當前位置:首頁 » 石油礦藏 » 千米石油怎麼開采
擴展閱讀
原石鑽石去哪裡賣 2025-06-24 00:51:00

千米石油怎麼開采

發布時間: 2022-04-27 00:40:59

Ⅰ 石油怎麼弄出來的

油井分兩類,一類是自噴的,油井安一個採油樹就行了,採油樹由若干管道和儀表組成,這些管道象樹一樣,有干,有枝,因此叫採油樹。
我國自噴井很少。
另一類,不能自噴,就得靠機械泵來抽油,這在我國占絕大部分,泵分有桿和無桿兩大類,有桿的,通常是叩頭式抽油機,因此抽油機是油田標志,坐火車、汽車路過油區,會看到田野上那些抽油機日夜工作。抽油機工作有噪音,佔一塊地皮,但維修簡單。無桿泵一般是潛油泵,放到油井底部,通上電,把油向上抽,這種方式沒有噪音,但是維修麻煩。
油井經常要修理,負責修理的是修井隊,小修由採油廠負責,大修由專門的隊伍負責,叫做「井下作業」,油田有井下作業公司。
採油是高科技行當,有一些工程院院士。
技術含量就在於,怎麼盡量多地把地底下的油采出來,這叫採收率。比如探明一個構造里有100萬噸原油儲量,百分百得到100萬噸不可能,通常只能四分之一,25%,得到25萬噸就不錯了。考慮到原油價格,每提升1%,就多得到一萬噸原油,一萬噸原油就是一大筆財富,幾千萬元,因此,每一項技術進步,都能產生很大的效益。我國在好幾個方面,保持世界領先水平。中國整體上科技不發達,但不是所有方面都不發達,比如航天就不落後,採油技術方面也比較發達。
在地層自然條件下採油,叫一次採油,使用物理方法提高採收率的技術,用注水、壓裂、蒸汽加壓、火燒等等方法,這叫二次採油,其中最常用的是注水。用化學的方法,向井下注入活性劑等化學液,溶解原油,抽上來再還原,提取原油中的成分,這是三次採油。
這個很容易用一條毛巾來打比方,一條毛巾浸滿了油,自然滴下來,得到油,這是一次採油,不再滴了,用手去扭那毛巾,又能擰出一些油來,這是物理方式,二次採油。再也擰不出來了,用肥皂、洗衣粉洗干凈那毛巾,從洗下來的臟水中再還原出油,就是化學方式,這就是三次採油。當然,這只是比方,現實中,肥皂洗後的臟水中是還原不出油的,這就決定了研究出一種活性劑,又能弄乾凈毛巾,又能還原。
注水,是一個重要方法,也有很多學問,不是抽水壓下去了事。一般情況下,是油井抽不出油來了,才注水,大慶油田發明了「早期注水」,就是一開始,能抽出很多油的時候,就向下注水,這是很有效的辦法,是世界同行佩服的。
這要打掉一個誤解,很多人認為原油在地底下是一個湖,這不對,原油是浸在含油岩石中的孔隙中,就如那塊打狗的石頭一樣,因此要全部弄出來是不可能的,它總會粘附在岩石上一部分,明白這個,就明白電視劇中尋找油為什麼要尋找含油的岩層,反復提到「含油層」,明白人類要盡量多得到原油的困難了。

Ⅱ 石油是從哪裡來的

石油又稱原油,是從地下深處開採的棕黑色可燃粘稠液體。主要是各種烷烴、環烷烴、芳香烴的混合物。它是古代海洋或湖泊中的生物經過漫長的演化形成的混合物,與煤一樣屬於化石燃料。石油主要被用來作為燃油和汽油,燃料油和汽油組成目前世界上最重要的一次能源之一。石油也是許多化學工業產品如溶液、化肥、殺蟲劑和塑料等的原料。

石油生成
研究表明,石油的生成至少需要200萬年的時間,在現今已發現的油藏中,時間最老的可達到5億年之久。在地球不斷演化的漫長歷史過程中,有一些「特殊」時期,如古生代和中生代,大量的植物和動物死亡後,構成其身體的有機物質不斷分解,與泥沙或碳酸質 石油
沉澱物等物質混合組成沉積層。由於沉積物不斷地堆積加厚,導致溫度和壓力上升,隨著這種過程的不斷進行,沉積層變為沉積岩,進而形成沉積盆地,這就為石油的生成提供了基本的地質環境。
生物成油理論
大多數地質學家認為石油像煤和天然氣一樣,是古代有機物通過漫長的壓縮和加熱後逐漸形成的。按照這個理論石油是由史前的海洋動物和藻類屍體變化形成的。(陸上的植物則一般形成煤。)經過漫長的地質年代這些有機物與淤泥混合,被埋在厚厚的沉積岩下。在地下的高溫和高壓下它們逐漸轉化,首先形成臘狀的油頁岩,後來退化成液態和氣態的碳氫化合物。由於這些碳氫化合物比附近的岩石輕,它們向上滲透到附近的岩層中,直到滲透到上面緊密無法滲透的、本身則多空的岩層中。這樣聚集到一起的石油形成油田。通過鑽井和泵取人們可以從油田中獲得石油。地質學家將石油形成的溫度范圍稱為「油窗」。溫度太低石油無法形成,溫度太高則會形成天然氣。雖然石油形成的深度在世界各地不同,但是「典型」的深度為四至六千米。由於石油形成後還會滲透到其它岩層中去,因此實際的油田可能要淺得多。因此形成油田需要三個條件:豐富的源岩,滲透通道和一個可以聚集石油的岩層構造。

