當前位置:首頁 » 石油礦藏 » 石油中的非烴以什麼形態存在
擴展閱讀
全民槍戰怎麼無限鑽石 2024-05-06 14:10:23

石油中的非烴以什麼形態存在

發布時間: 2024-04-24 07:37:00

❶ 石油的化合物組成

一、石油的元素組成

原油中的主要元素是C、H

原油中除C、H外,還有S、N、O及其他微量元素(1~5%)

原油中的微量金屬元素有V、Ni、Fe、Cu、As等

石油中的非碳氫原子稱為雜原子。

二、石油中烴類的類型及分布規律

石油中的烴類主要有烷烴、環烷烴和芳烴

原油中一般不含烯烴,炔烴更少

三、略去氣態烴

四、非烴成分

1、活性硫化物:S、H2S、低分子RSH等

2、非活性硫化物:硫醚(RSR』),環硫醚,二硫化物(RSSR』),噻吩及其同系物

3、含氮化合物,較復雜,多為環狀結構

4、含氧化合物:酸性氧化物:

環烷酸、脂肪酸、芳香酸、酚類(統稱石油酸)

中性氧化物:

醛、酮、酯等,含量極少

5、微量元素。略

❷ 煤、石油、天然氣在組成上的異同點是什麼

石油是以液態形式存在於地下岩石孔隙中的,也有存在於地下的裂縫或者溶洞中的但大部分是存在於岩石孔隙中的。

天然氣是石油的伴生氣體賦存狀態主要以游離態為主他們有共同的特性就是必須有良好的封閉層也就是圈閉不然氣體和石油就不會被儲存。氣比油水都輕所以一般在封閉層的最上端。也有單一的天然氣藏但是規模就很大基本都要滿足一定的地質條件才能聚集。
煤層就是古代死亡的植物所形成的必須在還原環境下也就是無氧環境下,煤層的存在是以固體形式存在的。
天然氣是指自然界中天然存在的一切氣體,包括大氣圈、水圈、和岩石圈中各種自然過程形成的氣體(包括油田氣、氣田氣、泥火山氣、煤層氣和生物生成氣等)。而人們長期以來通用的「天然氣」的定義,是從能量角度出發的狹義定義,是指天然蘊藏於地層中的烴類和非烴類氣體的混合物。在石油地質學中,通常指油田氣和氣田氣。其組成以烴類為主,並含有非烴氣體。

❸ 烴類物質

一、烴類物質的組成

烴類物質是指碳氫化合物以及伴生或共生有機物,其主要成分為碳、氫,次要成分為硫、氮、氧等。

烴類物質的礦產種類主要有天然氣、石油、煤、油頁岩等。

1.天然氣的組成

實際研究與應用中,天然氣是指沉積岩石中以烴類為主的氣藏中的天然氣和可為工業所利用的二氧化碳氣、硫化氫氣、氮氣等。

氣藏中的天然氣從成分上分為兩種:一種是以烴類物質為主的天然氣,主要是甲烷氣,一般情況下甲烷含量達80%以上;其次為重烴,約佔10%;微量氣體有氮氣、二氧化碳氣、硫化氫氣等;另一種是非烴氣為主的天然氣,主要有氮氣、二氧化碳氣、硫化氫氣等。

根據雅庫琴尼(1976),烴類天然氣藏佔世界氣藏總數的95%以上,而非烴類天然氣藏佔世界氣藏總數的5%以內。圖1-2顯示出世界上2000個氣藏約15000個分析數據構制的三角變化圖,它有力地說明了天然氣藏的主要成分分布狀況。

2.石油的組成

石油是以液態形式存在於地下岩石孔隙中,具有不同結構的碳氫化合物,是可燃的有機礦產。

石油的元素組成主要為碳、氫,其次為硫、氮、氧等。對於平均元素組成,不同學者的估算不同。亨特的統計結果是碳占質量的84.5%,氫佔13.0%,硫佔1.5%,氮佔0.5%,氧佔0.5%。據潘鍾祥(1986):中國、美國、蘇聯的石油元素含量列於圖1-3中,與亨特的統計結果相似。

石油的化合物,可分為烴類與非烴類,前者包括正構烷烴、異構烷烴、環烷烴、芳烴和環烷芳烴等,後者主要有氮、硫、氧的化合物、有機金屬化合物等。

圖1-2 世界氣藏成分圖

正構烷烴的碳數為C1~C60。根據主峰碳數的位置及形態,正構烷烴曲線(圖1-4)分為3種基本類型:①主峰小於C15,且主峰區較窄;②主峰大於C25,主峰區較寬;③主峰區在C15~C25之間,主峰區寬。

異構烷烴的碳數以小於C10為主,環烷烴也以小於C10低分子量環烷烴為主。芳烴和環烷芳烴的基本類型有苯、萘、菲,分子量一般較大。

圖1-3 石油的元素組成(據潘鍾祥,1986)

圖1-4不同類型石油的正構烷烴分布曲線(據MartinRLetal.,1986)

