基礎更扎實了。 一八六二年,他對巴庫油田進行了考察,對液體進行了深入研究,重測了一些元素的原子量,使他對元素的特性有了深刻的了解。一八六七年,他借應邀參加在法國舉行的世界工業展覽俄羅斯陳列館工作的機會,參觀和考察了法國、德國、比利時的許多化工廠、實驗室,大開眼界,豐富了知識。這些實踐活動,不僅增長了他認識自然的才幹,而且對他發現元素周期律,奠定了雄厚的基礎。

門捷列夫又返回實驗室,繼續研究他的紙卡。他把重新測定過的原子量的元素,按照原子量的大小依次排列起來。他發現性質相似的元素,它們的原子量並不相近;相反,有些性質不同的元素,它們的原子量反而相近。他緊緊抓住元素的原子量與性質之間的相互關系,不停地研究著。他的腦子因過度緊張,而經常昏眩。但是,他的心血並沒有白費,在一八六九年二月十九日,他終於發現了原素周期律。他的周期律說明:簡單物體的性質,以及元素化合物的形式和性質,都和元素原子量的大小有周期性的依賴關系。門捷列夫在排列元素表的過程中,又大膽指出,當時一些公認的原子量不準確。如那時金的原子量公認為169.2,按此在元素表中,金應排在鋨、銥、鉑的前面,因為它們被公認的原子量分別為198.6、6.7、196.7,而門捷列夫堅定地認為金應排列在這三種元素的後面,原子量都應重新測定。大家重測的結果,鋨為190.9、銥為193.1、鉑為195.2,而金是197.2。實踐證實了門捷列夫的論斷,也證明了周期律的正確性。

在門捷列夫編制的周期表中,還留有很多空格,這些空格應由尚未發現的元素來填滿。門捷列夫從理論上計算出這些尚未發現的元素的最重要性質,斷定它們介於鄰近元素的性質之間。例如,在鋅與砷之間的兩個空格中,他預言這兩個未知元素的性質分別為類鋁和類硅。就在他預言後的四年,法國化學家布阿勃朗用光譜分析法,從門鋅礦中發現了鎵。實驗證明,鎵的性質非常象鋁,也就是門捷列夫預言的類鋁。鎵的發現,具有重大的意義,它充分說明元素周期律是自然界的一條客觀規律;為以後元素的研究,新元素的探索,新物資、新材料的尋找,提供了一個可遵循的規律。

門捷列夫發現了元素周期律,在世界上留下了不朽的光榮,人們給他以很高的評價。恩格斯在《自然辯證法》一書中曾經指出。「門捷列夫不自覺地應用黑格爾的量轉化為質的規律,完成了科學上的一個勛業,這個勛業可以和勒維烈計算尚未知道的行星海王星的軌道的勛業居於同等地位。」

由於時代的局限性,門捷列夫的元素周期律並不是完整無缺的。一八九四年,惰性氣體氛的發現,對周期律是一次考驗和補充。一九一三年,英國物理學家莫塞萊在研究各種元素的倫琴射線波長與原子序數的關系後,證實原子序數在數量上等於原子核所帶的陽電荷,進而明確作為周期律的基礎不是原子量而是原子序數。在周期律指導下產生的原於結構學說,不僅賦予元素周期律以新的說明,並且進一步闡明了周期律的本質,把周期律這一自然法則放在更嚴格更科學的基礎上。元素周期律經過後人的不斷完善和發展,在人們認識自然,改造自然,征服自然的斗爭中,發揮著越來越大的作用。

門捷列夫除了完成周期律這個勛業外,還研究過氣體定律、氣象學、石油工業、農業化學、無煙火葯、度量衡等。由於他總是日以繼夜地頑強地勞動著,在他研究過的這些領域中,都在不同程度上取得了成就。

1907年2月2日,這位享有世界盛譽的科學家,因心肌梗塞與世長辭了。

元素周期律的發現是許多科學家共同努力的結果。

1789年,安托萬-洛朗·拉瓦錫出版的《化學大綱》中發表了人類歷史上第一張《元素表》,在該表中,他將當時已知的33種元素分四類。

1829年,德貝萊納在對當時已知的54種元素進行了系統的分析研究之後,提出了元素的三元素組規則。他發現了幾組元素,每組都有三個化學性質相似的成員。並且,在每組中,居中的元素的原子量,近似於兩端元素原子量的平均值。

1850年,德國人培頓科弗宣布,性質相似的元素並不一定只有三個;性質相似的元素的原子量之差往往為8或8的倍數。

1862年,法國化學家尚古多創建了《螺旋圖》,他創造性地將當時的62種元素,按各元素原子量的大小為序,標志著繞著圓柱一升的螺旋線上。他意外地發現,化學性質相似的元素,都出現在同一條母線上。

1863年,英國化學家歐德林發表了《原子量和元素符號表》,共列出49個元素,並留有9個空位。

上述各位科學家以及他們所做的研究,在一定程度上只能說是一個前期的准備,但是這些准備工作是不可缺少的。而俄國化學家門捷列夫、德國化學家邁爾和英國化學家紐蘭茲在元素周期律的發現過程中起了決定性的作用。

1865年,紐蘭茲正在獨立地進行化學元素的分類研究,在研究中他發現了一個很有趣的現象。當元素按原子量遞增的順序排列起來時,每隔8個元素,元素的物理性質和化學性質就會重復出現。由此他將各種元素按著原子量遞增的順序排列起來,形成了若干族系的周期。紐蘭茲稱這一規律為「八音律」。這一正確的規律的發現非但沒有被當時的科學界接受,反而使它的發現者紐蘭茲受盡了非難和侮辱。直到後來,當人人已信服了門氏元素周期之後才警醒了,英國皇家學會對以往對紐蘭茲不公正的態度進行了糾正。門捷列夫在元素周期的發現中可謂是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老師在內的各個方面的不理解和壓力。

門捷列夫生於1834年,10歲之前居住於西伯利亞,在一個政治流放者的指導下,學習科學知識並對其產生了極大興趣。

1847年,失去父親的門捷列夫隨母親來到披得堡。1850年,進入中央師范學院學習,畢業後曾擔任中學教師,後任彼得堡大學副教授。

1867年,擔任教授的門捷列夫為了系統地講好無機化學課程中,正在著手著述一本普通化學教科書《化學原理》。在著書過程中,他遇到一個難題,即用一種怎樣的合乎邏輯的方式來組織當時已知的63種元素。

門捷列夫仔細研究了63種元素的物理性質和化學性質,又經過幾次並不滿意的開頭之後,他想到了一個很好的方法對元素進行系統的分類。門捷列夫准備了許多類似撲克牌一樣的卡片,將63種化學元素的名稱及其原子量、氧化物、物理性質、化學性質等分別寫在卡片上。門捷列夫用不同的方法去擺那些卡片,用以進行元素分類的試驗。最初,他試圖像德貝萊納那樣,將元素分分為三個一組,得到的結果並不理想。他又將非金屬元素和金屬元素分別擺在一起,使其分成兩行,仍然未能成功。他用各種方法擺弄這些卡片,都未能實現最佳的分類。

1869年3月1日這一天,門捷列夫仍然在對著這些卡片苦苦思索。他先把常見的元素族按照原子量遞增的順序拼在一起,之後是那些不常見的元素,最後只剩下稀土元素沒有全部「入座」,門捷列夫無奈地將它放在邊上。從頭至尾看一遍排出的「牌陣」,門捷列夫驚喜地發現,所有的已知元素都已按原子量遞增的順序排列起來,並且相似元素依一定的間隔出現。
第二天,門捷列夫將所得出的結果製成一張表,這是人類歷史上第一張化學元素周期表。在這個表中,周期是橫行,族是縱行。在門捷列夫的周期表中,他大膽地為尚待發現的元素留出了位置,並且在其關於周期表的發現的論文中指出:按著原子量由小到大的順序排列各種元素,在原子量跳躍過大的地方會有新元素被發現,因此周期律可以預言尚待發現的元素。
事實上,德國化學家邁爾早在1864年就已發明了「六元素表」,此表已具備了化學元素周期表早幾個月,邁爾又對「六元素表」進行了遞減,提出了著名的《原子體積周期性圖解》。該圖解比門氏的第一張化學元素表定量化程度要強,因而比較精確。但是,邁爾未能對該圖解進行系統說明,而該圖解側重於化學元素物理性質的體現。

1871年12月,門捷列夫在第一張元素周期表的基礎上進行增益,發表了第二張表。在該表中,改豎排為橫排,使用一族元素處於同一豎行中,更突出了元素性質的周期性。至此,化學元素周期律的發現工作已圓滿完成。

客觀上來說,邁爾和門捷列夫都曾獨自發現了元素的周期律,但是由於門捷列夫對元素周期律的研究最為徹底,故而在化學界通常將周期律稱為門捷列夫周期律。

主族元素越是向右非金屬性越強,越是向上金屬性越強。
同主族元素,隨著周期數的增加,分子量越來越大,半徑越來越大,金屬性越來越強。
同周期元素,隨著原子系數數的增加,分子量越來越大,半徑越來越小,非金屬性越來越強。
最後一列上都是稀有氣體,化學性質穩定
中學化學就講這些,過渡元素不要求。
1 元素周期表中元素及其化合物的遞變性規律
1.1 原子半徑
(1)除第1周期外,其他周期元素(惰性氣體元素除外)的原子半徑隨原子序數的遞增而減小;
(2)同一族的元素從上到下,隨電子層數增多,原子半徑增大。
1.2 元素化合價
(1)除第1周期外,同周期從左到右,元素最高正價由鹼金屬+1遞增到+7,非金屬元素負價由碳族-4遞增到-1(氟無正價,氧無+6價,除外);
(2)同一主族的元素的最高正價、負價均相同
1.3 單質的熔點
(1)同一周期元素隨原子序數的遞增,元素組成的金屬單質的熔點遞增,非金屬單質的熔點遞減;
(2)同一族元素從上到下,元素組成的金屬單質的熔點遞減,非金屬單質的熔點遞增
1.4 元素的金屬性與非金屬性
(1)同一周期的元素從左到右金屬性遞減,非金屬性遞增;
(2)同一主族元素從上到下金屬性遞增,非金屬性遞減。
1.5 最高價氧化物和水化物的酸鹼性
元素的金屬性越強,其最高價氧化物的水化物的鹼性越強;元素的非金屬性越強,最高價氧化物的水化物的酸性越強。
1.6 非金屬氣態氫化物
元素非金屬性越強,氣態氫化物越穩定。同周期非金屬元素的非金屬性越強,其氣態氫化物水溶液一般酸性越強;同主族非金屬元素的非金屬性越強,其氣態氫化物水溶液的酸性越弱。
1.7 單質的氧化性、還原性
一般元素的金屬性越強,其單質的還原性越強,其氧化物的氧離子氧化性越弱;元素的非金屬性越強,其單質的氧化性越強,其簡單陰離子的還原性越弱。

2. 推斷元素位置的規律
判斷元素在周期表中位置應牢記的規律:
(1)元素周期數等於核外電子層數;
(2)主族元素的序數等於最外層電子數。

3. 化學元素周期表總共多少個元素

118個。(截至2017年1月15號)。隨著時代的發展元素周期會越來越豐富,元素種類會越來越多。

元素周期表有7個周期,16個族。

每一個橫行叫作一個周期,每一個縱行叫作一個族。

這7個周期又可分成短周期(1、2、3)、長周期(4、5、6、7)。共有16個族,又分為7個主族(ⅠAⅡA ⅢA ⅣA ⅤA ⅥA ⅦA), 7個副族(ⅠB ⅡB ⅢB ⅣB ⅤB ⅥB ⅦB),一個第Ⅷ族(包括三個縱行),一個零族。

元素周期表上的0族元素屬於稀有氣體(惰性氣體)。在常溫常壓下,它們都是無色無味的單原子氣體,很難進行化學反應。稀有氣體共有七種,它們是氦(He)、氖(Ne)、氬(Ar)、氪(Kr)、氙(Xe)、氡(Rn,放射性)、氣奧(Og,放射性,人造元素)。

(3)石油化學元素周期是多少擴展閱讀

同一周期內,從左到右,元素核外電子層數相同,最外層電子數依次遞增,原子半徑遞減(零族元素除外)。失電子能力逐漸減弱,獲電子能力逐漸增強,金屬性逐漸減弱,非金屬性逐漸增強。

元素的最高正氧化數從左到右遞增(沒有正價的除外),最低負氧化數從左到右遞增(第一周期除外,第二周期的O、F元素除外)。

同一族中,由上而下,最外層電子數相同,核外電子層數逐漸增多,原子半徑增大,原子序數遞增,元素金屬性遞增,非金屬性遞減。

核電荷數=質子數=核外電子數=原子序數

相對原子質量≈質子數+中子數(不可作為公式)

4. 化學周期元素周期表內容是什麼

化學元素周期表是根據原子序數從小至大排序的化學元素列表。列表大體呈長方形,某些元素周期中留有空格,使特性相近的元素歸在同一族中,如鹼金屬元素、鹼土金屬、鹵族元素、稀有氣體等。

1、元素周期表有7個周期,16個族。每一個橫行叫作一個周期,每一個縱行叫作一個族。這7個周期又可分成短周期(1、2、3)、長周期(4、5、6、7)。共有16個族,從左到右每個縱列算一族(VIII B族除外)。

2、同一周期內,從左到右,元素核外電子層數相同,最外層電子數依次遞增,原子半徑遞減(零族元素除外)。失電子能力逐漸減弱,獲電子能力逐漸增強,金屬性逐漸減弱,非金屬性逐漸增強。

(4)石油化學元素周期是多少擴展閱讀:

1、化學元素,指自然界中一百多種基本的金屬和非金屬物質,它們只由一種原子組成,其原子中的每一核子具有同樣數量的質子,用一般的化學方法不能使之分解,並且能構成一切物質。