Ⅲ 油田的開發方式有哪些

隨著石油科學和開采技術的發展,油田開發方式也在不斷進步。在19世紀後半葉和20世紀初,主要以消耗天然能量的方式進行開發油田。直到20世紀三四十年代,人工注水補充能量的開發方式才逐步發展起來,成為石油開發史上的重大突破。但是,目前並不是所有的油田都採用注水開發,而是有多種開發方式,歸納起來有以下幾種。

一、利用天然能量開發利用天然能量開發是一種傳統的開發方式。其優點是投資少、成本低、投產快。只需按照設計的生產井網鑽井,無需增加採油設備,石油依靠油層自身的能量就可流到地面。因此,它仍是一種常用的開發方式。其缺點是天然能量作用的范圍和時間有限,不能適應油田較高的採油速度及長期穩產的要求,最終採收率通常較低。利用天然能量開發可分為以下幾種方式。

1.彈性能量開採油層彈性能量的儲存和釋放過程與彈簧的壓縮和恢復相似。油層埋藏在地下幾百米至幾千米的深處。開發前油層承受著巨大的壓力,因此在油層中積蓄了一定的彈性能量。當鑽井打開油層進行採油時,油層的均衡受壓狀態遭到破壞。油層岩石顆粒和孔隙中的液體因壓力下降而膨脹,將部分原油推擠出來,流向井底噴至地面。隨著原油的不斷采出,油層中壓力降低的范圍不斷擴大,壓力降低的幅度不斷增加,油層中的彈性能不斷減少。一般的砂岩油藏,靠彈性能量僅能采出地下儲量的1%~5%。

2.溶解氣能量開採在日常生活中經常可見到這樣一種現象,當打開汽水或啤酒瓶蓋時,汽水或啤酒會隨著氣泡一起溢出瓶口。這是因為在製造汽水、啤酒時,加壓使汽水、啤酒中溶解了一定數量的二氧化碳氣體。當打開瓶蓋時,瓶內壓力下降,二氧化碳的溶解度減小,很快從汽水、啤酒中分離出來,同汽水、啤酒一起湧出瓶口。溶解氣能量開采就是利用這個原理。打開油層開始採油後,油層壓力降低。當其壓力低於飽和壓力時,在高壓下原來溶解在原油中的天然氣就分離出來,以自由的氣泡存在。在向井底流動的過程中,由於壓力越來越低,氣泡體積不斷膨脹,就沿著油層把原油推向井底。

在利用溶解氣能量的開采過程中,由於氣體比原油容易流動,往往是氣體先溢出來。溶解在原油中的天然氣量大幅度減少使原油變得越來越稠、流動性越來越差。當油層中溶解的天然氣能量消耗完後,油層中還會留下大量的原油。因此,只依靠溶解氣能量開采,一般只能采出原始儲量的百分之十幾。

3.氣頂能量開采有些油田在油層的頂部存在氣頂。油田投入開發後,含油區的壓力將不斷下降。當這一壓力降傳遞到氣頂時,將引起氣頂發生膨脹,氣頂中的氣體就會侵入到儲存原油的孔隙中,將原油驅向生產井井底。

4.水壓驅油能量開采水壓驅油分為邊水驅動和底水驅動兩種形式,如圖4-11所示。無論是邊水驅動還是底水驅動,地下油層必須與地面水源溝通,開采時才能得到外來水源的補充。如果油田面積小、水壓驅動條件好、水的補給量與采出的油量平衡,那麼在開采過程中油田的產油量和地層壓力就可以在較長時間內保持穩定,可以獲得較好的油田開采效果和較高的最終採收率。但實際中絕大多數天然水壓驅動的油田,外界水源的補給都跟不上能量的消耗,因此開采效果不很理想。

表4-2不同面積井網的井網參數

早期進行面積注水開發時,注水井經過適當排液即可轉入注水,並使油田投入全面開發。這種注水方式實質上是把油層分割成許多小單元。一口注水井控制一個單元,並同時影響周圍的幾口油井。而每口油井又同時在幾個方向上受注水井影響。顯然,這種注水方式的特點是採油速度較高,生產井容易受到注入水的充分影響、見水時間早。

採用面積注水方式的條件是:第一,油層分布不規則,多呈透鏡狀分布;第二,油層的滲透性差,流動系數低;第三,油田面積大,構造不夠完整,斷層分布復雜;第四,可用於油田後期的強化採油,以提高採收率;第五,雖然油田具備切割注水或其他注水方式的條件,但為了達到更高的採油速度,也可採用面積注水方式。

2.人工注氣人工注氣是在油田開發過程中,用人工方法把氣體注入油層中,以保持和提高油層壓力。人工注氣分為頂部注氣和面積注氣。頂部注氣就是把注氣井布置在油藏的氣頂上,向氣頂中注氣以保持油層壓力;面積注氣是根據需要按某種幾何形狀在油田的一定位置上部署注氣井和採油井,進行注氣採油。

三、開發方式的選擇對於具體油田,開發方式的選擇原則是:既要合理地利用天然能量又要有效地保持油藏能量,確保油田具有較高的採油速度和較長的穩產時間。為此,我們必須進行區域性的調查研究,了解整個水壓系統的地質、水文地質特徵和油藏本身的地質—物理特徵,即必須了解油田有無邊水、底水,有無水源供給區,中間是否有斷層遮擋和岩性變異現象,油藏有無氣頂及氣頂的大小等。