石油中的非烴類物質,一是含氮、硫、氧化合物,主要有硫酸、硫醚、噻吩和二硫化物等,低分子量者存在於石油的輕、中餾分中,分子量大者存在於膠質、瀝青質中;二是有機金屬化合物,主要是汞、鉛等的化合物。

3.煤的組成

煤是由地質時期植物遺體在地下經復雜的生物、物理、化學作用而變質形成的固體可燃的有機礦產。

煤的組成元素,主要為碳與氫,其次為氧、氮、硫、磷和其他元素。碳與氫佔有機可燃物質量的70%以上。揮發分根據煤的變質程度不同而異,一般在5%~55%之間(圖1-5)。

煤中的碳和氫,多以凝膠化組分(包括木煤、木質鏡煤、結構鏡煤、無結構鏡煤、凝膠化基質)、絲炭化組分(包括絲炭、木質鏡煤絲炭、鏡煤絲炭、絲炭化基質)、穩定組分(包括木柱層、角質層、孢子和花粉、樹脂體)等組成,以固態形式存在,在顯微鏡下可以觀察到。煤中的無機物,主要有與有機質同時沉積的陸源礦物、化學或(和)生物成因的礦物(如黃鐵礦、粘土、菱鐵礦等的結核),以及後生礦物(如裂隙中的黃鐵礦、方解石、高嶺土等),它們也以固態形式存在。

圖1-5 煤的主要組成成分(據陸春元,1987)

含碳頁岩也是烴類有機質的重要存在形式,與煤相似,碳以固態存在。

總體上,煤是固態的烴類物質,分子量很大;石油是液態的烴類物質,分子量中等;

天然氣主要是氣態的烴類物質,分子量很小。下面討論這3類烴類物質的形成過程以及相互關系。

二、烴類物質的形成

天然氣、石墨、煤的形成過程以及相互關系見圖1-6。烴類物質共同的主要物質來源是地表存在的生物有機質。生物有機質主要是動物、植物的遺體。由於地表及近地表的生物作用,特別是細菌活動的活躍,動物、植物的遺體一大部分經生物降解作用等過程形成生物成因的天然氣,很少的部分則經沉積掩埋,進入地下。

圖1-6 天然氣、石墨、煤形成過程示意圖

在地下一定深度,生物作用減弱。再進入到更大的深度,壓力增大,地溫增高,熱壓作用增強,沉積有機質經熱催化、熱裂解,有機質開始成熟。①高豐度的腐殖型有機質向煤方向轉化,依次形成泥炭、褐煤、長陽煤、氣煤、肥煤、焦煤、瘦煤、貧煤、無煙煤,同時形成大量的以甲烷為主的煤系天然氣。②腐泥型有機質和一部分腐殖型有機質,進入到生油門限溫度後,形成石油與石油氣。如果有機質進入到更高溫高壓的地層埋深,所形成的煤、石油、天然氣則向石墨方向轉化。石油與煤的形成過程,均伴隨著有機烴氣體的形成。其成因早期以微生物作用為主,晚期則以熱動力作用為主。

三、烴類物質的賦存狀態

氣態的天然氣、液態的石油、固態的煤,它們在地下的賦存形式,特別是能為工業應用的賦存形式,存在很大的差異。這種差異,往往決定了勘探方法的不同。

1.天然氣的賦存狀態

天然氣賦存狀態見表1-1。目前具廣泛工業意義的有氣頂氣、氣藏氣、凝析氣、煤層氣。

表1-1 天然氣的賦存狀態表

氣頂氣與石油共存,位於油氣藏的頂部,乙烷以上的重烴含量較高,成因上屬石油氣。氣藏氣是單一天然氣聚集的氣體,可以是石油氣、煤系天然氣,或其他成因類型的天然氣。凝析氣是一種特殊的氣藏氣,是在較高的溫度、壓力下由液態烴蒸發而形成,一旦溫度、壓力降低則逆凝結而形成輕質油。

煤層氣是吸附在煤層中的煤系天然氣。

2.石油的賦存狀態

石油主要呈液態存在於岩石孔隙中。根據是否發生運移分兩種形式:一種是自生自儲型,生油的地層即是儲油的地層;另一種是下生上儲或上生下儲型,指生油層不是儲油層,而是石油經運移儲集在有效孔隙度大的岩石或構造中。

3.煤的賦存狀態

煤是以天然的固體形式存在於煤系地層中。如不經特殊的構造運動的破壞,煤層是沒有明顯運移的。

四、烴類物質的運移

相對於母岩地層而言,煤以固相「原地」存在。石油呈液態可能「原地」存在,也可能經運移而「異地」存在。天然氣中煤層氣可能以「原地」存在為主,其他天然氣則主要以「異地」存在。因此,烴類中,石油與天然氣存在著運移的情況。