2、從理論上說,化學元素周期表還有很多元素需要補充,第七周期應有32種元素,而還未發現的第八周期應有50種元素。所以,元素周期還需要不斷的補充與完善。

3、元素周期表中共有118種元素。每一種元素都有一個編號,大小恰好等於該元素原子的核內電子數目,這個編號稱為原子序數。

4、除第1周期外,其他周期元素(稀有氣體元素除外)的原子半徑隨原子序數的遞增而減小;同一族的元素從上到下,隨電子層數增多,原子半徑增大。(五、六周期間的副族除外)。

5. 求清楚的元素周期表

用諧音狂想記憶法較好記:輕(氫)孩(氦)離(鋰)皮(鈹),朋(硼)嘆(碳)淡(氮)養(氧),佛(氟)奶(氖)那(鈉)沒(鎂),屢(鋁)歸(硅)臨(磷)留(硫),濾(氯)牙(氬)加(鉀)鈣。
意思是說:瘦弱體重很輕的小孩皮膚脫皮,朋友慨嘆說你應該粗放型地養他。我們家老佛爺也就是孩子的奶奶說:那樣沒法子養。屢次回老家討偏方,臨走時還給人家留下錢,人家屢次說,你應該給他的牙加補一些鈣。
這是我上初中時學化學時自己編的,你瞧都二十年了還記得很清楚。元素周期表」。這張表揭示了物質世界的秘密,把一些看來似乎互不相關的元素統一起來,組成了一個完整的自然體系。它的發明,是近代化學史上的一個創舉,對於促進化學的發展,起了巨大的作用。看到這張表,人們便會想到它的最早發明者——門捷列夫。
德米特里·伊萬諾維奇·門捷列夫生於一八三四年二月七日俄國西伯利亞的托波爾斯克市。這個時代,正是歐洲資本主義迅速發展時期。生產的飛速發展,不斷地對科學技術提出新的要求。化學也同其它科學一樣,取得了驚人的進展。門捷列夫正是在這樣一個時代,誕生到人間。門捷列夫從小就熱愛勞動,熱愛學習。他認為只有勞動,才能使人們得到快樂、美滿的生活;只有學習,才能使人變得聰明。
門捷列夫在學校讀書的時候,一位很有名的化學教師,經常給他們講課。熱情地向他們介紹當時由英國科學家道爾頓始創的新原子論。由於道爾頓新原於學說的問世,促進了化學的發展速度,一個一個的新元素被發現了。化學這一門科學正激動著人們的心。這位教師的講授,使門捷列夫的思想更加開闊了,決心為化學這門科學獻出一生。
門捷列夫在大學學習期間,表現出了堅韌、忘我的超人精神。疾病折磨著門捷列夫,由於喪失了無數血液,他一天一天的消瘦和蒼白了。可是,在他貧血的手裡總是握著一本化學教科書。那裡面當時有很多沒有弄明白的問題,纏繞著他的頭腦,似乎在召呼他快去探索。他在用生命的代價,在科學的道路上攀登著。他說,我這樣做「不是為了自己的光榮,而是為了俄國名字的光榮。」——過了一段時間以後,門捷列夫並沒有死去,反而一天天好起來了。最後,才知道是醫生診斷的錯誤,而他得的不過是氣管出血症罷了。
由於門捷列夫學習刻苦和在學習期間進行了一些創造性的研究工作,一八五五年,他以優異成績從學院畢業。畢業後,他先後到過辛菲羅波爾、敖德薩擔任中學教師。這期間,他一邊教書,一邊在極其簡陋的條件下進行研究,寫出了《論比容》的論文。文中指出了根據比容進行化合物的自然分組的途徑。一八五七年一月,他被批准為彼得堡大學化學教研室副教授,當時年僅二十三歲。
攀登科學高峰的路,是一條艱苦而又曲折的路。門捷列夫在這條路上,也是吃盡了苦頭。當他擔任化學副教授以後,負責講授《化學基礎》課。在理論化學里應該指出自然界到底有多少元素?元素之間有什麼異同和存在什麼內部聯系?新的元素應該怎樣去發現?這些問題,當時的化學界正處在探索階段。近五十多年來,各國的化學家們,為了打開這秘密的大門,進行了頑強的努力。雖然有些化學家如德貝萊納和紐蘭茲在一定深度和不同角度客觀地敘述了元素間的某些聯系,但由於他們沒有把所有元素作為整體來概括,所以沒有找到元素的正確分類原則。年輕的學者門捷列夫也毫無畏懼地沖進了這個領域,開始了艱難的探索工作。
他不分晝夜地研究著,探求元素的化學特性和它們的一般的原子特性,然後將每個元素記在一張小紙卡上。他企圖在元素全部的復雜的特性里,捕捉元素的共同性。一但他的研究,一次又一次地失敗了。可他不屈服,不灰心,堅持幹下去。
為了徹底解決這個問題,他又走出實驗室,開始出外考察和整理收集資料。一八五九年,他去德國海德爾堡進行科學深造。兩年中,他集中精力研究了物理化學,使他探索元素間內在聯系的基礎更扎實了。 一八六二年,他對巴庫油田進行了考察,對液體進行了深入研究,重測了一些元素的原子量,使他對元素的特性有了深刻的了解。一八六七年,他借應邀參加在法國舉行的世界工業展覽俄羅斯陳列館工作的機會,參觀和考察了法國、德國、比利時的許多化工廠、實驗室,大開眼界,豐富了知識。這些實踐活動,不僅增長了他認識自然的才幹,而且對他發現元素周期律,奠定了雄厚的基礎。
門捷列夫又返回實驗室,繼續研究他的紙卡。他把重新測定過的原子量的元素,按照原子量的大小依次排列起來。他發現性質相似的元素,它們的原子量並不相近;相反,有些性質不同的元素,它們的原子量反而相近。他緊緊抓住元素的原子量與性質之間的相互關系,不停地研究著。他的腦子因過度緊張,而經常昏眩。但是,他的心血並沒有白費,在一八六九年二月十九日,他終於發現了原素周期律。他的周期律說明:簡單物體的性質,以及元素化合物的形式和性質,都和元素原子量的大小有周期性的依賴關系。門捷列夫在排列元素表的過程中,又大膽指出,當時一些公認的原子量不準確。如那時金的原子量公認為169.2,按此在元素表中,金應排在鋨、銥、鉑的前面,因為它們被公認的原子量分別為198.6、6.7、196.7,而門捷列夫堅定地認為金應排列在這三種元素的後面,原子量都應重新測定。大家重測的結果,鋨為190.9、銥為193.1、鉑為195.2,而金是197.2。實踐證實了門捷列夫的論斷,也證明了周期律的正確性。
在門捷列夫編制的周期表中,還留有很多空格,這些空格應由尚未發現的元素來填滿。門捷列夫從理論上計算出這些尚未發現的元素的最重要性質,斷定它們介於鄰近元素的性質之間。例如,在鋅與砷之間的兩個空格中,他預言這兩個未知元素的性質分別為類鋁和類硅。就在他預言後的四年,法國化學家布阿勃朗用光譜分析法,從門鋅礦中發現了鎵。實驗證明,鎵的性質非常象鋁,也就是門捷列夫預言的類鋁。鎵的發現,具有重大的意義,它充分說明元素周期律是自然界的一條客觀規律;為以後元素的研究,新元素的探索,新物資、新材料的尋找,提供了一個可遵循的規律。元素周期律象重炮一樣,在世界上空轟響了!
門捷列夫發現了元素周期律,在世界上留下了不朽的光榮,人們給他以很高的評價。恩格斯在《自然辯證法》一書中曾經指出。「門捷列夫不自覺地應用黑格爾的量轉化為質的規律,完成了科學上的一個勛業,這個勛業可以和勒維烈計算尚未知道的行星海王星的軌道的勛業居於同等地位。」
由於時代的局限性,門捷列夫的元素周期律並不是完整無缺的。一八九四年,惰性氣體氛的發現,對周期律是一次考驗和補充。一九一三年,英國物理學家莫塞萊在研究各種元素的倫琴射線波長與原子序數的關系後,證實原子序數在數量上等於原子核所帶的陽電荷,進而明確作為周期律的基礎不是原子量而是原子序數。在周期律指導下產生的原於結構學說,不僅賦予元素周期律以新的說明,並且進一步闡明了周期律的本質,把周期律這一自然法則放在更嚴格更科學的基礎上。元素周期律經過後人的不斷完善和發展,在人們認識自然,改造自然,征服自然的斗爭中,發揮著越來越大的作用。
門捷列夫除了完成周期律這個勛業外,還研究過氣體定律、氣象學、石油工業、農業化學、無煙火葯、度量衡等。由於他總是日以繼夜地頑強地勞動著,在他研究過的這些領域中,都在不同程度上取得了成就。
一九0七年二月二日,這位享有世界盛譽的科學家,因心肌梗塞與世長辭了。但他給世界留下的寶貴財產,永遠存留在人類的史冊上。

元素周期律的發現是許多科學家共同努力的結果。
1789年,拉瓦錫出版的《化學大綱》中發表了人類歷史上第一張《元素表》,在這張表中,他將當時已知的33種元素分四類。
1829年,德貝萊納在對當時已知的54種元素進行了系統的分析研究之後,提出了元素的三元素組規則。他發現了幾組元素,每組都有三個化學性質相似的成員。並且,在每組中,居中的元素的原子量,近似於兩端元素原子量的平均值。
1850年,德國人培頓科弗宣布,性質相似的元素並不一定只有三個;性質相似的元素的原子量之差往往為8或8的倍數。
1862年,法國化學家尚古多創建了《螺旋圖》,他創造性地將當時的62種元素,按各元素原子量的大小為序,標志著繞著圓柱一升的螺旋線上。他意外地發現,化學性質相似的元素,都出現在同一條母線上。
1863年,英國化學家歐德林發表了《原子量和元素符號表》,共列出49個元素,並留有9個空位。
上述各位科學家以及他們所做的研究,在一定程度上只能說是一個前期的准備,但是這些准備工作是不可缺少的。而俄國化學家門捷列夫、德國化學家邁爾和英國化學家紐蘭茲在元素周期律的發現過程中起了決定性的作用。
1865年,紐蘭茲正在獨立地進行化學元素的分類研究,在研究中他發現了一個很有趣的現象。當元素按原子量遞增的順序排列起來時,每隔8個元素,元素的物理性質和化學性質就會重復出現。由此他將各種元素按著原子量遞增的順序排列起來,形成了若干族系的周期。紐蘭茲稱這一規律為「八音律」。這一正確的規律的發現非但沒有被當時的科學界接受,反而使它的發現者紐蘭茲受盡了非難和侮辱。直到後來,當人人已信服了門氏元素周期之後才警醒了,英國皇家學會對以往對紐蘭茲不公正的態度進行了糾正。門捷列夫在元素周期的發現中可謂是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老師在內的各個方面的不理解和壓力。
門捷列夫生於1834年,10歲之前居住於西伯利亞,在一個政治流放者的指導下,學習科學知識並對其產生了極大興趣。1847年,失去父親的門捷列夫隨母親來到披得堡。1850年,進入中央師范學院學習,畢業後曾擔任中學教師,後任彼得堡大學副教授。
1867年,擔任教授的門捷列夫為了系統地講好無機化學課程中,正在著手著述一本普通化學教科書《化學原理》。在著書過程中,他遇到一個難題,即用一種怎樣的合乎邏輯的方式來組織當時已知的63種元素。
門捷列夫仔細研究了63種元素的物理性質和化學性質,又經過幾次並不滿意的開頭之後,他想到了一個很好的方法對元素進行系統的分類。門捷列夫准備了許多類似撲克牌一樣的卡片,將63種化學元素的名稱及其原子量、氧化物、物理性質、化學性質等分別寫在卡片上。門捷列夫用不同的方法去擺那些卡片,用以進行元素分類的試驗。最初,他試圖像德貝萊納那樣,將元素分分為三個一組,得到的結果並不理想。他又將非金屬元素和金屬元素分別擺在一起,使其分成兩行,仍然未能成功。他用各種方法擺弄這些卡片,都未能實現最佳的分類。
1869年3月1日這一天,門捷列夫仍然在對著這些卡片苦苦思索。他先把常見的元素族按照原子量遞增的順序拼在一起,之後是那些不常見的元素,最後只剩下稀土元素沒有全部「入座」,門捷列夫無奈地將它放在邊上。從頭至尾看一遍排出的「牌陣」,門捷列夫驚喜地發現,所有的已知元素都已按原子量遞增的順序排列起來,並且相似元素依一定的間隔出現。
第二天,門捷列夫將所得出的結果製成一張表,這是人類歷史上第一張化學元素周期表。在這個表中,周期是縱行,族是橫行。在門捷列夫的周期表中,他大膽地為尚待發現的元素留出了位置,並且在其關於周期表的發現的論文中指出:按著原子量由小到大的順序排列各種元素,在原子量跳躍過大的地方會有新元素被發現,因此周期律可以預言尚待發現的元素。
事實上,德國化學家邁爾早在1864年就已發明了「六元素表」,此表已具備了化學元素周期表早幾個月,邁爾又對「六元素表」進行了遞減,提出了著名的《原子體積周期性圖解》。該圖解比門氏的第一張化學元素表定量化程度要強,因而比較精確。但是,邁爾未能對該圖解進行系統說明,而該圖解側重於化學元素物理性質的體現。
1871年12月,門捷列夫在第一張元素周期表的基礎上進行增益,發表了第二張表。在該表中,改豎排為橫排,使用一族元素處於同一豎行中,更突出了元素性質的周期性。至此,化學元素周期律的發現工作已圓滿完成。
客觀上來說,邁爾和門捷列夫都曾獨自發現了元素的周期律,但是由於門捷列夫對元素周期律的研究最為徹底,故而在化學界通常將周期律稱為門捷列夫周期律。

6. 化學元素周期表有哪幾種

現在的就是18列啊。

如下:

元素周期表是元素周期律用表格表達的具體形式,它反映元素原子的內部結構和它們之間相互聯系的規律。元素周期表簡稱周期表。元素周期表有很多種表達形式,目前最常用的是維爾納長式周期表。元素周期表有7個周期,有16個族和4個區。元素在周期表中的位置能反映該元素的原子結構。周期表中同一橫列元素構成一個周期。同周期元素原子的電子層數等於該周期的序數。同一縱行(第Ⅷ族包括3個縱行)的元素稱「族」。族是原子內部外電子層構型的反映。例如外電子構型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np4, IIIB族是(n-1) d1·ns2等。元素周期表能形象地體現元素周期律。根據元素周期表可以推測各種元素的原子結構以及元素及其化合物性質的遞變規律。當年,門捷列夫根據元素周期表中未知元素的周圍元素和化合物的性質,經過綜合推測,成功地預言未知元素及其化合物的性質。現在科學家利用元素周期表,指導尋找製取半導體、催化劑、化學農葯、新型材料的元素及化合物。

化學元素周期表最早由門捷列夫於1869年編定

1 H氫1.0079
2 He氦4.0026
3 Li鋰6.941
4 Be鈹9.0122
5 B硼10.811
6 C碳12.011
7 N氮14.007
8 O氧15.999
9 F氟18.998
10 Ne氖20.17
11 Na鈉22.9898
12 Mg鎂24.305
13 Al鋁26.982
14 Si硅28.085
15 P磷30.974
16 S硫32.06
17 Cl氯35.453
18 Ar氬39.94
19 K鉀39.098
20 Ca鈣40.08
21 Sc鈧44.956
22 Ti鈦47.9
23 V 釩50.94
24 Cr鉻51.996
25 Mn錳54.938
26 Fe鐵55.84
27 Co鈷58.9332
28 Ni鎳58.69
29 Cu銅63.54
30 Zn鋅65.38
31 Ga鎵69.72
32 Ge鍺72.5
33 As砷74.922
34 Se硒78.9
35 Br溴79.904
36 Kr氪83.8
37 Rb銣85.467
38 Sr鍶87.62
39 Y 釔88.906
40 Zr鋯91.22
41 Nb鈮92.9064
42 Mo鉬95.94
43 Tc鍀(99)
44 Ru釕161.0
45 Rh銠102.906
46 Pd鈀106.42
47 Ag銀107.868
48 Cd鎘112.41
49 In銦114.82
50 Sn錫118.6
51 Sb銻121.7
52 Te碲127.6
53 I碘126.905
54 Xe氙131.3
55 Cs銫132.905
56 Ba鋇137.33
57-71La-Lu鑭系
57 La鑭138.9
58 Ce鈰140.1
59 Pr鐠140.9
60 Nd釹144.2
61 Pm鉕(147)
62 Sm釤150.3
63 Eu銪151.96
64 Gd釓157.25
65 Tb鋱158.9
66 Dy鏑162.5
67 Ho鈥164.9
68 Er鉺167.2
69 Tm銩168.9
70 Yb鐿173.04
71 Lu鑥174.967
72 Hf鉿178.4
73 Ta鉭180.947
74 W鎢183.8
75 Re錸186.207
76 Os鋨190.2
77 Ir銥192.2
78 Pt鉑195.08
79 Au金196.967
80 Hg汞200.5
81 Tl鉈204.3
82 Pb鉛207.2
83 Bi鉍208.98
84 Po釙(209)
85 At砹(201)
86 Rn氡(222)
87 Fr鈁(223)
88 Ra鐳226.03
89-103Ac-Lr錒系
89 Ac錒(227)
90 Th釷232.0
91 Pa鏷231.0
92 U鈾238.0
93 Np鎿(237)
94 Pu鈈(239,244)
95 Am鎇(243)
96 Cm鋦(247)
97 Bk錇(247)
98 Cf鐦(251)
99 Es鎄(252)
100 Fm鐨(257)
101 Md鍆(258)
102 No鍩(259)
103 Lr鐒(260)
104 Rf釒盧(257)
105 Db釒杜(261)
106 Sg釒喜(262)
107 Bh釒波(263)
108 Hs釒黑(262)
109 Mt釒麥(265)
110 Ds釒達(266)
111 Rg釒侖(272)
112 Uub(285)
113 Uut(284)
114 Uuq(289)
116 Uuh(292)
118 Uuo(293)
……

門捷列夫出生於1834年,他出生不久,父親就因雙目失明出外就醫,失去了得以維持家人生活的教員職位。門捷列夫14歲那年,父親逝世,接著火災又吞沒了他家中的所有財產,真是禍不單行。1850年,家境困頓的門捷列夫藉著微薄的助學金開始了他的大學生活,後來成了彼得堡大學的教授。

幸運的是,門捷列夫生活在化學界探索元素規律的卓絕時期。當時,各國化學家都在探索已知的幾十種元素的內在聯系規律。

1865年,英國化學家紐蘭茲把當時已知的元素按原子量大小的順序進行排列,發現無論從哪一個元素算起,每到第八個元素就和第一個元素的性質相近。這很像音樂上的八度音循環,因此,他乾脆把元素的這種周期性叫做「八音律」,並據此畫出了標示元素關系的「八音律」表。

顯然,紐蘭茲已經下意識地摸到了「真理女神」的裙角,差點就揭示元素周期律了。不過,條件限制了他作進一步的探索,因為當時原子量的測定值有錯誤,而且他也沒有考慮到還有尚未發現的元素,只是機械地按當時的原子量大小將元素排列起來,所以他沒能揭示出元素之間的內在規律。

可見,任何科學真理的發現,都不會是一帆風順的,都會受到阻力,有些阻力甚至是人為的。當年,紐蘭茲的「八音律」在英國化學學會上受到了嘲弄,主持人以不無譏諷的口吻問道:「你為什麼不按元素的字母順序排列?」

門捷列夫顧不了這么多,他以驚人的洞察力投入了艱苦的探索。直到1869年,他將當時已知的仍種元素的主要性質和原子量,寫在一張張小卡片上,進行反復排列比較,才最後發現了元素周期規律,並依此制定了元素周期表。

先背熟元素周期表,然後就會慢慢找出各族元素的規律,以後見到沒有學過的元素只要是同一族的都會知道有什麼特點,有什麼化學性質,那就不是可以舉一反三了

橫著看叫周期,是指元素周期表上某一橫列元素最外層電子從1到8的一個周期循環
豎著看叫族,是指某一豎列元素因最外層電子數相同而表現出的相似的化學性質

主族元素是只有最外層電子沒有排滿的,但是副族有能級的躍遷,次外層電子也沒排滿。去找本高一的化學課本都有啊!

第一周期:氫氦----侵害
第二周期:鋰鈹硼碳氮氧氟氖----鯉皮捧碳蛋養福奶
第三周期:鈉鎂鋁硅磷硫氯氬----那美女桂林留綠牙(那美女鬼 流露綠牙)
第四周期:鉀鈣鈧鈦釩鉻錳----嫁改康太反革命
鐵鈷鎳銅鋅鎵鍺----鐵姑捏痛新嫁者
砷硒溴氪----生氣休克
第五周期:銣鍶釔鋯鈮----如此一告你
鉬鍀釕----不得了
銠鈀銀鎘銦錫銻----老把銀哥印西堤
碲碘氙----地點仙
第六周期:銫鋇鑭鉿----(彩)色貝(殼)藍(色)河
鉭鎢錸鋨 ---- 但(見)烏(鴉)(引)來鵝
銥鉑金汞砣鉛----一白巾供它牽
鉍釙砹氡 ---- 必不愛冬(天)
第七周期:鈁 鐳 錒 ---- 很簡單了~就是---- 防雷啊!

用諧音狂想記憶法較好記:輕(氫)孩(氦)離(鋰)皮(鈹),朋(硼)嘆(碳)淡(氮)養(氧),佛(氟)奶(氖)那(鈉)沒(鎂),屢(鋁)歸(硅)臨(磷)留(硫),濾(氯)牙(氬)加(鉀)鈣。
意思是說:瘦弱體重很輕的小孩皮膚脫皮,朋友慨嘆說你應該粗放型地養他。我們家老佛爺也就是孩子的奶奶說:那樣沒法子養。屢次回老家討偏方,臨走時還給人家留下錢,人家屢次說,你應該給他的牙加補一些鈣。
這是我上初中時學化學時自己編的,你瞧都二十年了還記得很清楚。元素周期表」。這張表揭示了物質世界的秘密,把一些看來似乎互不相關的元素統一起來,組成了一個完整的自然體系。它的發明,是近代化學史上的一個創舉,對於促進化學的發展,起了巨大的作用。看到這張表,人們便會想到它的最早發明者——門捷列夫。
德米特里·伊萬諾維奇·門捷列夫生於一八三四年二月七日俄國西伯利亞的托波爾斯克市。這個時代,正是歐洲資本主義迅速發展時期。生產的飛速發展,不斷地對科學技術提出新的要求。化學也同其它科學一樣,取得了驚人的進展。門捷列夫正是在這樣一個時代,誕生到人間。門捷列夫從小就熱愛勞動,熱愛學習。他認為只有勞動,才能使人們得到快樂、美滿的生活;只有學習,才能使人變得聰明。
門捷列夫在學校讀書的時候,一位很有名的化學教師,經常給他們講課。熱情地向他們介紹當時由英國科學家道爾頓始創的新原子論。由於道爾頓新原於學說的問世,促進了化學的發展速度,一個一個的新元素被發現了。化學這一門科學正激動著人們的心。這位教師的講授,使門捷列夫的思想更加開闊了,決心為化學這門科學獻出一生。
門捷列夫在大學學習期間,表現出了堅韌、忘我的超人精神。疾病折磨著門捷列夫,由於喪失了無數血液,他一天一天的消瘦和蒼白了。可是,在他貧血的手裡總是握著一本化學教科書。那裡面當時有很多沒有弄明白的問題,纏繞著他的頭腦,似乎在召呼他快去探索。他在用生命的代價,在科學的道路上攀登著。他說,我這樣做「不是為了自己的光榮,而是為了俄國名字的光榮。」——過了一段時間以後,門捷列夫並沒有死去,反而一天天好起來了。最後,才知道是醫生診斷的錯誤,而他得的不過是氣管出血症罷了。
由於門捷列夫學習刻苦和在學習期間進行了一些創造性的研究工作,一八五五年,他以優異成績從學院畢業。畢業後,他先後到過辛菲羅波爾、敖德薩擔任中學教師。這期間,他一邊教書,一邊在極其簡陋的條件下進行研究,寫出了《論比容》的論文。文中指出了根據比容進行化合物的自然分組的途徑。一八五七年一月,他被批准為彼得堡大學化學教研室副教授,當時年僅二十三歲。
攀登科學高峰的路,是一條艱苦而又曲折的路。門捷列夫在這條路上,也是吃盡了苦頭。當他擔任化學副教授以後,負責講授《化學基礎》課。在理論化學里應該指出自然界到底有多少元素?元素之間有什麼異同和存在什麼內部聯系?新的元素應該怎樣去發現?這些問題,當時的化學界正處在探索階段。近五十多年來,各國的化學家們,為了打開這秘密的大門,進行了頑強的努力。雖然有些化學家如德貝萊納和紐蘭茲在一定深度和不同角度客觀地敘述了元素間的某些聯系,但由於他們沒有把所有元素作為整體來概括,所以沒有找到元素的正確分類原則。年輕的學者門捷列夫也毫無畏懼地沖進了這個領域,開始了艱難的探索工作。
他不分晝夜地研究著,探求元素的化學特性和它們的一般的原子特性,然後將每個元素記在一張小紙卡上。他企圖在元素全部的復雜的特性里,捕捉元素的共同性。一但他的研究,一次又一次地失敗了。可他不屈服,不灰心,堅持幹下去。
為了徹底解決這個問題,他又走出實驗室,開始出外考察和整理收集資料。一八五九年,他去德國海德爾堡進行科學深造。兩年中,他集中精力研究了物理化學,使他探索元素間內在聯系的基礎更扎實了。 一八六二年,他對巴庫油田進行了考察,對液體進行了深入研究,重測了一些元素的原子量,使他對元素的特性有了深刻的了解。一八六七年,他借應邀參加在法國舉行的世界工業展覽俄羅斯陳列館工作的機會,參觀和考察了法國、德國、比利時的許多化工廠、實驗室,大開眼界,豐富了知識。這些實踐活動,不僅增長了他認識自然的才幹,而且對他發現元素周期律,奠定了雄厚的基礎。
門捷列夫又返回實驗室,繼續研究他的紙卡。他把重新測定過的原子量的元素,按照原子量的大小依次排列起來。他發現性質相似的元素,它們的原子量並不相近;相反,有些性質不同的元素,它們的原子量反而相近。他緊緊抓住元素的原子量與性質之間的相互關系,不停地研究著。他的腦子因過度緊張,而經常昏眩。但是,他的心血並沒有白費,在一八六九年二月十九日,他終於發現了原素周期律。他的周期律說明:簡單物體的性質,以及元素化合物的形式和性質,都和元素原子量的大小有周期性的依賴關系。門捷列夫在排列元素表的過程中,又大膽指出,當時一些公認的原子量不準確。如那時金的原子量公認為169.2,按此在元素表中,金應排在鋨、銥、鉑的前面,因為它們被公認的原子量分別為198.6、6.7、196.7,而門捷列夫堅定地認為金應排列在這三種元素的後面,原子量都應重新測定。大家重測的結果,鋨為190.9、銥為193.1、鉑為195.2,而金是197.2。實踐證實了門捷列夫的論斷,也證明了周期律的正確性。
在門捷列夫編制的周期表中,還留有很多空格,這些空格應由尚未發現的元素來填滿。門捷列夫從理論上計算出這些尚未發現的元素的最重要性質,斷定它們介於鄰近元素的性質之間。例如,在鋅與砷之間的兩個空格中,他預言這兩個未知元素的性質分別為類鋁和類硅。就在他預言後的四年,法國化學家布阿勃朗用光譜分析法,從門鋅礦中發現了鎵。實驗證明,鎵的性質非常象鋁,也就是門捷列夫預言的類鋁。鎵的發現,具有重大的意義,它充分說明元素周期律是自然界的一條客觀規律;為以後元素的研究,新元素的探索,新物資、新材料的尋找,提供了一個可遵循的規律。元素周期律象重炮一樣,在世界上空轟響了!
門捷列夫發現了元素周期律,在世界上留下了不朽的光榮,人們給他以很高的評價。恩格斯在《自然辯證法》一書中曾經指出。「門捷列夫不自覺地應用黑格爾的量轉化為質的規律,完成了科學上的一個勛業,這個勛業可以和勒維烈計算尚未知道的行星海王星的軌道的勛業居於同等地位。」
由於時代的局限性,門捷列夫的元素周期律並不是完整無缺的。一八九四年,惰性氣體氛的發現,對周期律是一次考驗和補充。一九一三年,英國物理學家莫塞萊在研究各種元素的倫琴射線波長與原子序數的關系後,證實原子序數在數量上等於原子核所帶的陽電荷,進而明確作為周期律的基礎不是原子量而是原子序數。在周期律指導下產生的原於結構學說,不僅賦予元素周期律以新的說明,並且進一步闡明了周期律的本質,把周期律這一自然法則放在更嚴格更科學的基礎上。元素周期律經過後人的不斷完善和發展,在人們認識自然,改造自然,征服自然的斗爭中,發揮著越來越大的作用。
門捷列夫除了完成周期律這個勛業外,還研究過氣體定律、氣象學、石油工業、農業化學、無煙火葯、度量衡等。由於他總是日以繼夜地頑強地勞動著,在他研究過的這些領域中,都在不同程度上取得了成就。
一九0七年二月二日,這位享有世界盛譽的科學家,因心肌梗塞與世長辭了。但他給世界留下的寶貴財產,永遠存留在人類的史冊上。