當通過預測及研究確定油田天然能量不足時,則考慮向油層注入水、氣等驅替工作劑。

注入劑的選擇與儲集層結構及流體性質有密切關系。當儲集層滲透率很低時,注水效果通常較差,油井見效慢。若儲集層性質均勻、滲透性好、水敏性粘土礦物少、原油粘度低,注水開發效果就好。當斷層或裂隙較多時,注入流體可能會沿斷裂處竄入生產井或非生產層。因此,必須搞清斷層的走向和裂隙的發育規律,因勢利導,以擴大注入劑的驅替面積。

開發過程的控制,即開發速度也會對驅動方式的建立產生重大影響。開發速度過大,由於外排生產井的屏蔽遮擋作用,往往使內部油井難以見效。也可能造成氣頂和底水錐進、邊水舌進,影響最終採收率。開發速度過小又滿足不了對產量的要求。

實施人工注水、注氣還要考慮注入劑的來源及處理問題。注水必然要涉及水質是否與儲集層配伍以及環保等問題。注入冷水、淡水可能會對地下溫度、原油物性及粘土礦物產生影響。因而需要考慮是否要加添加劑、是否要進行加熱預處理等。

顯然,向油層注入驅替劑會增加油田的前期投資、設備和工作量。因此,需要對採取該措施所能獲得的採收率和經濟效益進行預測。

人們最初向油層注水,是當油田開采了相當長的時間,天然能量接近枯竭的時候,為了進一步采出油層中剩餘的原油而進行的。這種做法稱為晚期注水。在長期的油田開發實踐中,人們發現保持油層壓力越早,地下能量損耗就越少,能開采出的原油也就越多。於是就有意識地在油田開發初期向油層注水以保持壓力,這種方法叫早期注水。目前,世界上許多油田都採用了早期注水。我國的大慶油田,在總結了國內外油田開發經驗和教訓的基礎上,根據本油田的特點,在油田開發初期就採用了邊內切割注水保持油層壓力的開發方式。生產實踐表明:由於油層壓力保持在一定水平上,油層能量充足,油田產量穩定。

由於水的來源廣、價格便宜、易於處理,而且水驅效果一般比溶解氣驅等驅動方式好,我國有條件的油田都採用注水方式開發,並取得了顯著的經濟效益。它是我國現階段科技水平的產物,今後有待於進一步發展。此外,為了實現有效注水,還應採取多方面的措施,尤其是工程工藝方面的措施,以提高水驅效果。

總之,人工保持油層壓力的方法,要根據油田的具體情況來確定。

Ⅳ 埋藏在地下千米的石油到底是怎麼形成的

石油是由古代生物(包括動物與植物,尤以浮游生物為主)生成的,既有機成因,這一點也被大多數學者認同。然而,隨著全球范圍內石油勘探難度的增加和人們對油田的認識加深,越來越多的現象用這種的理論無法解釋,長期失寵的無機成油理論又重新受到世界石油地質家的普遍重視。

但是在地殼裂開以後,那裡地幔的超高壓狀態被打破,原來的穩定結構被破壞,使之發生熱膨脹,不斷地釋放內能而蛻變為岩漿。沿著裂縫上涌的岩漿由於發生熱膨脹而不斷耗散內能,在特定的壓強和溫度下,重新達到內和外力平衡,進而演化出100多種元素。石油就是地幔發生熱膨脹時,在特定的環境中形成的一種新物質形態。大家有別的看法嗎?一起來交流呀。