石油的運移分初次運移和二次運移,以及再次運移。

初次運移指石油從細粒的生油岩中向外排出的過程。初次運移的發生,可能是在壓實作用、熱力作用、粘土脫水作用等控制下,生油岩(主要是泥岩)受到較大的應力作用,發生強烈的變形,導致體積減小,這時必然驅動塑性物質(包括氣體、液體及硬度小的粘土礦物等)的流動。在初次運移中,石油可能呈油相、乳油液、膠體溶液、氣體溶液等相態運移,但多數學者認為初次運移以油相為主。初次運移是與石油生成有密切關系的過程,運移距離較短,一般限於生油岩系中。

二次運移是初次運移的接續,是石油脫離成油母岩向儲集岩內部傳導的過程,主要的傳導層是顆粒較粗的砂岩層、張性或張扭性的非緊閉的斷層、不整合面等。二次運移的驅動力主要是浮力、水動力,運移多呈游離相進行。運移的距離不等,最遠達到數十千米,甚至上百千米。多數情況下,二次運移的結果使石油聚集成油藏。

再次運移是在二次運移的基礎上發生的,與二次運移的性質相似。

一些地區,石油可能只經初次運移,而另一些地區由於構造活動的多期性導致石油發生二次運移,甚至再次運移。

按運移方向,石油的運移可分為水平運移和垂直運移,或分為順層運移或穿層運移等。運移方向取決於驅動力條件,不同地區可能不一樣,但共同遵循的原則是沿阻力最小的方向運移。

與石油的運移情況比較,煤可以認為是不存在運移的,而天然氣的運移強度則更強烈,運移得更遠。

❹ 石油的概念及化學組成

(一)石油的概念

石油是存在於地下岩石孔隙中的以液態烴為主體的可燃有機礦產。地下油氣藏中的石油是氣態、液態及固態烴類及其衍生物的混合物,在成分上以烴類為主,含有數量不等的非烴化合物及多種微量元素。在相態上以液態為主,溶有大量烴氣及少量非烴氣,以及數量不等的固態烴類及非烴類物質。油氣藏中組成石油的各種成分和相態的比例因地而異,因此,石油沒有確定的化學成分和物理常數。

(二)石油的元素組成

石油沒有確定的化學成分,因而也就沒有確定的元素組成。但組成石油的化學元素主要是碳(C)和氫(H),其次是硫(S)、氮(N)、氧(O)。不同產地的石油元素組成含量存在差異(表1-1)。

石油中碳含量一般為80%~88%,氫含量為10%~14%,兩種元素占絕對優勢,一般含量在95%~99%之間。硫、氮、氧總量在0.3%~7%之間變化,一般含量低於2%~3%,個別石油含硫量可高達10%。

由於硫具有腐蝕性,因此含硫量的高低關繫到石油的品質。原油中含硫量變化很大,從萬分之幾(克拉瑪依,0.05%)到百分之幾(委內瑞拉,5.48%)。根據含硫量可把原油分為高硫原油(含硫量大於1%)和低硫原油(含硫量小於1%)。原油中的硫主要來自有機物的蛋白質和圍岩的含硫酸鹽礦物如石膏等,故產於海相環境的石油較形成於陸相環境的石油含硫量高。

原油的含氮量在0.1%~1.7%之間,平均值0.094%。90%以上的原油含氮量小於0.2%。原油的含氧量在0.1%~4.5%之間,主要與其氧化變質程度有關。

表 1 -1 石油的元素組成 ( 質量分數/%)

( 據石毓程,1980,有改動)

除上述 5 種主要元素之外,還從原油灰分 ( 石油燃燒後的殘渣) 中發現有鐵 ( Fe) 、鈣 ( Ca) 、鎂 ( Mg) 、硅 ( Si) 、鋁 ( Al) 、釩 ( V) 、鎳 ( Ni) 、銅 ( Cu) 、銻 ( Sb) 、錳( Mn) 、鍶 ( Sr) 、鋇 ( Ba) 、硼 ( B) 、鈷 ( Co) 、鋅 ( Zn) 、鉬 ( Mo) 、鉛 ( Pb) 、錫( Sn) 、鈉 ( Na) 、鉀 ( K) 、磷 ( P) 、鋰 ( Li) 、氯 ( Cl) 、鉍 ( Bi) 、鈹 ( Be) 、鍺( Ge) 、銀 ( Ag) 、砷 ( As) 、鎵 ( Ga) 、金 ( Au) 、鈦 ( Ti) 、鉻 ( Cr) 、鎘 ( Cd) 等 30多種元素。這些元素雖然種類繁多,但總量僅占石油質量的萬分之幾,在石油中屬微量元素,或稱之為灰分元素。

在石油微量元素中,以釩 ( V) 、鎳 ( Ni) 兩種元素含量高,分布普遍,且鑒於其與石油成因有關,最為石油地質學家所重視。V/Ni 比值可作為區分是來自海相環境還是陸相環境沉積物的標志之一。一般 V/Ni > 1 被認為是海相環境,V/Ni < 1 為陸相環境。