元素周期律的發現是許多科學家共同努力的結果。
1789年,拉瓦錫出版的《化學大綱》中發表了人類歷史上第一張《元素表》,在這張表中,他將當時已知的33種元素分四類。
1829年,德貝萊納在對當時已知的54種元素進行了系統的分析研究之後,提出了元素的三元素組規則。他發現了幾組元素,每組都有三個化學性質相似的成員。並且,在每組中,居中的元素的原子量,近似於兩端元素原子量的平均值。
1850年,德國人培頓科弗宣布,性質相似的元素並不一定只有三個;性質相似的元素的原子量之差往往為8或8的倍數。
1862年,法國化學家尚古多創建了《螺旋圖》,他創造性地將當時的62種元素,按各元素原子量的大小為序,標志著繞著圓柱一升的螺旋線上。他意外地發現,化學性質相似的元素,都出現在同一條母線上。
1863年,英國化學家歐德林發表了《原子量和元素符號表》,共列出49個元素,並留有9個空位。
上述各位科學家以及他們所做的研究,在一定程度上只能說是一個前期的准備,但是這些准備工作是不可缺少的。而俄國化學家門捷列夫、德國化學家邁爾和英國化學家紐蘭茲在元素周期律的發現過程中起了決定性的作用。
1865年,紐蘭茲正在獨立地進行化學元素的分類研究,在研究中他發現了一個很有趣的現象。當元素按原子量遞增的順序排列起來時,每隔8個元素,元素的物理性質和化學性質就會重復出現。由此他將各種元素按著原子量遞增的順序排列起來,形成了若干族系的周期。紐蘭茲稱這一規律為「八音律」。這一正確的規律的發現非但沒有被當時的科學界接受,反而使它的發現者紐蘭茲受盡了非難和侮辱。直到後來,當人人已信服了門氏元素周期之後才警醒了,英國皇家學會對以往對紐蘭茲不公正的態度進行了糾正。門捷列夫在元素周期的發現中可謂是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老師在內的各個方面的不理解和壓力。
門捷列夫生於1834年,10歲之前居住於西伯利亞,在一個政治流放者的指導下,學習科學知識並對其產生了極大興趣。1847年,失去父親的門捷列夫隨母親來到披得堡。1850年,進入中央師范學院學習,畢業後曾擔任中學教師,後任彼得堡大學副教授。
1867年,擔任教授的門捷列夫為了系統地講好無機化學課程中,正在著手著述一本普通化學教科書《化學原理》。在著書過程中,他遇到一個難題,即用一種怎樣的合乎邏輯的方式來組織當時已知的63種元素。
門捷列夫仔細研究了63種元素的物理性質和化學性質,又經過幾次並不滿意的開頭之後,他想到了一個很好的方法對元素進行系統的分類。門捷列夫准備了許多類似撲克牌一樣的卡片,將63種化學元素的名稱及其原子量、氧化物、物理性質、化學性質等分別寫在卡片上。門捷列夫用不同的方法去擺那些卡片,用以進行元素分類的試驗。最初,他試圖像德貝萊納那樣,將元素分分為三個一組,得到的結果並不理想。他又將非金屬元素和金屬元素分別擺在一起,使其分成兩行,仍然未能成功。他用各種方法擺弄這些卡片,都未能實現最佳的分類。
1869年3月1日這一天,門捷列夫仍然在對著這些卡片苦苦思索。他先把常見的元素族按照原子量遞增的順序拼在一起,之後是那些不常見的元素,最後只剩下稀土元素沒有全部「入座」,門捷列夫無奈地將它放在邊上。從頭至尾看一遍排出的「牌陣」,門捷列夫驚喜地發現,所有的已知元素都已按原子量遞增的順序排列起來,並且相似元素依一定的間隔出現。
第二天,門捷列夫將所得出的結果製成一張表,這是人類歷史上第一張化學元素周期表。在這個表中,周期是橫行,族是縱行。在門捷列夫的周期表中,他大膽地為尚待發現的元素留出了位置,並且在其關於周期表的發現的論文中指出:按著原子量由小到大的順序排列各種元素,在原子量跳躍過大的地方會有新元素被發現,因此周期律可以預言尚待發現的元素。
事實上,德國化學家邁爾早在1864年就已發明了「六元素表」,此表已具備了化學元素周期表早幾個月,邁爾又對「六元素表」進行了遞減,提出了著名的《原子體積周期性圖解》。該圖解比門氏的第一張化學元素表定量化程度要強,因而比較精確。但是,邁爾未能對該圖解進行系統說明,而該圖解側重於化學元素物理性質的體現。
1871年12月,門捷列夫在第一張元素周期表的基礎上進行增益,發表了第二張表。在該表中,改豎排為橫排,使用一族元素處於同一豎行中,更突出了元素性質的周期性。至此,化學元素周期律的發現工作已圓滿完成。
客觀上來說,邁爾和門捷列夫都曾獨自發現了元素的周期律,但是由於門捷列夫對元素周期律的研究最為徹底,故而在化學界通常將周期律稱為門捷列夫周期律。

主族元素越是向右非金屬性越強,越是向上金屬性越強。
同主族元素,隨著周期數的增加,分子量越來越大,半徑越來越大,金屬性越來越強。
同周期元素,隨著原子系數數的增加,分子量越來越大,半徑越來越小,非金屬性越來越強。
最後一列上都是稀有氣體,化學性質穩定
中學化學就講這些,過渡元素不要求。
1 元素周期表中元素及其化合物的遞變性規律
1.1 原子半徑
(1)除第1周期外,其他周期元素(惰性氣體元素除外)的原子半徑隨原子序數的遞增而減小;
(2)同一族的元素從上到下,隨電子層數增多,原子半徑增大。
1.2 元素化合價
(1)除第1周期外,同周期從左到右,元素最高正價由鹼金屬+1遞增到+7,非金屬元素負價由碳族-4遞增到-1(氟無正價,氧無+6價,除外);
(2)同一主族的元素的最高正價、負價均相同
1.3 單質的熔點
(1)同一周期元素隨原子序數的遞增,元素組成的金屬單質的熔點遞增,非金屬單質的熔點遞減;
(2)同一族元素從上到下,元素組成的金屬單質的熔點遞減,非金屬單質的熔點遞增
1.4 元素的金屬性與非金屬性
(1)同一周期的元素從左到右金屬性遞減,非金屬性遞增;
(2)同一主族元素從上到下金屬性遞增,非金屬性遞減。
1.5 最高價氧化物和水化物的酸鹼性
元素的金屬性越強,其最高價氧化物的水化物的鹼性越強;元素的非金屬性越強,最高價氧化物的水化物的酸性越強。
1.6 非金屬氣態氫化物
元素非金屬性越強,氣態氫化物越穩定。同周期非金屬元素的非金屬性越強,其氣態氫化物水溶液一般酸性越強;同主族非金屬元素的非金屬性越強,其氣態氫化物水溶液的酸性越弱。
1.7 單質的氧化性、還原性
一般元素的金屬性越強,其單質的還原性越強,其氧化物的氧離子氧化性越弱;元素的非金屬性越強,其單質的氧化性越強,其簡單陰離子的還原性越弱。

2. 推斷元素位置的規律
判斷元素在周期表中位置應牢記的規律:
(1)元素周期數等於核外電子層數;
(2)主族元素的序數等於最外層電子數;
(3)確定族數應先確定是主族還是副族,其方法是採用原子序數逐步減去各周期的元素種數,即可由最後的差數來確定。最後的差數就是族序數,差為8、9、10時為VIII族,差數大於10時,則再減去10,最後結果為族序數。

http://ke..com/pic/8/11946942564812877.jpg

7. 石油的組成和性質

1.1.1 可燃性礦物

石油及其衍生產品含可燃氣體,都屬於可燃性礦物。最早引入「可燃性礦物」這個概念的是德國古植物學家波托涅(Г.Потонье)。這個詞的詞素包含「可燃的」「石頭」「生命」等意義,即有機來源的能夠燃燒的石頭。可燃性礦物是一種有機生物岩石,在岩石中佔有一定的位置(圖1.1)。有機岩石中也有不能夠燃燒的叫做非可燃性礦物,例如石灰岩。

圖1.1 可燃性礦物在岩石中所處的地位

可燃性礦物的分類介紹如下。

波托涅及古布金將可燃性礦物分為以下幾類:

1)瀝青質和石油系列的可燃性礦物——石油瀝青;

2)煤炭和腐殖質類可燃性礦物;

3)殘留有機岩。

屬於石油系列可燃性礦物的有各種性質的石油、可燃性碳氫化合物氣體、重質原油、瀝青、瀝青質、石蠟,以及分布於岩石中、溶化於中性有機液體中的物質(瀝青)。

可燃性煤炭系列是各種泥炭、褐色煤和石煤、硬煤等可燃性礦物。在其形成過程中,各種植物來源的物質起到了主要作用。

殘留有機質是植物來源的有機化合物——樹脂、固醇類、孢質、石蠟等。琥珀、磷瀝青屬於這一類礦物。

至今沒有形成適用於可燃性礦物的分類標准,多數是根據原始產品的成因、形成途徑、彼此間的相互轉化等制定的分類方法。

古布金把可燃性礦物分為兩個基本大類:瀝青和煤炭。其中瀝青這個類別沿用格菲爾(Г.Гефер)的觀點,包括了天然氣、石油以及硬瀝青。如地瀝青、地蠟等從成因上與石油有關的物質。

由於有古布金的研究成果,格菲爾的瀝青分類方法在俄羅斯得到了廣泛的應用。該方法以物質的物理特性為基礎。

(1)氣體

1)自然形成的,天然的;

2)石油的,伴生石油的。

(2)液態瀝青

1)石油;

2)煤焦油,樹脂,樹脂焦油等。

(3)硬瀝青

1)石蠟;

2)地瀝青;

3)瀝青。

(4)瀝青與其他物質的混合物

烏斯賓斯基(Успеинский)和拉德琴柯(Радченко)根據可燃性礦物形成條件編制的圖表是成因分類的實例(圖1.2)。

該圖由兩個分支構成:左側是煤炭類可燃性礦物(腐殖質),右側是石油類可燃性礦物(瀝青質)。每一個單類以板塊的形式表示,板塊端面是其形成期間的地球化學環境特徵。

該圖左側分支展示了形成煤炭類可燃性礦物原始物質的主要范疇,這些物質是高等植物和低等的動物有機體。

圖表的右側分支指的是石油類(瀝青類)可燃性礦物。煤炭板塊右側的箭頭指向的是海相和淡水相腐泥岩成因,展示的是石油類可燃性礦物和海水沉積物質的關系。該分支的右側板塊是石蠟類物質,是由含蠟石油風化形成的。

與這個分支相對的一側揭示的是石油芳香烴類重樹脂分支向瀝青類,繼而向瀝青、煤瀝青、碳瀝青等相應變質程度的轉變。

從圖中可以看出,可燃性礦物,不管是煤炭類還是石油類,其變質的終端產物相互靠近,這兩大類物質變質的最終產品是石墨,也就是物質總的炭化過程。

瓦索葉維奇(Вассоевич)和穆拉托夫(Муратов)根據碳在可燃性礦物組成中的作用,把兩個特徵作為把天然化合物合並為一組的分類基礎:① 化學組成中總的特性,必須含有碳,而且碳起主要作用;② 特殊的物質特性(有機化學研究的結果)。這些天然的物質見圖1.3。

圖1.2 可燃性礦物成因分類圖

對於天然的礦物煤和石油有相應的概念「天然焦」和「石油焦」。化石燃料由3大類礦物組成:煤、石油、可燃氣體。在這種圖表上把天然焦分為殼質煤、腐殖煤、腐泥岩。

卡林克(Калинко)把所有的可燃性燃料和天然有機物質(包括礦物煤)都稱作Naphtides,包括烴類氣體、凝析氣、石油、天然瀝青、天然氣水合物。萘基的概念是當代最通用的。

圖1.3 碳分類圖

1.1.2 石油化學組成特徵

石油是黏性油質液體,無色或者黑褐色,有時是黑色,是各種碳氫化合物的復合混合物。石油在黏稠度上有很大差異,有稀薄的,有黏稠的,也有樹脂狀的。

研究石油的化學成分與同位素組成對於研究石油的成因以及地殼中各種石油的轉化過程具有重要意義。石油是非常復雜的有機化合物,按化學成分來說,目前可以確定的有800種碳氫化合物。