Ⅳ 海上石油是如何開採的

海上油氣開發 海上油氣開發與陸地上的沒有很大的不同,只是建造採油平台的工程耗資要大得多,因而對油氣田范圍的評價工作要更加慎重。要進行風險分析,准確選定平台位置和建設規模。避免由於對地下油藏認識不清或推斷錯誤,造成損失。60年代開始,海上石油開發有了極大的發展。海上油田的採油量已達到世界總採油量的20%左右。形成了整套的海上開采和集輸的專用設備和技術。平台的建設已經可以抗風、浪、冰流及地震等各種災害,油、氣田開採的水深已經超過200米。
當今世界上還有不少地區尚未勘探或充分勘探,深部地層及海洋深水部分的油氣勘探剛剛開始不久,還會發現更多的油氣藏,已開發的油氣藏中應用提高石油採收率技術可以開采出的原油數量也是相當大的;這些都預示著油、氣開採的科學技術將會有更大的發展。
石油是深埋在地下的流體礦物。最初人們把自然界產生的油狀液體礦物稱石油,把可燃氣體稱天然氣,把固態可燃油質礦物稱瀝青。隨著對這些礦物研究的深入,認識到它們在組成上均屬烴類化合物,在成因上互有聯系,因此把它們統稱為石油。1983年9月第11次世界石油大會提出,石油是包括自然界中存在的氣態、液態和固態烴類化合物以及少量雜質組成的復雜混合物。所以石油開采也包括了天然氣開采。
石油在國民經濟中的作用 石油是重要能源,同煤相比,具有能量密度大(等重的石油燃燒熱比標准煤高50%)、運輸儲存方便、燃燒後對大氣的污染程度較小等優點。從石油中提煉的燃料油是運輸工具、電站鍋爐、冶金工業和建築材料工業各種窯爐的主要燃料。以石油為原料的液化氣和管道煤氣是城市居民生活應用的優質燃料。飛機、坦克、艦艇、火箭以及其他航天器,也消耗大量石油燃料。因此,許多國家都把石油列為戰略物資。
20世紀70年代以來,在世界能源消費的構成中,石油已超過煤而躍居首位。1979年佔45%,預計到21世紀初,這種情況不會有大的改變。石油製品還廣泛地用作各種機械的潤滑劑。瀝青是公路和建築的重要材料。石油化工產品廣泛地用於農業、輕工業、紡織工業以及醫葯衛生等部門,如合成纖維、塑料、合成橡膠製品,已成為人們的生活必需品。
1982年世界石油產量為26.44億噸,天然氣為15829億立方米。1973年以來,三次石油漲價和1982年的石油落價,都引起世界經濟較大的波動(見世界石油工業)。
油氣聚集和驅動方式 油氣在地殼中生成後,呈分散狀態存在於生油氣層中,經過運移進入儲集層,在具有良好保存條件的地質圈閉內聚集,形成油氣藏。在一個地質構造內可以有若干個油氣藏,組合成油氣田。
儲層 貯存油氣並能允許油氣流在其中通過的有儲集空間的岩層。儲層中的空間,有岩石碎屑間的孔隙,岩石裂縫中的裂隙,溶蝕作用形成的洞隙。孔隙一般與沉積作用有關,裂隙多半與構造形變有關,洞隙往往與古岩溶有關。空隙的大小、分布和連通情況,影響油氣的流動,決定著油氣開採的特徵(見石油開發地質)。
油氣驅動方式 在開採石油的過程中,油氣從儲層流入井底,又從井底上升到井口的驅動方式。主要有:①水驅油藏,周圍水體有地表水流補給而形成的靜水壓頭;②彈性水驅,周圍封閉性水體和儲層岩石的彈性膨脹作用;③溶解氣驅,壓力降低使溶解在油中的氣體逸出時所起的膨脹作用;④氣頂驅,存在氣頂時,氣頂氣隨壓力降低而發生的膨脹作用;⑤重力驅,重力排油作用。當以上天然能量充足時,油氣可以噴出井口;能量不足時,則需採取人工舉升措施,把油流驅出地面(見自噴採油法,人工舉升採油法)。
石油開採的特點 與一般的固體礦藏相比,有三個顯著特點:①開採的對象在整個開採的過程中不斷地流動,油藏情況不斷地變化,一切措施必須針對這種情況來進行,因此,油氣田開採的整個過程是一個不斷了解、不斷改進的過程;②開采者在一般情況下不與礦體直接接觸。油氣的開采,對油氣藏中情況的了解以及對油氣藏施加影響進行各種措施,都要通過專門的測井來進行;③油氣藏的某些特點必須在生產過程中,甚至必須在井數較多後才能認識到,因此,在一段時間內勘探和開采階段常常互相交織在一起(見油氣田開發規劃和設計)。
要開發好油氣藏,必須對它進行全面了解,要鑽一定數量的探邊井,配合地球物理勘探資料來確定油氣藏的各種邊界(油水邊界、油氣邊界、分割斷層、尖滅線等);要鑽一定數量的評價井來了解油氣層的性質(一般都要取岩心),包括油氣層厚度變化,儲層物理性質,油藏流體及其性質,油藏的溫度、壓力的分布等特點,進行綜合研究,以得出對於油氣藏的比較全面的認識。在油氣藏研究中不能只研究油氣藏本身,而要同時研究與之相鄰的含水層及二者的連通關系(見油藏物理)。
在開采過程中還需要通過生產井、注入井和觀察井對油氣藏進行開采、觀察和控制。油、氣的流動有三個互相聯接的過程:①油、氣從油層中流入井底;②從井底上升到井口;③從井口流入集油站,經過分離脫水處理後,流入輸油氣總站,轉輸出礦區(見油藏工程)。
石油開采技術
測井工程 在井筒中應用地球物理方法,把鑽過的岩層和油氣藏中的原始狀況和發生變化的信息,特別是油、氣、水在油藏中分布情況及其變化的信息,通過電纜傳到地面,據以綜合判斷,確定應採取的技術措施(見工程測井,生產測井,飽和度測井)。
鑽井工程 在油氣田開發中,有著十分重要的地位,在建設一個油氣田中,鑽井工程往往要佔總投資的50%以上。一個油氣田的開發,往往要打幾百口甚至幾千口或更多的井。對用於開采、觀察和控制等不同目的的井(如生產井、注入井、觀察井以及專為檢查水洗油效果的檢查井等)有不同的技術要求。應保證鑽出的井對油氣層的污染最少,固井質量高,能經受開采幾十年中的各種井下作業的影響。改進鑽井技術和管理,提高鑽井速度,是降低鑽井成本的關鍵(見鑽井方法,鑽井工藝,完井)。
採油工程 是把油、氣在油井中從井底舉升到井口的整個過程的工藝技術。油氣的上升可以依靠地層的能量自噴,也可以依靠抽油泵、氣舉等人工增補的能量舉出。各種有效的修井措施,能排除油井經常出現的結蠟、出水、出砂等故障,保證油井正常生產。水力壓裂或酸化等增產措施,能提高因油層滲透率太低,或因鑽井技術措施不當污染、損害油氣層而降低的產能。對注入井來說,則是提高注入能力(見採油方法,采氣工藝,分層開采技術,油氣井增產工藝)。
油氣集輸工程 是在油田上建設完整的油氣收集、分離、處理、計量和儲存、輸送的工藝技術。使井中采出的油、氣、水等混合流體,在礦場進行分離和初步處理,獲得盡可能多的油、氣產品。水可回注或加以利用,以防止污染環境。減少無效損耗(見油田油氣集輸)。
石油開采中各學科和工程技術之間的關系見圖。