( 三) 石油的化合物組成

組成石油的主要元素是碳 ( C) 、氫 ( H) 、硫 ( S) 、氮 ( N) 、氧 ( O) ,但由這 5 種元素構成的化合物卻是龐大的。籠統地說,組成石油的化合物多是有機化合物; 作為雜質混入的無機化合物不多,含量甚微,可以忽略不計。石油的化合物組成,歸納起來可以分為烴和非烴兩大類,其中烴類是主要的,這與元素組成以碳 ( C) 、氫 ( H) 占絕對優勢相一致。

現今從全世界經過分析的不同原油中分離出來的有機化合物有近 500 種,還不包括有機金屬化合物。其中約 200 種為非烴,其餘為烴類。原油的大半是由 150 種烴類組成的。

1. 烴類化合物

在化學上,烴類可以分為兩大類: 飽和烴———烷烴、環烷烴,不飽和烴———烯烴、芳香烴和環烷-芳香烴。

(1)飽和烴

在石油中飽和烴在數量上佔大多數,一般占石油所有組分的50%~60%。可細分為烷烴和環烷烴。

在常溫常壓下,烷烴C1—C4為氣態,C5—C15為液態,C16以上為固態(天然石蠟)。

圖1-1 異戊二烯型烷烴同系物立體化學結構圖

石油中帶支鏈(側鏈)的異構烷烴以≤C10為主,常見於C6—C8中;C11—C25較少,且以異戊二烯型烷烴最重要。石油中的異戊二烯型烷烴(圖1-1),一般被認為是由葉綠素的側鏈———植醇演化而來的,因而是石油為生物成因的標志化合物。現已從石油中分離出多種異戊二烯型化合物,其總量達石油的0.5%。其中研究和應用較多的是2,6,10,14-四甲基十五烷(姥鮫烷)和2,6,10,14-四甲基十六烷(植烷)。研究表明,同一來源的石油,各種異戊二烯型化合物極為相似。因而常用作油源對比的標志。

環烷烴在石油中所佔的比例為20%~40%,平均30%左右。低分子量(<C10)的環烷烴,尤以環戊烷(C5—五員環)和環己烷(C6—六員環)及其衍生物為石油的重要組成部分,且一般環己烷多於環戊烷。中等到高分子量(C10—35)的環烷烴可以是單環到六環。石油中環烷烴以單環和雙環為主,占石油中環烷烴的50%~55%,三環約佔20%,四環以上佔25%左右。在石油中多環環烷烴的含量隨成熟度增加而減少,故高成熟原油中1-2環的環烷烴顯著增多。

在常溫常壓下,環丙烷(C3H6)和甲基環丙烷(C4H8)為氣態;除此之外,所有其他單環環烷烴均為液態,兩環以上(>C11)的環烷烴為固態。

(2)不飽和烴

石油中的不飽和烴主要是芳香烴和環烷-芳香烴,平均占原油質量的20%~45%。此外原油中偶見有直鏈烯烴。烯烴及不飽和環烴,因其極不穩定,故很少見。

石油中已鑒定出的芳香烴,根據其結構不同可以分為單環、多環和稠環三類,而每個類型的主要分子常常不是母體,而是烷基衍生物。

單環芳烴包括苯、甲苯、二甲苯等;多環芳烴有聯苯、三苯甲烷等;稠環芳烴包括萘(二環稠合)、蒽和菲(三環稠合),以及苯並蒽和崫(四環稠合)。

芳香烴在石油中以苯、萘、菲三種化合物含量最多,其主要分子也常常是以烷基的衍生物出現。如前者通常出現的主要是甲苯,而不是苯。

環烷-芳香烴包含一個或幾個縮合芳環,並與飽和環及鏈烷基稠合在一起。石油中最豐富的環烷-芳香烴是兩環(一個芳環和一個飽和環)構成的茚滿和萘滿以及它們的甲基衍生物。而最重要的是四環和五環的環烷-芳香烴,其含量和分布特徵常用於石油的成因研究和油源對比。因為它們大多與甾族和萜族化合物有關(芳構化),而甾族和萜族化合物是典型的生物成因標志化合物。

2.非烴化合物

石油中的非烴化合物是指除碳、氫兩種主要元素外,還含有硫或氮或氧,抑或金屬原子(主要是釩和鎳)的一大類化合物。石油中這些元素含量不多,但含這些元素的化合物卻不少,有時可達石油質量的30%。其中又主要是含硫、氮、氧的化合物。

(1)含硫化合物

硫是石油中碳和氫之後的第三個重要元素,含硫的化合物也最為多見。目前石油中已鑒定出的含硫化合物將近100種,多呈硫醇、硫醚、硫化物(H2S)和噻吩(以含硫的雜環化合物的形式存在,在重質石油中含量較為豐富)。

(2)含氮化合物

石油中含氮化合物較為少見,平均含量小於0.1%。目前從石油中分離出來的含氮化合物有30多種,主要是以含氮雜環化合物的形式存在。可將其分為兩組,一組為鹼性化合物,有吡啶、喹啉、異喹啉、吖啶及卟啉、吲哚、咔唑及其同系物。其中以含釩和鎳的金屬卟啉化合物最為重要。