對石油組成成分的研究最充分。石油主要是由碳(83%~87%)和氫(12%~14%)組成,比例關系是1.85個氫原子對1個碳原子。這個組分在碳氫化合物中是彼此相關的,化學成分和性質而各不相同。此外,氮和硫也是石油的組成成分,見表1.1。石油被相應地分為氧化原油、含氮原油和含硫原油。

表1.1 燃氣與石油的化學成分

1.1.2.1 石油中各元素的性質

(1)碳

碳是門捷列夫化學元素周期表中的第四類,原子序數是6,原子量是12.01。碳元素四價原子表示為:

俄羅斯東部地區及中國的油氣田

原子外層的4個空位決定了它以不同方式與其他不同原子結合形成復合分子的能力。碳原子這種形成復合分子的特性取決於它可以形成無數有機物的性質。

(2)氫

氫原子在碳氫化合物中的含量占第二位。氫元素是門捷列夫元素周期表中的第四類,原子序數是1。由於氫具有極強的還原性,除了稀有氣體元素和稀有金屬元素以外,它可以和幾乎所有的元素生成化合物。氫是宇宙中分布最廣的元素,它以等離子的形式構成太陽和星球質量的70%。

碳元素和氫元素在石油和天然氣中彼此相關構成碳氫化合物,因此經常利用碳、氫兩種元素的比值來確定它們的成分(表1.2)。

(3)氧

氧元素在石油中的含量很少能達到1%~2%,在可燃氣體中它基本是以CО2的形式存在,含量從幾乎為零到近乎純碳酸。

(4)硫

硫元素在石油中以自由狀態和化合狀態存在。化合狀態的硫或者以H2S的形式存在,或者進入高分子的有機化合物。硫元素在石油中的總含量有時可以達到7%~8%。硫元素在天然氣中通常是呈H2S的形式,其數量有時可達20%,甚至45%(據科茲洛夫對首爾-蘇氣田可燃氣的測定)。

(5)氮

氮在石油中的含量不超過1%,以自由狀態存在,含量波動很大:從濃度接近於零到幾乎是純凈的氮氣。在比較石油與其他可燃性礦物時通常利用的關系是C/(O+N+S)(表1.2)。

表1.2 可燃性礦物的元素組成

此外,還有維爾納茨基(В.И.Вернадский)確定了磷元素在石油中的存在。在天然氣中存在有很少量的氦元素(He含量為1%~2%,有時可達10%)、氬元素(Ar含量不超過1%,很少達到2%)、氖元素以及其他惰性氣體元素。

在石油中還可以發現很多濃度不高的元素(通常是沉積岩中的元素),例如Si,Al,Fe,Ca,Mg,往往還有 V,Ni,Cu,Sr,Ba,Mn,Cr,Co,B及一些其他元素。

1.1.2.2 同位素

除了研究各種元素在碳氫化合物中的分布以外,為了弄清石油的地球化學史,也非常重視對同位素成分的研究。

(1)碳元素同位素

碳元素有3個同位素12C,13C,14C。在天然化合物中,12C的克拉克值是98.89%,13C的克拉克值是1.108%。這兩個同位素非常穩定,在石油中12C與13C的數量比是91%~94%。同位素14C放射性很強,半衰期是5568±30 a,可以用來確定3萬年以下的各種木質出土文物的年齡。

不同種類的石油中,碳的同位素組成是不同的。低沸點餾分的特點是「輕型碳同位素組成」,沸騰溫度有時超過100 ℃,重度穩定碳同位素的含量隨著餾分干點的進一步升高而降低,但是高於450 ℃時13C/14C的值重新升高。

石油中碳元素總量的同位素組成決定著其他各組分碳同位素的組成以及相互之間的數量關系。對於確定石油的相關性來說,碳同位素組成比其他參數更加可靠。

穩定的重同位素13C的最高濃度出現在含碳的碳酸鹽和二氧化物中,最低濃度則出現在石油中。與碳酸鹽和內生岩中的碳相比,有機物及其衍生品(煤、石油、天然氣)實際上都富含輕同位素12C。

(2)氫元素同位素

氫元素有4個同位素:1H——氕(P),2H——氘(D)和人工合成的3H——氚(T),還有非常不穩定的4H。氚具有放射性,半衰期是12年。氫元素穩定同位素的分布是氕為99.9844,氘為0.0156。P/D的值在3895到4436間波動。

格林貝爾克(И.В.Гринберг)指出,伴生在石油和天然氣中的水含有很高的氘,是由於石油和水中的氫原子發生了同位素置換。

(3)硫元素同位素

硫元素有4個穩定的同位素:32S,33S,34S和36S,同位素豐度(%)(據 Ранкам的資料整理)32S為95.1,33S為0.74,34S為4.2,36S為0.016。32S/34S的值通常在22~22.5之間波動。只是可以根據年齡相同的沉積物質中硫的同位素組成大概地判斷石油品種的相近度及其不同年齡沉積物質的石油的差異性。此外,一些學者指出,相同層位的石油和瀝青通常有著相似的32S/34S值。

(4)氧元素同位素

氧元素有3個穩定同位素。在水中和空氣中的平均豐度(據 Ранкам資料整理)分別是(%)16О為99.760~99.759,17О為0.042~0.0374,18О為0.198~0.2039。通常研究 16О/18О的值用來確定古盆地的水溫。

氮元素有兩個穩定的同位素,平均豐度(據霍葉林克(Хоеринг)資料整理)是(%)14N為99.635,15N為0.365,14N/15N的值為273~277。霍葉林克和穆爾(Г.Мур)確定了含氮天然氣在經過砂岩富集的過程中氮同位素的分餾級別。

上述方法被廣泛地用於可燃性礦物的比較特性、對比與揭示其成因特徵方面。

1.1.2.3 石油及其衍生物中的碳氫化合物

碳元素和氫元素是碳氫化合物的基礎,碳氫化合物的分子結構和大小各異,因此其化學性質和物理性質也各不相同。在石油及其衍生物中有3個碳氫化合物的基本族類。

(1)鏈烷烴

鏈烷烴或者石蠟(甲烷烴)有著通用的分子式CnH2n+2,式中的n可以是從1到60的任意數,隨烴族分子量的增加而增加。這是完全飽和化合物。由戊烷C5H12、己烷 C6H14、庚烷C7H16、辛烷C8H18等組成,分為正辛烷(無支鏈)和異烷烴(有支鏈)。結構中無支鏈的鏈烷烴當n=1~4時呈現為氣體,化合物中n=5~16時是液體,當n>16時是固體。無支鏈的鏈烷烴被稱作正鏈烷烴或者n鏈烷烴(例如CH3—CH2—CH2—CH3)。它們構成同類系列,在分子鏈上每一項都比前一項相差一個碳原子和兩個氫原子。在石油中n鏈烷烴數量被限制,通常低於60,多數情況是從C1到C40,構成石油的 15%~20%。

除了無支鏈的鏈烷烴還有有支鏈的鏈烷烴。例如,有兩個碳原子時(異構烷烴、異鏈烷烴),

俄羅斯東部地區及中國的油氣田

這些同分異構體的組合數量實際上是可以超過百萬的。

上述石油甲烷烴基本是標准形式,比異構化合物相對穩定,因此可以在石油中呈現。

每一種同分異構體都有自己的物理性質和化學性質。因為石油中鏈烷烴和其他種類碳氫化合物的同分異構體呈現出不同的比例關系,所以不同礦床的石油都有自己特有的性質和組成。

一般情況下,石油由二三十種標準的和同分異構體的碳氫化合物組成,其他的則是以微量的形式存在。

(2)環烷烴

環烷CnH2n是含有封閉環狀結構碳原子的碳氫化合物。環烷的環狀結構含有5個或6個碳原子,即環戊烷和環己烷。

俄羅斯東部地區及中國的油氣田

幾乎50%的石油是由環烷碳氫化合物構成的。環戊烷和環己烷結構中的氫原子可能被烴基甲基(CH3)、乙基(C2H5)等取代。這種情況下就得到衍生物(甲基環戊烷、甲基環己烷等),它們構成近2%的石油。

環烷和鏈烷烴一樣被稱作飽和碳氫化合物,因為它們烴鏈中的碳原子是飽和的。

(3)芳烴

芳烴(芳香烴)Cn H2n-6——環狀烴,有1個到4個或者5個芳香環,每個芳香環由6個碳原子和少量的短鏈組成。最普通的代表是苯C6H6,由6組CH組成:

俄羅斯東部地區及中國的油氣田

分離出單周期的芳香烴———本系列裡的單芳烴,二環的 Cn H2n-12 (兩個環),萘系列,以及烴系列,在分子Cn H2n-p中含有3個、4 個或更多的環,其中p隨著環的數量變化而改變。

每一組CH中的氧原子都可以由甲基和其他自由基代替。這樣就構成一系列的碳氫化合物,其中苯環與一個或者幾個直鏈或者支鏈的烴基結合。

石油中芳烴的含量很少超過15%,而且集中在石油的重餾分中。與易溶的烷烴和環烴相比,芳烴非常穩定,具有飽和的特點,主要特徵是置換反應,而不是化合反應。

石油中含有混合的環烴-芳香烴化合物,在石油組分的顯著性上與芳烴一起位居第二。含量占餾分物質(沸點高於210 ℃)的比重在20%~45%之間波動。

此外,在石油中還可以發現開鏈烯烴,通式為CnH2n-2。由於它們具有一個雙鍵,因此可以進行化合反應和聚合反應。屬於這一類型的有乙烯(C2H4)、丙烯(C3H6)、丁烯(C4H8)等。與幾個雙鍵化合物化合叫做聚烯烴。

石油中不存在烯烴,它們存在於石油化工產品中。

1.1.2.4 石油中非碳組分

硫氧氮化合物是石油中的非碳組分,分子式含有氮、硫、氧。在石油中的含量差異巨大:硫佔0.01%~1%(在含硫石油和高含硫石油中達8%),氮佔0.04%~0.6%(在純石油中達1.7%),氧佔0.2%~7%。隨著烴類分子質量的增長,異質原子化合物的含量也在增長,因此異質化合物在輕質原油中很少,而在重質原油中則很多。

1.1.2.5 石油的相似組分

樹脂物質、瀝青烯是石油中一組異質有機高分子化合物,即樹脂-瀝青物質。它們由碳、氫、氧及幾乎一貫存在的硫、氮和金屬組成。樹脂中包括少量的自由酸和樹脂醚,而瀝青烯中含有大量的芳香化合物。含油岩石瀝青中的樹脂和瀝青烯接近石油的相應組分,但不相同。樹脂和瀝青烯在石油中的含量在0到40%之間擺動,取決於石油的成因類型和熱成熟度。

這樣,石油的組分是烷烴和環烴——飽和烴,而芳烴、樹脂和瀝青是不飽和烴。

1.1.2.6 石油分類

石油分為以下幾種類型:石蠟(烷烴)和環烴,如果飽和烴的總含量超過50%。石油含有超過40%的烷烴和環烷烴,這些界限就區分出石蠟石油和混合石蠟-環烴和環烴石油。如果飽和烴的總含量低於50%,而芳香化合物、樹脂和瀝青的總量高於50%,這一類石油就屬於芳香類。在實踐中這一級別分為兩個小類:環烴含量低於25%的芳香-瀝青石油和環烴含量高於25%的芳香-環烴石油。

彼得羅夫以重要殘留烴——標准類異戊二烯結構的烷烴分配時氣液相色譜數據的排列為基礎,制定石油化學標准將石油分為4種基本類型:А1,А2和Б1,Б2

А1型石油屬於甲烷類石油,在自然界中分布最廣,俄羅斯各大油氣田都有。屬於高產工業石油,主要礦床有羅曼什金諾、薩摩特洛爾。

А2型石油按組分是環烴-石蠟型和石蠟-環烴類。烷烴含量在25%~40%之間。特點是含有1%~6%的異戊二烯型烷烴,而正常的異戊二烯型烷烴含量是0.5%~5%。這種類型石油產於裏海南部(蘇拉汗)、西西伯利亞(薩莫特洛爾、索列寧斯克)、近裏海(卡拉-丘貝)等地。含有這類石油的底部地層很少,基本是在新生代沉積層中;中生代1500~2000 m深處的沉積層中也有少量存在。

Б1型石油按照族的組成屬於環烴型或者環烴-芳香烴基類。特點是不含標准型烷烴和異戊二烯烷烴,含有少量的支鏈型烷烴(4%~10%)。這一類型的石油往往賦存在新生代沉積層500~1000 m的深處。裏海南部和西伯利亞的北部、南部蘊藏的石油屬於這一類型。

Б2型石油的成分是石蠟環烴和環烴,特點是環烷烴含量高,可達60%~75%。藏量比А2型的石油豐富,主要產在新生代1000~1500 m深處的沉積層中。產地主要在喬治亞、北高加索(斯塔羅格羅茲涅斯克、阿納斯塔西葉夫斯克-特羅伊茨克)。

表1.3 天然瀝青分類

卡靈科認為,屬於環烴的還有天然瀝青——天然有機化合物的一個大類,和石油構成一個連續系列,從中可以看出物質從稀薄、黏稠到固態的過渡。根據天然瀝青的油質含量及某些物理性質,將其進行分類(表1.3)。

烏斯賓斯基(Успенский)和穆拉托夫(Муратов)給天然瀝青分類增加了酸瀝青、彈性瀝青和高氮瀝青。酸瀝青是地瀝青風化的產物,彈性瀝青是脂族烴類物質的一個特殊變種,高氮瀝青是利用現代細菌加工技術對石蠟烴進行加工得到的產物,詳見表1.4。

表1.4 天然瀝青的分類

天然瀝青分布廣泛。在每一個產油區都有埋藏瀝青的地層,主要存在於含油層之間,而且在每一個凝析氣層都有。巴基羅夫(Бакиров,1993)指出,從全球范圍來看,天然瀝青與普通石油的儲藏總量大致相同,天然瀝青儲量有可能會超過石油儲量。