石油開采
石油開采技術的發展 石油和天然氣的大規模開采和應用,是近百年的事。美國和俄國在19世紀50年代開始了他們各自的近代油、氣開采工業。其他國家稍晚一些。石油開采技術的發展與數學、力學、地質學、物理學、機械工程、電子學等學科發展有密切聯系。大致可分三個階段:
初期階段 從19世紀末到20世紀30年代。隨著內燃機的出現,對油料提出了迫切的要求。這個階段技術上的主要標志是以利用天然能量開采為主。石油的採收率平均只有15~20%,鑽井深度不大,觀察油藏的手段只有簡單的溫度計、壓力計等。
第二階段 從30年代末到50年代末,以建立油田開發的理論體系為標志。主要內容是:①形成了作為鑽井工程理論基礎的岩石力學;②基本確立了油藏物理和滲流力學體系,普遍採用人工增補油藏能量的注水開采技術。在蘇聯廣泛採用了早期注水保持地層壓力的技術,使石油的最終採收率從30年代的15~20%,提高到30%以上,發展了以電測方法為中心的測井技術和鑽4500米以上的超深井的鑽井技術。在礦場集輸工藝中廣泛地應用了以油氣相平衡理論為基礎的石油穩定技術。基本建立了與油氣田開發和開采有關的應用科學和工程技術體系。
第三階段 從60年代開始,以電子計算機和現代科學技術廣泛用於油、氣田開發為標志,開發技術迅速發展。主要方面有:①建立的各種油層的沉積相模型,提高了預測儲油砂體的非均質性及其連續性的能力,從而能更經濟有效地布置井位和開發工作;②把現代物理中的核技術應用到測井中,形成放射性測井技術,與原有的電測技術, 加上新的生產測井系列,可以用來直接測定油藏中油、氣、水的分布情況,在不同開發階段能採取更為有效的措施;③對油氣藏內部在採油氣過程中起作用的表面現象及在多孔介質中的多相滲流的規律等,有了更深刻的理解,並根據物理模型和數學模型對這些現象由定性進入定量解釋(見油藏數值模擬),試驗和開發了除注水以外提高石油採收率的新技術;④以噴射鑽井和平衡鑽井為基礎的優化鑽井技術迅速發展。鑽井速度有很大的提高。可以打各種特殊類型的井,包括叢式井,定向井,甚至水平井,加上優質泥漿,使鑽井過程中油層的污染降到最低限度;⑤大型酸化壓裂技術的應用使很多過去沒有經濟價值的油、氣藏,特別是緻密氣藏,可以投入開發,大大增加了天然資源的利用程度。對油井的出砂、結蠟和高含水所造成的困難,在很大程度上得到了解決(見稠油開采,油井防蠟和清蠟,油井防砂和清砂,水油比控制);⑥向油層注蒸汽,熱采技術的應用已經使很多稠油油藏投入開發;⑦油、氣分離技術和氣體處理技術的自動化和電子監控,使礦場油、氣集輸中的損耗降到很低,並能提供質量更高的產品。
靠油藏本身或用人工補給的能量把石油從井底舉升到地面的方法。19世紀50年代末出現了專門開採石油的油井。早期油井很淺,用吊桶汲取。後來井深增加,採油方法逐漸復雜,分為自噴採油法和人工舉升採油法兩類,後者有氣舉採油法和泵抽採油法(又稱深井泵採油法)兩種。

自噴採油法: 當油藏壓力高於井內流體柱的壓力,油藏中的石油通過油管和採油樹自行舉升至井外的採油方法。石油中大量的伴生天然氣能降低井內流體的比重,降低流體柱壓力,使油井更易自噴。油層壓力和氣油比(中國石油礦場習稱油氣比)是油井自噴能力的兩個主要指標。
油、氣同時在井內沿油管向上流動,其能量主要消耗於重力和摩擦力。在一定的油層壓力和油氣比的條件下,每口井中的油管尺寸和深度不變時,有一個充分利用能量的最優流速范圍,即最優日產量范圍。必須選用合理的油管尺寸,調節井口節流器(常稱油嘴)的大小,使自噴井的產量與油層的供油能力相匹配,以保證自噴井在最優產量范圍內生產。
為使井口密封並便於修井和更換損壞的部件,自噴井井口裝有專門的採油裝置,稱採油樹(見彩圖)。自噴井的井身結構見圖。自噴井管理方便,生產能力高,耗費小,是一種比較理想的採油方法。很多油田都採取早期注水、注氣(見注水開采)保持油藏壓力的措施,延長油井的自噴期。

人工舉升採油法: 人為地向油井井底增補能量,將油藏中的石油舉升至井口的方法。隨著采出石油總量的不斷增加,油層壓力日益降低;注水開發的油田,油井產水百分比逐漸增大,使流體的比重增加,這兩種情況都使油井自噴能力逐步減弱。為提高產量,需採取人工舉升法採油(又稱機械採油),是油田開採的主要方式,特別在油田開發後期,有泵抽採油法和氣舉採油法兩種。