原油中的卟啉化合物首先是由特雷勃斯發現的(C.Treibs,1934)。包括初卟啉和脫氧玫紅初卟啉,並提出石油中的卟啉是由植物葉綠素和動物氯化血紅素轉化來的。這個發現為石油有機成因說提供了有力的證據,引起了廣泛的注意和重視。目前對卟啉的研究已逐步深入並發現了多種類型。卟啉是以4個吡咯核為基本結構,由甲川橋聯結的含氮化合物。在石油中卟啉常與釩、鎳等金屬元素形成絡合物,因而又稱為有機金屬化(絡)合物,其基本結構與葉綠素結構極為相似(圖1-2)。

圖1-2 葉綠素(A)與原油中的卟啉(B)、植烷(Ph)、姥鮫烷(Pr)結構比較圖(據G.D.Hobsohetal.,1981)

但是,並不是所有原油中都含有卟啉,有相當一部分原油中不含或僅含痕量。一般中、新生代地層中形成的原油含卟啉較多,而古生代地層中的原油中的卟啉含量甚低或不含。這可能與卟啉的穩定性差有關。在高溫(>250℃)或氧化條件下,卟啉將發生開環裂解而破壞。

此外,原油中的卟啉類型還與沉積環境有密切關系,海相石油富含釩卟啉,而陸相石油富含鎳卟啉。

(3)含氧化合物

石油中含氧化合物已鑒定出50多種。包括有機酸、酚和酮類化合物。其中主要是與酸官能團-COOH有關的有機酸,有C1—24的脂肪酸,C5—10的環烷酸,C10—15的類異戊二烯酸。石油中的有機酸和酚(酸性)統稱為石油酸,其中以環烷酸最多,占石油酸的95%,主要是五員酸和六員酸。幾乎所有石油中都含有環烷酸,但含量變化較大,在0.03%~1.9%之間。環烷酸易與鹼金屬化合作用生成環烷酸鹽,環烷酸鹽又特別易溶於水。因此,地下水中環烷酸鹽的存在是找油的標志之一。

(四)石油的餾分組成

石油是數以百計的若干種烴類和非烴有機化合物的混合物,每種化合物都有自己的沸點和凝點。石油的餾分就是利用組成石油的化合物各自具有不同沸點的特性,通過對原油加熱蒸餾,將石油分餾成不同沸點范圍的若幹部分,每一部分就是一個餾分。分餾所用的溫度區間(餾程)不同,餾出物(餾分)有所差異(表1-2)。

表1-2 石油產品的大致餾程范圍

通常石油的煉制過程可以看做是對石油的分餾,餾程的控制是根據原油的品質及對油品質量的具體要求來確定的。現代煉油工業為了提高石油中輕餾分的產量和提高產品質量,除了採用直餾法外,還採用催化熱裂化、加氫裂化、熱裂解、石油的鉑重整等一系列技術措施。例如在常壓下分餾出的汽油只佔原油的15%~20%,在採用催化熱裂化後,可使汽油的產量提高到50%~80%,以滿足各方面以汽油作能源燃料的需求。

(五)石油的組分分析

石油的組分分析是利用有機溶劑和吸附劑對組成石油的化合物具有選擇性溶解和吸附的性能,選用不同有機溶劑和吸附劑,將原油分成若幹部分,每一部分就是一個組分。

一般在做組分分析之前,先對原油進行分餾,去掉低於210℃的輕餾分,切取>210℃的餾分進行組分分析。凡能溶於氯仿和四氯化碳的組分稱為油質,它們是石油中極性最弱的部分,其成分主要是飽和烴和一部分低分子芳烴。溶於苯的組分稱為苯膠質,其成分主要是芳烴和一些具有芳環結構的含雜元素的化合物(主要為含硫、氮、氧的多環芳烴)。用酒精和苯的混合液(或其他極性更強的如甲醇、丙酮等)作溶劑,可以得到酒精-苯膠質(或其他相應組分),此類膠質的成分主要是含雜元素的非烴化合物。用石油醚分離,溶於石油醚的部分是油質和膠質。其中能被硅膠吸附的部分是膠質,不被硅膠吸附的部分是油質,剩下不溶於石油醚的組分(但可溶於苯、二硫化碳和三氯甲烷等中性有機溶劑,呈膠體溶液,可被硅膠吸附)為瀝青質。後者是渣油的主要組分,其主要成分是結構復雜的大分子非烴化合物。