1.1.3 石油的物理性質和物化性質

研究石油的性質和組成可以運用各種物理方法、化學方法和物化方法。物理方法用來確定密度、黏稠度、凝固點及石油的含水量。化學方法用來研究催化過程、異構過程等。物化方法採用氣液色譜法、質譜分析法等。

1.1.3.1 密度

密度是描述石油和石油製品的一個重要性質。密度的絕對值取決於樹脂-瀝青組分的含量、石油的化學成分、溶解氣體的含量等。不同種類的石油密度不同,處於0.77~1 g/cm3之間。

1.1.3.2 黏度和流度

黏度和流度是液體受力影響彼此間的摩擦阻力。石油中芳烴和環烴含量越高,黏度就越高。石油的黏度隨著其中輕餾分和溶解氣體含量的增加而升高。在正常壓力下,溫度升高,石油的黏度會降低,而氣體的黏度會升高。

石油的絕對黏度單位是泊,泊值為

俄羅斯東部地區及中國的油氣田

在研究石油時,通常需要確定的不是其絕對值,而是運動黏度(ν),相當於石油的絕對黏度除以其密度(ρ),即ν=η/ρ。

流度是相對黏度的倒數。

1.1.3.3 張力面

張力面是液體對抗自身表面擴張的力。其單位是達因(dyn),引算的是表層密度單位、壓力表層單位。

因為壓力表層是在各種介質交界處測量所得出的數據,其大小與空氣和水有關。相對於空氣來說,各個礦床所產石油的數值也不盡相同,從25.8~31.0 dyn/cm2,相對於水來說,是17.3~27.8 dyn/cm2

1.1.3.4 沸點

沸點取決於烴的成分:烴類分子組成中碳原子的數量越多,烴的沸點就越高。烴的沸點見表1.5。

表1.5 烴類的沸點(℃)

從表1.6可以看出,前5個烴族在一般的大氣條件下處於氣態。研究沸點溫度用於分餾石油。根據沸點分離出下列餾分:

1)原油~60 ℃;

2)汽油~200 ℃;

3)煤油~300 ℃;

4)氣體~300-400 ℃;

5)潤滑油>400 ℃;

6)地瀝青>500 ℃。

1.1.3.5 燃燒值

燃燒值指1 kg石油完全燃燒時釋放出的卡路里數量。其中,完全燃燒是指產生出二氧化碳和水。表1.6列出了一些礦床的石油燃燒值。

表1.6 石油的密度及燃燒值

1.1.3.6 顏色

石油的顏色非常豐富:有無色(產自蘇拉哈內油田上新世中期上部地層)、淺黃色(產自馬爾科夫斯基油田的寒武紀地層)、黃色(艾木貝的侏羅紀沉積層)、黑褐色(羅麻什金斯克油田的泥盆紀沉積層)及接近黑色(古謝夫斯基油田的奧陶紀沉積層),還有的在日光下呈現淺綠色(格羅茲寧斯克),也有的呈現淺藍色(巴京斯克)。

1.1.3.7 光澤

各種因素導致的冷發光,分為熒光和磷光。熒光是物質在受激發停止不超過10-7秒的時間內直接發出的光。如果發光持續時間較長就是通常所說的磷光。在紫外光照射下輕質原油發出強烈的藍色光,重質原油發黃褐色和褐色光。為了比較不同種類石油發光的顏色和亮度,往往採用質量發光分析法。

1.1.3.8 旋光性

指當偏光通過石油時能使偏光面的位置產生小角度偏轉的特性。石油一般多為右旋,少數為左旋。旋轉的角度從幾度到零度不等。光旋轉的大小隨著石油年齡的減小而減小。

1.1.3.9 導電性

石油及石油製品是電介質,不能導電。

1.1.3.10 分子量

表1.7 石油餾分分子量

石油的分子量是它的餾分分子量的算術平均數,從240到290不等。最重的石油餾分是樹脂和瀝青,分子量是700~2000。表1.7列舉了各種石油餾分的分子量。

1.1.3.11 熱擴散系數

石油具有在加熱條件下膨脹的性質,與其組成成分有關。在自然條件下,石油並不總是完全被天然氣充填。石油分解出所含天然氣時受到的壓力(常溫條件下)叫做飽和壓力。

1.1.3.12 逆行溶解

指石油融化在天然氣中。液態的碳氫化合物在壓力增加的條件下能夠溶解在天然氣中,轉化為氣態,形成天然氣凝析混合氣(礦床)。極少情況下石油溶解在甲烷中。極限碳氫化合物充盈進甲烷時,其溶解能力增強。隨著碳氫化合物分子量的增大石油的溶解力下降。最不易溶解的是樹脂和瀝青。

1.1.3.13 石油的氣體飽和度

它決定著石油礦床中天然氣的含量,用m3表示。溶解在石油中的天然氣數量取決於石油和天然氣的成分以及溫度與壓力。根據薩維那婭(Cавиная)和維利霍夫斯基(Велиховский)的資料,在同樣條件下,液態碳氫化合物的分子中如果含有相同數量的碳原子,最易溶解烴氣的是烷烴,其次是環烷烴,最難溶解的是芳香烴。

1.1.3.14 石油的地球化學演變

地下石油的組成和性質具有強烈的多變性,這取決於一系列的因素:① 組成石油的有機物退化的成分和程度;② 聚集過程的特點;③ 地下石油的賦存條件(溫度和壓力),也就是地質因素(埋藏層深度、石油年齡、水文地質條件、圍岩沉積岩石學)。

眾所周知,石油的組成和性質與其年齡無關,而是取決於圍岩礦層的深度(Бакиров,1993)。早在1934年,美國科學家巴爾托(Бартон)就指出,很多油田的輕質烷烴石油埋藏於比較深的古老儲油層中。隨著深度的增加,石油的密度和黏稠度在減小,成分中碳氫化合物的濃度在升高,熱動力條件更加穩定,烷烴和環烷烴的含量升高,芳香烴的含量明顯降低。正如多林諾(Долинко,1990)所指出的:同一岩層的油層,如果埋藏深度不同,那麼環烷總量中環戊烷的數量隨著岩層溫度的升高而減少,同時環烷的總量也在減少。同樣隨埋藏深度發生變化的還有相同年齡中n-乙烷的含量(參見表1.8)。

表1.8 相同年齡的石油中n-乙烷含量與埋藏深度的關系

卡爾采夫(Карцев,1978)以大量礦床為例,指出剖面底部石油的密度在減小,輕質餾分的逃逸在增加,樹脂和硫的數量在減少。總的來說,石油年齡越古老,其中的輕質餾分就越多。的確應該考慮礦床的構造狀況:地台的古老沉積層的石油埋藏越淺,年輕的地向斜區域越廣,因為沒有經歷高溫高壓的作用。

石油的熱動力轉化是在高溫高壓下進行的。由於溫度和壓力的影響,石油的深度變質在地球內部的深處進行,輕餾分的穩定化合物不斷聚集和豐富。烷基碳氫化合物中最穩定的是甲烷;液態和固態的碳氫化合物中是芳香烴(苯、萘)和混合稠環烴。因此,在大約200 ℃的條件下,大多積聚的是甲烷和稠環烴。

最後,石油的熱動力轉化導致碳氫化合物的石蠟化以及環烷烴的被破壞,這個過程一直持續到石油消失,只殘留著甲烷和固態的碳氫化合物。自然界中的所有石油都經歷過這個過程。

石油的氧化有兩條途徑:① 自由氧條件下的多氧氧化;② 有氧化合物條件下的乏氧氧化(Бакиров,1993)。

多氧氧化發生在近地表的礦層,石油與各種富氧水的接觸帶,也就是表生作用帶。表生作用帶的厚度和表生變質的程度不固定,取決於礦層的深度和石油積聚的范圍、地質及水文地質特性,以及一系列其他因素。

乏氧氧化是在含有氧及細菌的化合物作用下發生的。含有細菌的化合物是使碳氫化合物組分氧化的石油。在這種情況下,石油的氧化只發生在局部,因為細菌只能在80 ℃~90 ℃的溫度條件下存在,出現在礦化度不超過200 g/L的層間水中。實際上,甲烷在乏氧條件下沒有經歷氧化。

石油的微生物轉化發生在有來自於表層的滲透水穿透的礦層,這些滲透水可以攜帶氧和微生物機體,它們利用氧以及在物質交換中吸收某種碳氫化合物。

在無氧條件下,某些細菌為了保證自己的需要恢復為硫酸物,往往生成單體硫。有時在鹽洞存在著單體硫,這種鹽洞是生物退化形成的原油。

礦層中石油成分形成的一個因素是其在聚集過程中的物理分餾作用(Бакиров,1993)。

在橫向運移的過程中,石油變得更加緻密黏稠,其中的環烷含量增高,而在汽油餾分中的石蠟烴含量減少。

在石油的垂直運移過程中,尤其是處於射流狀的情況下,在沿著通向地球表面的裂隙里密度也可能加大。如果從最底部的油層往上運移過程中發生局部溢流,石油的密度就會降低,同時在運移過程中石油不僅可能失去碳氫化合物餾分,而且非碳氫化合物的組分也會散失,這取決於岩石的吸附作用。石油的芳香烴可能會失去其原始質量的48%~53%,石蠟烴被岩石吸附的數量不超過20%~30%。

石油分異時在礦層內部密度往往隨著深度增加而加大。

可以證實的是,石油的組成、特性及其演化程度取決於下列因素:① 有機物質原始組成的特性;② 油田的地質構造特點;③ 熱動力及表生變化;④ 運移過程。

8. 化學元素周期一個周期是多少天

化學元素周期的周期和天數沒有關系。

元素周期表有7個周期,16個族。每一個橫行叫作一個周期,每一個縱行叫作一個族(VIII族包含三個縱列)。這7個周期又可分成短周期(1、2、3)、長周期(4、5、6、7)。共有16個族,從左到右每個縱列算一族(VIII族除外)。

概念:

化學元素周期表是根據原子量從小至大排序的化學元素列表。列表大體呈長方形,某些元素周期中留有空格,使特性相近的元素歸在同一族中,如鹼金屬元素、鹼土金屬、鹵族元素、稀有氣體,非金屬,過渡元素等。

這使周期表中形成元素分區且分有七主族、七副族、Ⅷ族、0族。由於周期表能夠准確地預測各種元素的特性及其之間的關系,因此它在化學及其他科學范疇中被廣泛使用,作為分析化學行為時十分有用的框架。

9. 汞、氧氣、石油分別都是以什麼形態存在的呢

汞、氧氣、石油分別都是以什麼形態存在的呢?
石油是十分復雜的烴類及非烴類化合物的混合物,主要的組成元素是碳和氫,還有少量的硫、氧等雜原子,以及五十種微量元素如鎳、釩、鐵、鈉等。組成石油的化合物的相對分子質量從幾十到幾千,其分子結構也是多種多樣。合理、完整地描述石油混合物中各分子結構與含量,對於煉廠在分子層次管理石油加工過程,有著重大的意義。



01.石油分子模型構建背景

要想在數萬種分子的混合物中定量各分子組成,仍是一個極大的挑戰。目前,對於沸點高於汽油的組分,主流的分析方法無法給出所有分子細節上的定性與定量信息。為了在缺乏完整實驗數據的情況下,仍能得到油品的分子組成信息,對石油混合物進行相平衡和物性計算,學術界先是發展了不同的石油組分特徵化方法,後又逐漸摸索出了一條石油分子組成模型的技術路線,即基於模型化合物的虛擬分子集的方法。

本文先對石油組分特徵化方法進行介紹,隨後對虛擬分子集法作闡述。

02.石油組分特徵化方法

為了對復雜的石油體系進行表徵,揭示其結構特性,研究者提出了多種簡化的表徵方法,這些簡化方法可以看作早期的石油分子特徵化工作內容,有些至今仍被廣泛使用。

2.1 虛擬組分法

虛擬組分法是把石油或石油餾分按沸程分為一系列窄餾分,每個窄餾分都被看作一個組分,稱為虛擬組分,同時以窄餾分的平均沸點、密度、平均相對分子量等表徵各虛擬組分的性質。

如此,石油餾分這一復雜混合物就可以看成是由一定數量虛擬組分構成的混合物,然後按多元氣液平衡的處理方法進行計算。可以說,傳統石油加工的流程模擬方法學基本上是建立在已超過80年歷史的虛擬組分理論之上。



圖1:虛擬組分示例

虛擬組分方法是現在的流程模擬軟體廣泛採用的方法,該方法處理石油混合物的優點在於虛擬組分數目可以根據需要進行任意劃分,臨界性質關聯式的選擇可根據體系不同而進行選擇。可以說,傳統石油加工的流程模擬方法學基本上是建立在已超過80年歷史的「虛擬組分」理論之上。

2.2 真分子法

真分子法使用某個真實分子來代表一個石油餾分。該方法使用真實分子代表餾分組成,計算結果的精度較高,但是對於復雜餾分則需要選擇數量龐大的真實分子,且代表重質餾分的真實分子性質仍需要估算,增加了模型運算量和復雜程度。

2.3 連續熱力學法

連續熱力學法是將石油當作含有無限多組分的混合物,通過適當的分布函數來描述其分子組成。

連續熱力學法計算過程嚴格,理論基礎較為完善,不需要臨界性質關聯式進行估算,可在一定程度上提高相平衡計算過程的效率。但是該方法不足之處是簡化了進料分布函數,認為該函數與氣、液相分布函數同類型,因此只能近似計算,精度並沒有十分明顯的提升。