氣舉採油法: 將天然氣從套管環隙或油管中注入井內,降低井中流體的比重,使井內流體柱的壓力低於已降低了的油層壓力,從而把流體從油管或套管環隙中導出井外。有連續氣舉和間歇氣舉兩類。多數情況下,採用從套管環隙注氣、油管出油的方式。氣舉採油要求有比較充足的天然氣源;不能用空氣,以免爆炸。氣舉的啟動壓力和工作壓力差別較大。在井下常需安裝特製的氣舉閥以降低啟動壓力,使壓縮機在較低壓力下工作,提高其效率,結構和工作原理見圖。在油管外的液面被壓到氣舉閥以下時,氣從A孔進入油管,使管內液體與氣混合,噴出至地面。管內壓力下降到一定程度時,油管內外壓差使該閥關閉。管外液面可繼續下降。油井較深時,可裝幾個氣舉閥,把液面降至油管鞋,使啟動壓力大為降低。

氣舉採油法:
氣舉井中產出的油、氣經分離後,氣體集中到礦場壓縮機站,經過壓縮送回井口。對於某些低產油井,可使用間歇氣舉法以節約氣量,有時還循環使用活塞氣舉法。
氣舉法有較高的生產能力。井下裝置簡單,沒有運動部件,井下設備使用壽命長,管理方便。雖然壓縮機建站和敷設地面管線的一次投資高,但總的投資和管理費用與抽油機、電動潛油泵或水力活塞泵比較是最低的。氣舉法應用時間較短,一般為15~30%左右;單位產量能耗較高,又需要大量天然氣;只適用於有天然氣氣源和具備以上條件的地區內有一定油層壓力的高產油井和定向井,當油層壓力降到某一最低值時,便不宜採用;效率較低。
泵抽採油法: 人工舉升採油法的一種(見人工舉升採油法)。在油井中下入抽油泵,把油藏中產出的液體泵送到地面的方法,簡稱抽油法。此法所用的抽油泵按動力傳動方式分為有桿和無桿兩類。
有桿泵 是最常用的單缸單作用抽油泵(圖1),其排油量取決於泵徑和泵的沖程、沖數。有桿泵分桿式泵、管式泵兩類。一套完整的有桿泵機組包括抽油機、抽油桿柱和抽油泵(圖2)。

泵抽採油法 泵抽採油法
抽油機主要是把動力機(一般是電動機)的圓周運動轉變為往復直線運動,帶動抽油桿和泵,抽油機有游梁式和無游梁式兩種。前者使用最普遍,中國一些礦場使用的鏈條抽油機屬後一種(見彩圖)。抽油桿柱是連接抽油機和抽油泵的長桿柱,長逾千米,因交變載荷所引起的振動和彈性變形,使抽油桿懸點的沖程和泵的柱塞沖程有較大差別。抽油泵的直徑和沖程、沖數要根據每口油井的生產特徵,進行設計計算來優選。在泵的入口處安裝氣體分離裝置——氣錨,或者增加泵的下入深度,以降低流體中的含氣量對抽油泵充滿程度(即體積效率)的影響。

泵抽採油法
有桿泵是一個自重系統,抽油桿的截面增加時,其載荷也隨著增大。各種材質製成的抽油桿的下入深度,都是有極限的,要增加泵的下入深度,主要須改變抽油桿的材質、熱處理工藝和級次。根據抽油桿的彈性和地層流體的特徵,在選擇工作制度時,要選用沖程、沖數的有利組合。有桿泵的工作深度在國外已超過 3000m,抽油機的載荷已超過25t,泵的排量與井深有關,有些淺井日排量可以高達400m3,一般中深井可達200m3,但抽油井的產量主要根據油層的生產能力。有桿抽油機泵組的主要優點是結構簡單,維修管理方便,在中深井中泵的效率為50%左右,適用於中、低產量的井。目前世界上有85%以上的油井用機械採油法生產,其中絕大部分用有桿泵。
無桿泵 適用於大產量的中深井或深井和斜井。在工業上應用的是電動潛油泵、水力活塞泵和水力噴射泵。
電動潛油泵 是一套多級離心泵和電動機直接連接的機泵組。由動力電纜把電送給井下的電機以驅動離心泵,把井中的流體泵送到地面,由於機泵組是在套管內使用,機泵的直徑受到限制,所以採取細長的形狀(圖3)。為防止井下流體(特別是水)進入電樞使電機失效,需採取特殊的密封裝置,並在泵和電動機的連接部位加裝保護器。泵的排量受井眼尺寸的限制,揚程決定於泵的級數,二者都取決於電動機的功率。電動潛油泵適用於中、高產液量,含氣和砂較少的稀油或含水原油的油井。一般日排量為100~1000m3、揚程在2000m以內時,效率較高,可用於斜井。建井較簡單,管理方便,免修期較長,泵效率在60%左右;但不適用於高含氣的井和帶腐蝕性流體的井,下井後泵的排量不能調節,機泵組成本較高,起下作業和檢修都比較復雜。

泵抽採油法
水力活塞泵 利用地面泵注入液體驅動井下液壓馬達帶動井下泵,把井下的液體泵出地面。水力活塞泵的工作原理與有桿泵相似,只是往復運動用液壓馬達和換向閥來實現(圖 4)。水力活塞泵的井下泵有單作用和雙作用兩種,地面泵都用高壓柱塞泵。流程有兩種:①開式流程。單管結構,以低粘度原油為動力液,既能減少管道摩擦阻力,又可降低抽出油的粘度,並與采出液混在一起采出地面。②閉式流程。用輕油或水為動力液,用水時要增添潤滑劑和防腐劑,自行循環不與產出的液體相混,工作過程中只需作少量的補充。水力活塞泵可以單井運轉,也可以建泵組集中管理,排量適應范圍寬,從每日幾十到上千立方米等,適用於深井、高揚程井、稠油井、斜井。優點是可任意調節排量,起下泵可不起油管,操作和管理方便。泵效率可達85%以上。缺點是地面要多建一條高壓管線,動力液要處理,增加了建井和管理成本。