❺ 如何區分石油的四種族分

可以幫你解答下石油族組分的概念。
概念 利用不同有機溶劑對原油的不同族性成分和結構的化合物類型進行選擇性分離所得到若干物理化學性質相近的混合物。一般分離為飽和烴、芳香烴、膠質和瀝青質四種族組分!
組成 原油族組分包括:①飽和烴,包括正構、異構烷烴和環烷烴;②芳香烴,包括純芳香烴、環烷烴芳香烴;③膠質(在我國實驗室給出的分析報告中,多稱為非烴)僅指原油瀝青中一種相對分子質量較高的含硫、氮、氧等雜原子的復雜有機化合物的暗色膠狀混合物;④瀝青質,由石油中含氮、硫、氧原子的高相對分子質量多環化合物構成。所有石油都是由這4個族組分構成的,但他們的含量並非是獨立的。因為按百分含量計算,飽和烴、芳香烴、非烴和瀝青質之和等於100%,如果其中有一族缺失了,則其他三族的綜合就是100%。法國石油研究院對全世界517個正常石油樣品的分析表明烴類佔85.8%,其中飽和烴佔57.2%,芳香烴佔28.6%,而非烴+瀝青質只佔14.2%。
分類 石油又可分為烴類和非烴類:①烴類:石油最主要的部分是烴類。烴類可佔大於210°C的石油餾分的75%以上,有些輕質石油幾乎全由烴類組成。而在某些重油中,尤其是受到細菌生物降解、氧化的石油中烴類組分大大降低。目前是有種已經鑒定出1000多種單體烴類。按其結構不同可分為烷烴、環烷烴、芳香烴以及由這3種組合而成的烴類。②非烴類:主要是指含硫、氮、氧3種元素的有機化合物。膠質、瀝青質是高相對分子質量的含雜原子的所聚合物。石油的非烴在數量上並不佔主要地位,但它的組成性質和分布特點對石油的性質有很大影響。——盧雙舫 張敏 主編.《油氣地球化學》,石油工業出版社,北京,2007。
分離 原油族組分的分離方法主要有:①柱層析法,原油中的瀝青質用正己烷沉澱,其濾液部分通過硅膠氧化鋁層析柱,採用不同極性的溶劑,依次將其中的飽和烴、芳香烴和膠質組分分別淋洗出,揮發溶劑,稱量恆重,求得試樣中各族組分的含量;②棒薄層火焰離子化檢測法,將原油用氯仿溶解,點在燒結的硅膠層析棒上,選擇不同極性的溶劑,依次將試樣中的飽和烴、芳香烴、膠質和瀝青質分離,經火焰離子化檢測器檢測,以峰面積歸一化法計算每個族組分的質量分數。——SY/T 5119-2008標准

❻ 石油中的有機物

非烴化合物
石油中的非烴化合物是指除C、H兩種主要元素外,還含有硫或氮或氧,亦或金屬原子(主要是釩和鎳)的一大類化合物。石油中這些元素的含量不多,但含這些元素的化合物卻不少,有時可達石罩渣油重量的30%。其中又主要是含硫、氮、氧的化合物。

含硫化合物
硫是碳和氫之後的第三個重要元素,含硫的化合物也最為多見。目前石油中已鑒定出的含硫化合物將近100種,多呈硫醇、硫醚、硫化物(H2S)和噻吩(含硫的雜環化合物的形式存在,在重質石油中含量較為豐富。

含氮化合物
石油中含氮化合物較為少見,平均含量小於0.1%。目前從石油中分離出來的含氮化合物有30多種,主要是以含氮雜環化合物形式存在。可將其分為兩組,一組為鹼性化合物,有吡啶、喹啉、異喹啉、吖啶及卟啉、吲哚、咔唑及其同系物。其中以含釩和鎳的金屬卟啉化合物最為重要。
原油中的卟啉化合物首先是由特雷勃斯(C.Treibs,1934)發現的。包括初卟啉和脫氧玫紅初卟啉,並提出石油中的卟啉是由植物的葉綠素和動物氯化血紅素轉化來的。這個發現為石油有機成因說提供了有力的證據,引起了廣泛的注意和重視。目前對卟啉的研究已逐步深入並發現了多種類型。卟啉是以四個吡咯核為基本結構,由甲川橋聯結的含氮化合物,又稱器族化合物。在石油中卟啉常與釩、鎳等金屬元素形成絡合物,因而又稱為有機金屬化(絡)合物,其基本結構與葉綠素結構極為相似。
但是,並不是所有原油中都含有卟啉,有相當一部分原油中不含或僅含痕量。一般中、新生代地層中形成的原油含卟啉較多,而古生代地層中含量甚低或不含。這可能與卟啉的穩定性差有關。在高慎悶敬溫(>250℃)或氧化條件下,卟啉將發生開環裂解而破壞。
此外,原油中的卟啉類型還與沉積環境有密切關系,海相石油富含釩卟啉,而陸相石油富含鎳卟啉。

含氧化合物
石油中含氧化合物已鑒定出50多種。包括有機酸、酚和酮類化合物。其中主要是與酸官能團-COOH有關的有機酸,有C1-24的脂肪酸,C5-10的環烷酸,C10-15的類異戊二烯酸。石油中的有機酸和酚(酸性)統稱石寬慎油酸,其中以環烷酸最多,占石油酸的95%,主要是五員酸和六員酸。幾乎所有石油中都含有環烷酸,但含量變化較大,在0.03-1.9%之間。環烷酸易與鹼金屬作用生成環烷酸鹽,環烷酸鹽又特別易溶於水。因此地下水中環烷酸鹽的存在是找油的標志之一。