03.基於模型化合物的虛擬分子集

傳統的石油組分特徵化方法對於不同餾分的適應性較差,且劃分方法過於粗糙,導致包含的分子組成細節信息過少。隨著石油分子檢測分析方法的發展,全二維氣相色譜(GC×GC)、高效液相色譜(HPLC)、核磁共振譜(NMR)以及傅立葉變換離子迴旋共振質譜(FT-ICR-MS)等測量方法也用來描述油品性質及雜原子分布情況,人們對石油分子的理解變的更為深刻。雖然目前並沒有單一的儀器分析手段能夠實現對所有分子的定性和定量表徵,但已在石油中鑒定出數種分子芳香環系核心,顯示出石油分子核心具有較明顯的連續性,根據這些性質,研究者開發了多種基於計算機輔助表示分子的方法。



圖2:125種常見於石油餾分中的多環核心,圖片來自文獻①

3.1 結構導向集總法

1992年,Mobil公司的Quann和Jaffe提出了結構導向集總法(Structure-Oriented Lumping, SOL),使用22個結構向量來清晰地描述石油分子的結構。結構導向集總的核心概念是結構向量,即認為石油中的分子都可以用向量表示。下表展示了各個結構向量及其對不同元素的貢獻值。

10. 元素周期表的有關知識

概述
現代化學的元素周期律是1869年俄國科學家門捷列夫(Dmitri Mendeleev)首創的,他將當時已知的63種元素依原子量大小並以表的形式排列,把有相似化學性質的元素放在同一行,元素周期表的雛形。經過多年修訂後才成為當代的周期表。在周期表中,元素是以元素的原子序排列,最小的排行最先。表中一橫行稱為一個周期,一列稱為一個族。[1]
原子半徑由左到右依次減小,上到下依次增大。
在化學教科書中,都附有一張「元素周期表(英文:periodic table of elements)」。這張表揭示了物質世界的秘密,把一些看來似乎互不相關的元素統一起來,組成了一個完整的自然體系。它的發明,是近代化學史上的一個創舉,對於促進化學的發展,起了巨大的作用。看到這張表,人們便會想到它的最早發明者——門捷列夫。1869年,俄國化學家門捷列夫按照相對原子質量由小到大排列,將化學性質相似的元素放在同一縱行,編制出第一張元素周期表。元素周期表揭示了化學元素

元素周期表
之間的內在聯系,使其構成了一個完整的體系,成為化學發展史上的重要里程碑之一。隨著科學的發展,元素周期表中未知元素留下的空位先後被填滿。當原子結構的奧秘被發現時,編排依據由相對原子質量改為原子的質子數﹙核外電子數或核電荷數﹚,形成現行的元素周期表。
按照元素在周期表中的順序給元素編號,得到原子序數。原子序數跟元素的原子結構有如下關系:
質子數=原子序數=核外電子數=核電荷數
利用周期表,門捷列夫

德米特里·伊萬諾維奇·門捷列夫
成功的預測當時尚未發現的元素的特性(鎵、鈧、鍺)。1913年英國科學家莫色勒利用陰極射線撞擊金屬產生X射線,發現原子序越大,X射線的頻率就越高,因此他認為核的正電荷決定了元素的化學性質,並把元素依照核內正電荷(即質子數或原子序)排列。後來又經過多名科學家多年的修訂才形成當代的周期表。
元素周期表中共有119種元素。將元素按照相對原子質量由小到大依次排列,並將化學性質相似的元素放在一個縱列。每一種元素都有一個序號,大小恰好等於該元素原子的核內質子數,這個序號稱為原子序數。在周期表中,元素是以元素的原子序排列,最小的排行最前。表中一橫行稱為一個周期,一列稱為一個族(8、9、10縱行為一個族)。

門捷列夫第一份英文版本的元素周期表.
原子的核外電子排布和性質有明顯的規律性,科學家們是按原子序數遞增排列,將電子層數相同的元素放在同一行,將最外層電子數相同的元素放在同一列。
元素周期表有7個周期,16個族。每一個橫行叫作一個周期,每一個縱行叫作一個族。這7個周期又可分成短周期(1、2、3)、長周期(4、5、6)和不完全周期(7)。共有16個族,又分為7個主族(ⅠA-ⅦA),7個副族(ⅠB-ⅦB),一個第Ⅷ族(包括三個縱行),一個零族。
元素在周期表中的位置不僅反映了元素的原子結構,也顯示了元素性質的遞變規律和元素之間的內在聯系。使其構成了一個完整的體系稱為化學發展的重要里程碑之一。
同一周期內,從左到右,元素核外電子層數相同,最外層電子數依次遞增,原子半徑遞減(零族元素除外)。失電子能力逐漸減弱,獲電子能力逐漸增強,金屬性逐漸減弱,非金屬性逐漸增強。元素的最高正氧化數從左到右遞增(沒有正價的除外),最低負氧化數從左到右遞增(第一周期除外,第二周期的O、F元素除外)。
同一族中,由上而下,最外層電子數相同,核外電子層數逐漸增多,原子序數遞增,元素金屬性遞增,非金屬性遞減。
元素周期表的意義重大,科學家正是用此來尋找新型元素及化合物。[1]

IUPAC於2012年6月1日發布的元素周期表

2元素命名
IUPAC

元素周期表
很多人注意到,元素周期表最後幾位元素永遠是以um結尾的,其實這只是一種臨時命名規則,叫IUPAC元素系統命名法。在這種命名法中,會為未發現元素和已發現但尚未正式命名的元素取一個臨時西方文字名稱並規定一個代用元素符號,使用拉丁文數字頭以該元素之原子序來命名[3]。此規則簡單易懂且使用方便,而且它解決了對新發現元素搶先命名的惡性競爭問題,使為新元素的命名有了依據。如ununquadium便是由un(一)- un(一)- quad(四)- ium(元素)四個字根組合而成,表示「元素114號」。元素114命名為flerovium(Fl),以紀念蘇聯原子物理學家喬治·弗洛伊洛夫(Georgy Flyorov,1913-1990);而ununhexium便是由un(一)- un(一)- hex(六)- ium(元素)四個字根組合而成,表示「元素116號」。元素116名為livermorium (Lv),以實驗室所在地利弗莫爾市為名。
第112號元素
元素周期表從第112號元素之後開始沒有特定的名稱,而是用系統命名法。具體規則為:
1:u
2:b
3:t
4:q
5:p
6:h
7:s
8:o
9:e
0:n
比如第112號元素為Uub,第113號元素為Uut......以此類推。
119號元素
俄羅斯科學家宣布,他們找到了元素周期表上的第119號元素。位於俄羅斯葉卡捷琳堡市的全俄發明家專利研究院迎來了一位特殊的客人,他是一名工程師,來自斯維爾德羅夫州,他聲稱自己發現了元素周期表上的第119號元素,並希望獲得此項專利。

元素周期表
這名工程師不願意透露自己的姓名,也沒有向外界透露這一元素的合成方法,他向研究院的專家們解釋道,從重量上看,第119號元素是氫元素的299倍,也就是說,其原子量為299;它是元素周期表上尚未記錄的新元素,並最終完成元素周期表。
如果第119號元素重量是氫元素299倍的說法是正確的,那麼它將元素周期表補齊的說法雖不能說是錯誤的,但讓人感到十分費解。因為這一元素如果存在,它將開啟元素周期表的第八個橫列,位於左下角第一個位置,而這與完成元素周期表的說法相悖。
眾所周知,元素周期表上最後一個元素是第118號元素,為惰性氣體元素,由美俄科學家利用俄方迴旋加速器成功合成了118號超重元素,在2006年這一結果得到了承認,這枚118號元素的原子量為297,只存在萬分之一秒。此後,118號元素衰變產生了116號元素,接著又繼續衰變為114號元素。
3位置關系
原子半徑
(1)除第1周期外,其他周期元素(惰性氣體元素除外)的原子半徑隨原子序數的遞增而減小;
(2)同一族的元素從上到下,隨電子層數增多,原子半徑增大。
元素化合價
(1)除第1周期外,同周期從左到右,元素最高正價由鹼金屬+1遞增到+7,非金屬元素負價由碳族-4遞增到-1(氟無正價,氧無+6價,除外);
(2)同一主族的元素的最高正價、負價均相同。
單質的熔點
(1)同一周期元素隨原子序數的遞增,元素組成的金屬單質的熔點遞增,非金屬單質的熔點遞減;
(2)同一族元素從上到下,元素組成的金屬單質的熔點遞減,非金屬單質的熔點遞增。
元素的金屬性
(1)同一周期的元素從左到右金屬性遞減,非金屬性遞增;
(2)同一主族元素從上到下金屬性遞增,非金屬性遞減。
水化物酸鹼性
元素的金屬性越強,其最高價氧化物的水化物的鹼性越強;元素的非金屬性越強,最高價氧化物的水化物的酸性越強。
非金屬氣態
元素非金屬性越強,氣態氫化物越穩定。同周期非金屬元素的非金屬性越強,其氣態氫化物水溶液一般酸性越強;同主族非金屬元素的非金屬性越強,其氣態氫化物水溶液的酸性越弱。
單質的氧化
一般元素的金屬性越強,其單質的還原性越強,其氧化物的氧離子氧化性越弱;元素的非金屬性越強,其單質的氧化性越強,其單原子陰離子的還原性越弱。
元素位置推斷
1、元素周期數等於核外電子層數;
2、主族元素的序數等於最外層電子數;
3、確定族數應先確定是主族還是副族,其方法是採用原子序數逐步減去各周期的元素種數,即可由最後的差數來確定。最後的差數就是族序數,差為8、9、10時為VIII族,差數大於10時,則再減去10,最後結果為族序數。
根據各周期所含的元素種類推斷,用原子序數減去各周期所含的元素種數,當結果為「0」時,為零族;當為正數時,為周期表中從左向右數的縱行,如為「2」則為周期表中從左向右數的第二縱行,即第ⅡA族;當為負數時其主族序數為8+結果。所以應熟記各周期元素的種數,即2、8、8、18、18、32、32。如:114號元素在周期表中的位置114-2-8-8-18-18-32-32=-4,8+(-4)=4,即為第七周期,第ⅣA族。
稀有氣體元素
牢記稀有氣體元素的原子序數:2、10、18、36、54、86,通過稀有氣體的位置,為某已知原子序數的元素定位。如:要推知33號元素的位置,因它在18和36之間,所以必在第4周期,由36號往左數,應在ⅤA族。
鹼金屬性質
鹼金屬性質

鹼金屬單質

顏色和狀態

密度(g/cm^3;)

熔點(℃)

沸點(℃)

Li

銀白色,柔軟

0.534

180.5

1347

Na

銀白色,柔軟

0.97

97.81

882.9

K

銀白色,柔軟

0.86

63.65

774

Rb

銀白色,柔軟

1.532

38.89

688

Cs

略帶金色光澤,柔軟

1.879

28.40

678.4

1.還原性;Li<Na<K,Rb<Cs
2.氧化性:Li>Na>K,Rb>Cs
3.鹼金屬元素能與水,氧氣反應生成鹼或鹼性氧化物
4記憶技巧
性質記憶

化學元素(43張)
元素表順口溜
我是氫,我最輕,火箭靠我運衛星;
我是氦,我無賴,得失電子我最菜;
我是鋰,密度低,遇水遇酸把泡起;
我是鈹,耍賴皮,雖是金屬難電離;
我是硼,有點紅,論起電子我很窮;
我是碳,反應慢,既能成鏈又成環;
我是氮,我阻燃,加氫可以合成氨;
我是氧,不用想,離開我就憋得慌;
我是氟,最惡毒,搶個電子就滿足;
我是氖,也不賴,通電紅光放出來;
我是鈉,脾氣大,遇酸遇水就火大;
我是鎂,最愛美,攝影煙花放光輝;
我是鋁,常溫里,濃硫酸里把澡洗;
我是硅,色黑灰,信息元件把我堆;
我是磷,害人精,劇毒列表有我名;
我是硫,來歷久,沉澱金屬最拿手;
我是氯,色黃綠,金屬電子我搶去;
我是氬,活性差,霓虹紫光我來發;
我是鉀,把火加,超氧化物來當家;
我是鈣,身體愛,骨頭牙齒我都在;
我是鈦,過渡來,太空梭我來蓋;
我是鉻,正六鉻,酒精過來變綠色;
我是錳,價態多,七氧化物爆炸猛;
我是鐵,用途廣,不銹鋼喊我叫爺;
我是銅,色紫紅,投入硝酸氣棕紅;
我是砷,顏色深,三價元素奪你魂;
我是溴,揮發臭,液態非金我來秀;
我是銣,鹼金屬,沾水煙花鉀不如;
我是碘,升華煙,遇到澱粉藍點點;
我是銫,金黃色,入水爆炸容器破;
我是鎢,高溫度,其他金屬早嗚呼;
我是金,很穩定,扔進王水影無形;
我是汞,有劇毒,液態金屬我為獨;
我是鈾,濃縮後,造原子彈我最牛;
我是鎵,易融化,沸點很高難蒸發;
我是銦,軟如金,輕微放射宜小心;
我是鉈,能脫發,投毒出名看清華;
我是鍺,可晶格,紅外窗口能當殼;
我是硒,補人體,口服液里有玄機;
我是鉛,能儲電,子彈頭里也出現。
周期記憶
第一周期:氫 氦 ---- 侵害
第二周期:鋰 鈹 硼 碳 氮 氧 氟 氖 ---- 鯉皮捧碳 蛋養福奶
第三周期:鈉 鎂 鋁 硅 磷 硫 氯 氬 ---- 那美女桂林留綠牙(那美女鬼 流露綠牙)
第四周期:鉀 鈣 鈧 鈦 釩 鉻 錳 ---- 價改 康太煩各盟
鐵 鈷 鎳 銅 鋅 鎵 鍺 ---- 鐵姑捏痛新嫁者
砷 硒 溴 氪 ---- 生氣 休克
第五周期:銣 鍶 釔 鋯 鈮 ---- 如此一告你
鉬 鍀 釕 ---- 不得了
銠 鈀 銀 鎘 銦 錫 銻 ---- 老把銀哥印西堤
碲 碘 氙 ---- 地點仙
第六周期:銫 鋇 鑭 鉿 ----(彩)色貝(殼)藍(色)河
鉭 鎢 錸 鋨 ---- 但(見)烏(鴉)(引)來鵝
銥 鉑 金 汞 鉈 鉛 ---- 一白巾 供它牽
鉍 釙 砹 氡 ---- 必不愛冬(天)
第七周期:鈁 鐳 錒 ---- 防雷啊!
族記憶
(主族)
氫鋰鈉鉀銣銫鈁——請李娜加入私訪
鈹鎂鈣鍶鋇鐳 ——媲美蓋茨被雷
硼鋁鎵銦鉈 ——碰女嫁音他
碳硅鍺錫鉛 ——探歸者西遷
氮磷砷銻鉍 ——蛋臨身體閉
氧硫硒碲釙 ——養牛西蹄撲
氟氯溴碘砹 ——父女綉點愛
(0族)
氦氖氬氪氙氡 ——害耐亞克先動
化合價記憶
一家請驢腳拿銀,(一價氫氯鉀鈉銀)
二家羊蓋美背心。(二價氧鈣鎂鋇鋅)
一價氫氯鉀鈉銀 二價氧鈣鋇鎂鋅
三鋁四硅五價磷 二三鐵、二四碳
一至五價都有氮 銅汞二價最常見
正一銅氫鉀鈉銀 正二銅鎂鈣鋇鋅
三鋁四硅四六硫 二四五氮三五磷
一五七氯二三鐵 二四六七錳為正
碳有正四與正二 再把負價牢記心
負一溴碘與氟氯 負二氧硫三氮磷
5周期表之父
生平介紹