泵抽採油法
水力射流泵 帶有噴嘴和擴散器的抽油泵(圖5)。水力射流泵沒有運動零件,結構簡單,成本低,管理方便,但效率低,不高於30~35%,造成的生產壓差太小,只適用於高壓高產井。一般僅在水力活塞泵的前期即油井的壓力較高、排量較大時使用;當壓力降低、排量減少時,改用水力活塞泵。

Ⅵ 石油是怎麼形成的原理

石油形成的原理:

石油的生成至少需要200萬年的時間,在現今已發現的油藏中,時間最老的達5億年之久。但一些石油是在侏羅紀生成。

在地球不斷演化的漫長歷史過程中,有一些「特殊」時期,如古生代和中生代,大量的植物和動物死亡後,構成其身體的有機物質不斷分解,與泥沙或碳酸質沉澱物等物質混合組成沉積層。

由於沉積物不斷地堆積加厚,導致溫度和壓力上升,隨著這種過程的不斷進行,沉積層變為沉積岩,進而形成沉積盆地,這就為石油的生成提供了基本的地質環境。

大多數地質學家認為石油像煤和天然氣一樣,是古代有機物通過漫長的壓縮和加熱後逐漸形成的。按照這個理論石油是由史前的海洋動物和藻類屍體變化形成的。(陸上的植物則一般形成煤。)經過漫長的地質年代這些有機物與淤泥混合,被埋在厚厚的沉積岩下。

在地下的高溫和高壓下它們逐漸轉化,首先形成臘狀的油頁岩,後來退化成液態和氣態的碳氫化合物。由於這些碳氫化合物比附近的岩石輕,它們向上滲透到附近的岩層中,直到滲透到上面緊密無法滲透的、本身則多空的岩層中。這樣聚集到一起的石油形成油田。

通過鑽井和泵取人們可以從油田中獲得石油。地質學家將石油形成的溫度范圍稱為「油窗」。溫度太低石油無法形成,溫度太高則會形成天然氣。

(6)千米石油怎麼開采擴展閱讀:

石油的物質成份:

油質(這是其主要成分)、膠質(一種粘性的半固體物質)、瀝青質(暗褐色或黑色脆性固體物質)、碳質。石油是由碳氫化合物為主混合而成的,具有特殊氣味的、有色的可燃性油質液體。嚴格地說,石油以氫與碳構成的烴類為主要成分。

構成石油的化學物質用蒸餾能分解。原油作為加工的產品,有煤油、苯、汽油、石蠟、瀝青等。嚴格地說,石油以氫與碳構成的烴類為主要成分。分子量最小的4種烴,全都是煤氣。

石油對環境不僅環境影響這么簡單,如今應該用危害來形容。污染可分為三個方面:

1、油氣污染大氣環境,表現為油氣揮發物與其它有害氣體被太陽紫外線照射後,發生理化反應污染;或燃燒生成化學煙霧,產生致癌物和溫室效應,破壞臭氧層等。

2、污染土壤,這里我們不必多說明,大家都知道石油污染土壤的地方,寸草不生。

3、污染地下水,我們現在生活的水資源被污染,以至於地方性癌症村屢屢皆是,這石油污染地下水的惡果是日日嚴峻。

輸油管線腐蝕滲漏污染土壤和地下水源,不僅造成土壤鹽鹼化、毒化,導致土壤破壞和廢毀,而且其有毒物能通過農作物尤其是地下水進入食物鏈系統,最終直接危害人類。

石油進入土壤後,會破壞土壤結構,分散土粒,使土壤的透水性降低。其富含的反應基能與無機氮、磷結合並限制硝化作用和脫磷酸作用,從而使土壤有效磷、氮的含量減少。特別是其中的多環芳烴,因有致癌、致變、致畸等活性和能通過食物鏈在動植物體內逐級富集,它在土壤中的累積更具危害。

Ⅶ 石油是怎麼來的

石油是由史前的海洋動物和藻類屍體變化形成的(陸上的植物則一般形成煤。)經過漫長的地質年代這些有機物與淤泥混合,被埋在厚厚的沉積岩下。在地下的高溫和高壓下它們逐漸轉化,首先形成臘狀的油頁岩,後來退化成液態和氣態的碳氫化合物。

由於這些碳氫化合物比附近的岩石輕,它們向上滲透到附近的岩層中,直到滲透到上面緊密無法滲透的、本身則多空的岩層中。這樣聚集到一起的石油形成油田。

阿拉伯國家有如此豐富的石油資源的原因:阿拉伯在中東,中東地區是海洋生活著許多海洋生物,石油就是這些海洋生物和這些熱帶植物的屍體所組成的。

(7)千米石油怎麼開采擴展閱讀:

石油的成油機理有生物沉積變油和石化油兩種學說,前者較廣為接受,認為石油是古代海洋或湖泊中的生物經過漫長的演化形成,屬於生物沉積變油,不可再生;後者認為石油是由地殼內本身的碳生成,與生物無關,可再生。