❼ 石油的化學組成

石油的化學組成可以從組成石油的元素、化合物、餾分和組分加以認識,必須明確這是從不同側面去認識同一問題。

(一)石油的元素組成

由於石油沒有確定的化學成分,因而也就沒有確定的元素組成。但其元素組成還是有一定的變化范圍。

石油的元素組成主要是碳(C)和氫(H),其次是硫(S)、氮(N)、氧(O)。世界上大多數石油的元素組成一般為:碳含量介於80%~88%之間,氫含量佔10%~14%,硫、氮、氧總量在0.3%~7%之間變化,一般低於2%~3%,個別石油含硫量可高達10%。世界各地原油的元素組成盡管千差萬別,但均以碳、氫兩種元素占絕對優勢,一般在95%~99%之間。碳、氫元素重量比介於5.7~7.7之間,平均值約為6.5。原子比的平均值約為0.57(或1∶1.8)。

石油中硫含量,據蒂索(B.P.Tissot,1978)等對9347個樣品的統計,平均為0.65%(重量),其頻率分布具雙峰型(圖2-2),多數樣品(約7500個)的含硫量小於1%,少數樣品(1800個)的含硫量大於1%,1%處為兩峰的交叉點。根據含硫量可把原油概略地分為高硫原油(含硫量大於1%)和低硫原油(含硫量小於1%)。原油中的硫主要來自有機物的蛋白質和圍岩的含硫酸鹽礦物如石膏等,故產於海相環境的石油較形成於陸相環境的石油含硫量高。由於硫具有腐蝕性,因此含硫量的高低關繫到石油的品質。含硫量變化范圍很大,從萬分之幾到百分之幾。

圖2-2 不同時代和成因的9347個石油樣品中含硫分布(據Tissot&Welte,1978)

石油中含氮量在0.1%~1.7%之間,平均值0.094%。90%以上的原油含氮量小於0.2%,最高可達1.7%(美國文圖拉盆地的石油),通常以0.25%作為貧氮和富氮石油的界限。

石油的含氧量在0.1%~4.5%之間,主要與其氧化變質程度有關。

石油的元素組成,不同研究者的估算值不甚一致。通常碳、氫兩元素主要賦存在烴類化合物中,是石油的主體,而硫、氮、氧元素組成的化合物大多富集在渣油或膠質和瀝青質中。

除上述5種主要元素之外,還從原油灰分(石油燃燒後的殘渣)中發現有50多種元素。這些元素雖然種類繁多,但總量僅占石油重量的十萬分之幾到萬分之幾,在石油中屬微量元素。石油中的微量元素,以釩、鎳兩種元素含量高、分布普遍,且由於其與石油成因有關聯,故最為石油地質學家重視。V/Ni比值可作為區分是來自海相環境還是陸相環境沉積物的標志之一。一般認為V/Ni>1是來自海相環境,V/Ni<1是來自陸相環境。

(二)石油的化合物組成

概要地說,組成石油的化合物多是有機化合物,作為雜質混入的無機化合物不多,含量甚微,可以忽略不計。組成石油的5種主要元素構成的化合物是一個龐大的家族———有機化合物。現今從全世界經過分析的不同原油中分離出來的有機化合物有近500種,還不包括有機金屬化合物。其中約200種為非烴,其餘為烴類。原油的大半部分是由150種烴類組成。石油的化合物組成,歸納起來可以分為烴類和非烴類化合物兩大類,其中烴類化合物是主要的,這與元素組成以C、H占絕對優勢相一致。

1.烴類化合物

在化學上,烴類可以分為兩大類:飽和烴和不飽和烴。

(1)飽和烴

在石油中飽和烴在數量上佔大多數,一般占石油所有組分的50%~60%。可細分為正構烷烴、異構烷烴和環烷烴。

正構烷烴平均占石油體積的15%~20%,輕質原油可達30%以上,而重質原油可小於15%。石油中已鑒定出的正烷烴為C1—C45,個別報道曾提及見有C60的正烷烴,但石油大部分正烷烴碳數≤C35。在常溫常壓下,正烷烴C1—C4為氣態,C5—C15為液態,C16以上為固態(天然石蠟)。

不同類型原油的正構烷烴分布情況如圖2-3所示。由圖可見,盡管正構烷烴的分布曲線形態各異,但均呈一條連續的曲線,且奇碳數與偶碳數烴的含量總數近於相等。根據主峰碳數的位置和形態,可將正烷烴分布曲線分為三種基本類型:①主峰碳小於C15,且主峰區較窄;②主峰碳大於C25,主峰區較寬;③主峰區在C15—C25之間,主峰區寬。上述正烷烴的分布特點與成油原始有機質、成油環境和成熟度有密切關系,因而常用於石油的成因研究和油源對比。