俄國化學家德米特里·伊萬諾維奇·門捷列夫
德米特里·伊萬諾維奇·門捷列夫生於1834年2月7日俄國西伯利亞的托波爾斯克市。這個時代,正是歐洲資本主義迅速發展時期。生產的飛速發展,不斷地對科學技術提出新的要求。化學也同其它科學一樣,取得了驚人的進展。門捷列夫正是在這樣一個時代,誕生到人間。門捷列夫從小就熱愛勞動,熱愛學習。他認為只有勞動,才能使人們得到快樂、美滿的生活。只有學習,才能使人變得聰明。
門捷列夫在學校讀書的時候,一位很有名的化學教師,經常給他們講課。熱情地向他們介紹當時由英國科學家道爾頓始創的新原子論。由於道爾頓新原子學說的問世,促進了化學的發展速度,一個一個的新元素被發現了。化學這一門科學正激動著人們的心。這位教師的講授,使門捷列夫的思想更加開闊了,決心為化學這門科學獻出一生。[4]
學習探索

沙皇俄國.門捷列夫
門捷列夫在大學學習期間,表現出了堅韌、忘我的超人精神。疾病折磨著門捷列夫,由於喪失了無數血液,他一天一天的消瘦和蒼白了。可是,在他貧血的手裡總是握著一本化學教科書。那裡面當時有很多沒有弄明白的問題,纏繞著他的頭腦,似乎在召呼他快去探索。他在用生命的代價,在科學的道路上攀登著。他說,我這樣做「不是為了自己的光榮,而是為了俄國名字的光榮。」——過了一段時間以後,門捷列夫並沒有死去,反而一天天好起來了。最後,才知道是醫生診斷的錯誤,而他得的不過是氣管出血症罷了。
由於門捷列夫學習刻苦和在學習期間進行了一些創造性的研究工作,1855年,他以優異成績從學院畢業。畢業後,他先後到過辛菲羅波爾、敖德薩擔任中學教師。這期間,他一邊教書,一邊在極其簡陋的條件下進行研究,寫出了《論比容》的論文。文中指出了根據比容進行化合物的自然分組的途徑。1857年1月,他被批准為彼得堡大學化學教研室副教授,當時年僅23歲。
攀登科學高峰

約翰·沃爾夫岡·德貝萊納
攀登科學高峰的路,是一條艱苦而又曲折的路。門捷列夫在這條路上,也是吃盡了苦頭。當他擔任化學副教授以後,負責講授《化學基礎》課。在理論化學里應該指出自然界到底有多少元素?元素之間有什麼異同和存在什麼內部聯系?新的元素應該怎樣去發現?這些問題,當時的化學界正處在探索階段。近五十多年來,各國的化學家們,為了打開這秘密的大門,進行了頑強的努力。雖然有些化學家如德貝萊納和紐蘭茲在一定深度和不同角度客觀地敘述了元素間的某些聯系,但由於他們沒有把所有元素作為整體來概括,所以沒有找到元素的正確分類原則。年輕的學者門捷列夫也毫無畏懼地沖進了這個領域,開始了艱難的探索工作。
他不分晝夜地研究探求元素的化學特性和它們的一般的原子特性,然後將每個元素記在一張小紙卡上。他企圖在元素全部的復雜的特性里,捕捉元素的共同性。但他的研究,一次又一次地失敗了。可他不屈服,不灰心,堅持幹下去。
為了徹底解決這個問題,他又走出實驗室,開始出外考察和整理收集資料。1859年,他去德國海德爾堡進行科學深造。兩年中,他集中精力研究了物理化學,使他探索元素間內在聯系的基礎更扎實了。 1862年,他對巴庫油田進行了考察,對液體進行了深入研究,重測了一些元素的原子量,使他對元素的特性有了深刻的了解。1867年,他借應邀參加在法國舉行的世界工業展覽俄羅斯陳列館工作的機會,參觀和考察了法國、德國、比利時的許多化工廠、實驗室,大開眼界,豐富了知識。這些實踐活動,不僅開闊了他認識自然的思路,而且對他發現元素周期律,奠定了雄厚的基礎。

紀念門捷列夫與他的元素周期表
門捷列夫又返回實驗室,繼續研究他的紙卡。他把重新測定過的原子量的元素,按照原子量的大小依次排列起來。他發現性質相似的元素,它們的原子量並不相近;相反,有些性質不同的元素,它們的原子量反而相近。他緊緊抓住元素的原子量與性質之間的相互關系,不停地研究著。他的腦子因過度緊張,而經常昏眩。但是,他的心血並沒有白費,在1869年2月19日,他終於發現了元素周期律。他的周期律說明:簡單物體的性質,以及元素化合物的形式和性質,都和元素原子量的大小有周期性的依賴關系。門捷列夫在排列元素表的過程中,又大膽指出,當時一些公認的原子量不準確。如那時金的原子量公認為169.2,按此在元素表中,金應排在鋨、銥、鉑的前面,因為它們被公認的原子量分別為198.6、196.7、196.7,而門捷列夫堅定地認為金應排列在這三種元素的後面,原子量都應重新測定。大家重測的結果,鋨為190.9、銥為193.1、鉑為195.2,而金是197.2。實踐證實了門捷列夫的論斷,也證明了周期律的正確性。
在門捷列夫編制的周期表中,還留有很多空格,這些空格應由尚未發現的元素來填滿。門捷列夫從理論上計算出這些尚未發現的元素的最重要性質,斷定它們介於鄰近元素的性質之間。例如,在鋅與砷之間的兩個空格中,他預言這兩個未知元素的性質分別為類鋁和類硅。就在他預言後的四年,法國化學家布阿勃朗用光譜分析法,從門鋅礦中發現了鎵。實驗證明,鎵的性質非常像鋁,也就是門捷列夫預言的類鋁。鎵的發現,具有重大的意義,它充分說明元素周期律是自然界的一條客觀規律;為以後元素的研究,新元素的探索,新物資、新材料的尋找,提供了一個可遵循的規律。元素周期律像重炮一樣,在世界上空轟響了!
發現元素周期性
門捷列夫發現了元素周期律,在世界上留下了不朽的偉績,人們給他以很高的評價。恩格斯在《自然辯證法》一書中曾經指出。「門捷列夫不自覺地應用黑格爾的量轉化為質的規律,完成了科學上的一個勛業,這個勛業可以和勒維烈計算尚未知道的行星海王星的軌道的勛業居於同等地位。」
周期表發展

英國物理學家莫塞萊
由於時代的局限性,門捷列夫的元素周期律並不是完整無缺的。1894年,惰性氣體氬的發現,對周期律是一次考驗和補充。1913年,英國物理學家莫塞萊在研究各種元素的倫琴射線波長與原子序數的關系後,證實原子序數在數量上等於原子核所帶的陽電荷,進而明確作為周期律的基礎不是原子量而是原子序數。在周期律指導下產生的源於結構學說,不僅賦予元素周期律以新的說明,並且進一步闡明了周期律的本質,把周期律這一自然法則放在更嚴格更科學的基礎上。元素周期律經過後人的不斷完善和發展,在人們認識自然,改造自然,征服自然的斗爭中,發揮著越來越大的作用。
門捷列夫除了完成周期律這個勛業外,還研究過氣體定律、氣象學、石油工業、農業化學、無煙火葯、度量衡等。由於他總是日以繼夜地頑強地勞動著,在他研究過的這些領域中,在不同程度上都取得了成就。
1907年2月2日,這位享有世界盛譽的科學家,因心肌梗塞與世長辭了。但他給世界留下的寶貴財產,永遠存留在人類的史冊上。
詞條圖冊更多圖冊


化學元素(43張)

詞條圖片(12張)
1/1

元素周期表

主族元素

類金屬

▪ 硼 ( 5) ▪ 硅 ( 14) ▪ 鍺 ( 32) ▪ 砷 ( 33) ▪ 銻 ( 51)
▪ 碲 ( 52) ▪ 釙 ( 84)

金屬元素

鹼金屬
▪ 鋰 ( 3) ▪ 鈉 ( 11) ▪ 鉀 ( 19) ▪ 銣 ( 37) ▪ 銫 ( 55)
▪ 鈁 ( 87)

鹼土金屬
▪ 鈹 ( 4) ▪ 鎂 ( 12) ▪ 鈣 ( 20) ▪ 鍶 ( 38) ▪ 鋇 ( 56)
▪ 鐳 ( 88)

其他金屬
▪ 鋁 ( 13) ▪ 銦 ( 49) ▪ 鎵 ( 31) ▪ 錫 ( 50) ▪ 鉈 ( 81)
▪ 鉛 ( 82) ▪ 鉍 ( 83) ▪ Uut ( 113) ▪ Uuq ( 114) ▪ Uup ( 115)
▪ Uuh ( 116) ▪ Uus ( 117)

非金屬元素

稀有氣體
▪ 氦 ( 2) ▪ 氖 ( 10) ▪ 氬 ( 18) ▪ 氪 ( 36) ▪ 氙 ( 54)
▪ 氡 ( 86) ▪ Uuo ( 118)

鹵族元素
▪ 氟 ( 9) ▪ 氯 ( 17) ▪ 溴 ( 35) ▪ 碘 ( 53) ▪ 砹 ( 85)

其他元素
▪ 氫 ( 1) ▪ 碳 ( 6) ▪ 氮 ( 7) ▪ 氧 ( 8) ▪ 磷 ( 15)
▪ 硫 ( 16) ▪ 硒 ( 34)

副族元素

金屬元素

鑭系
▪ 鑭 ( 57) ▪ 鈰 ( 58) ▪ 鐠 ( 59) ▪ 釹 ( 60) ▪ 鉕 ( 61)
▪ 釤 ( 62) ▪ 銪 ( 63) ▪ 釓 ( 64) ▪ 鋱 ( 65) ▪ 鏑 ( 66)
▪ 鈥 ( 67) ▪ 鉺 ( 68) ▪ 銩 ( 69) ▪ 鐿 ( 70) ▪ 鑥 ( 71)

錒系
▪ 錒 ( 89) ▪ 釷 ( 90) ▪ 鏷 ( 91) ▪ 鈾 ( 92) ▪ 鎿 ( 93)
▪ 鈈 ( 94) ▪ 鎇 ( 95) ▪ 鋦 ( 96) ▪ 錇 ( 97) ▪ 鐦 ( 98)
▪ 鎄 ( 99) ▪ 鐨 ( 100) ▪ 鍆 ( 101) ▪ 鍩 ( 102) ▪ 鐒 ( 103)

過渡金屬
▪ 鈧 ( 21) ▪ 鈦 ( 22) ▪ 釩 ( 23) ▪ 鉻 ( 24) ▪ 錳 ( 25)
▪ 鐵 ( 26) ▪ 鈷 ( 27) ▪ 鎳 ( 28) ▪ 銅 ( 29) ▪ 鋅 ( 30)
▪ 釔 ( 39) ▪ 鋯 ( 40) ▪ 鈮 ( 41) ▪ 鉬 ( 42) ▪ 鍀 ( 43)
▪ 釕 ( 44) ▪ 銠 ( 45) ▪ 鈀 ( 46) ▪ 銀 ( 47) ▪ 鎘 ( 48)
▪ 鉿 ( 72) ▪ 鉭 ( 73) ▪ 鎢 ( 74) ▪ 錸 ( 75) ▪ 鋨 ( 76)
▪ 銥 ( 77) ▪ 鉑 ( 78) ▪ 金 ( 79) ▪ 釒盧 ( 104) ▪ 釒杜 ( 105)
▪ 釒喜 ( 106) ▪ 釒波 ( 107) ▪ 釒黑 ( 108) ▪ 釒麥 ( 109) ▪ 鐽 ( 110)
▪ 錀 ( 111) ▪ 鎶 ( 112) ▪ 汞 ( 80)

參考資料

1. 化學元素周期表 .漢典網 [引用日期2012-10-29] .
2. 中國化學會2012年第2次理監事會議記錄 .中國化學會 CCS Located in Taipei .2012-07-13 [引用日期2013-06-11] .
3. 114號和116號元素命名最終確定 .環球科學 .2012-06-18 [引用日期2012-06-28] .
4. 俄國化學家-門捷列夫 .中學學科網 [引用日期2013-08-30] .
相關文獻

怎樣給化學元素排隊——門捷列夫發明元素周期表的故事-今日科苑-2011年 第24期
元素在元素周期表中的位置規律-教育革新-2011年 第11期
超級元素周期表-課堂內外:科學Fans-2012年 第2期