石油主要被用來作為燃油和汽油,也是許多化學工業產品,如溶液、化肥、殺蟲劑和塑料等的原料。

從尋找石油到利用石油,大致要經過四個主要環節,即尋找、開采、輸送和加工,這四個環節一般又分別稱為「石油勘探」、「油田開發」、「油氣集輸」和「石油煉制」。「石油勘探」有許多方法,但地下是否有油,最終要靠鑽井來證實。一個國家在鑽井技術上的進步程度,往往反映了這個國家石油工業的發展狀況。

因此,有的國家競相宣布本國鑽了世界上第一口油井,以表示他們在石油工業發展上邁出了最早的一步。「油田開發」指的是用鑽井的辦法證實了油氣的分布范圍,並且油井可以投入生產而形成一定生產規模。

Ⅷ 石油是怎樣采出來的

石油開采方法:
1、很早很早以前,人們用最簡單的提撈方式開採石油,就像用吊桶在水井中提水一樣,用絞車把石油從油井中提取上來。
2、隨著石油工業的發展,越來越多產量高、油層埋藏很深的油田被發現,原來那套人工提撈的方法無法在這些油井上使用,所以逐漸被淘汰,自噴採油和各種人工舉升採油的方法應運而生。
3、隨著油田的不斷開發,地層能量逐漸消耗,油井最終會停止自噴。由於地層的地質特點 ,有的油井一開始就不能自噴。對於上述不能自噴的油井,必須用人工舉升的方法給油流補充能量,將井底的石油采出來。利用人工舉升將石油從井底舉升到地面的方法可分為氣舉法和抽油法兩大類。

溫馨提示:以上內容僅供參考。
應答時間:2022-01-07,最新業務變化請以平安銀行官網公布為准。

Ⅸ 石油的鑽井通常都有上千米深,大概的工作原理是怎樣的

通俗簡單的說吧:

能源是電力,

機械傳動,通過方鑽桿,轉動的力在地面傳給方鑽桿,方鑽桿下面是鑽桿,鑽桿下面是鑽頭,跟我們在地面上用電鑽鑽一個孔原理差不多

不同的是鑽桿之間用螺紋連接,鑽到一定深度,就得擰開中間再加一節鑽桿,這樣一節一節鑽下去,就可以達到幾千米深了。

每鑽一定深度,還得測量,有專門的測井公司,如發生偏差及時修正,

現在的鑽井水平,十分厲害,可以在直著鑽上千米深後再拐彎90度,鑽孔能拐彎這種情況,在其它行業,是完全不可能的,

Ⅹ 石油是從哪裡來

石油又稱原油,是從地下深處開採的棕黑色可燃粘稠液體。主要是各種烷烴、環烷烴、芳香烴的混合物。它是古代海洋或湖泊中的生物經過漫長的演化形成的混合物,與煤一樣屬於化石燃料。石油主要被用來作為燃油和汽油,燃料油和汽油組成目前世界上最重要的一次能源之一。石油也是許多化學工業產品如溶液、化肥、殺蟲劑和塑料等的原料。

石油生成
研究表明,石油的生成至少需要200萬年的時間,在現今已發現的油藏中,時間最老的可達到5億年之久。在地球不斷演化的漫長歷史過程中,有一些「特殊」時期,如古生代和中生代,大量的植物和動物死亡後,構成其身體的有機物質不斷分解,與泥沙或碳酸質 石油
[2]沉澱物等物質混合組成沉積層。由於沉積物不斷地堆積加厚,導致溫度和壓力上升,隨著這種過程的不斷進行,沉積層變為沉積岩,進而形成沉積盆地,這就為石油的生成提供了基本的地質環境。
生物成油理論
大多數地質學家認為石油像煤和天然氣一樣,是古代有機物通過漫長的壓縮和加熱後逐漸形成的。按照這個理論石油是由史前的海洋動物和藻類屍體變化形成的。(陸上的植物則一般形成煤。)經過漫長的地質年代這些有機物與淤泥混合,被埋在厚厚的沉積岩下。在地下的高溫和高壓下它們逐漸轉化,首先形成臘狀的油頁岩,後來退化成液態和氣態的碳氫化合物。由於這些碳氫化合物比附近的岩石輕,它們向上滲透到附近的岩層中,直到滲透到上面緊密無法滲透的、本身則多空的岩層中。這樣聚集到一起的石油形成油田。通過鑽井和泵取人們可以從油田中獲得石油。地質學家將石油形成的溫度范圍稱為「油窗」。溫度太低石油無法形成,溫度太高則會形成天然氣。雖然石油形成的深度在世界各地不同,但是「典型」的深度為四至六千米。由於石油形成後還會滲透到其它岩層中去,因此實際的油田可能要淺得多。因此形成油田需要三個條件:豐富的源岩,滲透通道和一個可以聚集石油的岩層構造。
非生物成油理論
非生物成油的理論天文學家托馬斯·戈爾德在俄羅斯石油地質學家尼古萊·庫德里亞夫切夫(Nikolai Kudryavtsev)的理論基礎上發展的。這個理論認為在地殼內已經有許多碳,有些這些碳自然地以碳氫化合物的形式存在。碳氫化合物比岩石空隙中的水輕,因此沿岩石縫隙向上滲透。石油中的生物標志物是由居住在岩石中的、喜熱的微生物導致的。與石油本身無關。在地質學家中這個理論只有少數人支持。一般它被用來解釋一些油田中無法解釋的石油流入,不過這種現象很少發生。