石油中帶支鏈(側鏈)的異構烷烴以≤C10為主,常見於C6—C8中;C11—C25較少,且以異戊間二烯型烷烴最重要。石油中的異戊間二烯型烷烴(圖2-4),一般被認為是從葉綠素的側鏈———植醇演化而來,因而它是石油為生物成因的標志化合物。這種異構烷烴的特點是每四個碳原子帶有一個甲基支鏈。現已從石油中分離出多種異戊間二烯型烷烴化合物,其總量達石油的0.5%。其中研究和應用較多的是2,6,10,14-四甲基十五烷(姥鮫烷)和2,6,10,14-四甲基十六烷(植烷)。研究表明,同一來源的石油,各種異戊二烯型化合物極為相似,因而常用之作為油源對比的標志。

圖2-3 不同類型石油的正構烷烴分布曲線圖(據Martin,1963)

圖2-4 類異戊間二烯型烷烴同系物立體化學結構圖

環烷烴在石油中所佔的比例為20%~40%,平均30%左右。低分子量(≤C10)的環烷烴,尤以環戊烷(C5-五員環)和環己烷(C6-六員環)及其衍生物是石油的重要組成部分,且一般環己烷多於環戊烷。中等到大分子量(C10—C35)的環烷烴可以是單環到六環。石油中環烷烴以單環和雙環為主,占石油中環烷烴的50%~55%,三環約佔20%,四環以上佔25%左右。在石油中多環環烷烴的含量隨成熟度增加而減少,故高成熟原油中1~2環的環烷烴顯著增多。

在常溫常壓下,環丙烷(C3H6)和甲基環丙烷(C4H8)為氣態,除此之外所有其他單環環烷烴均為液態,兩環以上(>C11)的環烷烴為固態。

(2)不飽和烴

石油中的不飽和烴主要是芳香烴和環烷芳香烴,平均占原油重量的20%~45%。此外原油中偶可見有直鏈烯烴。烯烴及不飽和環烴,因其極不穩定,故很少見。

石油中已鑒定出的芳香烴,根據其結構不同可以分為單環、多環和稠環三類,而每個類型的主要分子常常不是母體,而是烷基衍生物。

單環芳烴包括苯、甲苯、二甲苯等。

多環芳烴有聯苯、三苯甲烷等。

稠環芳烴包括萘(二環稠合),蒽和菲(三環稠合)以及苯並蒽和屈(四環稠合)。

芳香烴在石油中以苯、萘、菲三種化合物含量最多,其主要分子也常常以烷基的衍生物出現。如前者通常出現的主要是甲苯,而不是苯。

環烷芳香烴包含一個或幾個縮合芳環,並與飽和環及鏈烷基稠合在一起。石油中最豐富的環烷芳香烴是兩環(一個芳環和一個飽和環)構成的茚滿和萘滿以及它們的甲基衍生物。而最重要的是四環和五環的環烷芳烴,其含量及分布特徵常用於石油的成因研究和油源對比。因為它們大多與甾族和萜族化合物有關(芳構化),而甾族和萜族化合物是典型的生物成因標志化合物。

2.非烴化合物

石油中的非烴化合物是指除C、H兩種主要元素外,還含有硫或氮或氧,抑或金屬原子(主要是釩和鎳)的一大類化合物。石油中這些元素的含量不多,但含這些元素的化合物卻不少,有時可達石油重量的30%。其中又主要是含硫、氮、氧的化合物。

(1)含硫化合物

硫是碳和氫之後的第三個重要元素,含硫的化合物也最為多見。目前石油中已鑒定出的含硫化合物將近100種,多呈硫醇、硫醚、硫化物和噻吩(以含硫的雜環化合物形式存在),在重質石油中含量較為豐富。

石油中所含的硫是一種有害的雜質,因為它容易產生硫化氫(H2S)、硫化鐵(FeS)、亞硫酸(H2SO3)或硫酸(H2SO4)等化合物,對機器、管道、油罐、煉塔等金屬設備造成嚴重腐蝕,所以含硫量常作為評價石油質量的一項重要指標。

通常將含硫量大於2%的石油稱為高硫石油;低於0.5%的稱為低硫石油;介於0.5%~2%之間的稱為含硫石油。一般含硫量較高的石油多產自碳酸鹽岩系和膏鹽岩系含油層,而產自砂岩的石油則含硫較少。我國原油多屬低硫石油(如大慶、任丘、大港、克拉瑪依油田)和含硫石油(如勝利油田)。原蘇聯伊申巴石油含硫量高達2.25%~7%,其他如墨西哥、委內瑞拉和中東的石油含硫量也較高。

(2)含氮化合物

石油中含氮化合物較為少見,平均含量小於0.1%。目前從石油中分離出來的含氮化合物有30多種,主要是以含氮雜環化合物形式存在。可將其分為兩組,一組為鹼性化合物,有吡啶、喹啉、異喹啉、吖啶及其同系物;另一組為非鹼性化合物,有卟啉、吲哚、咔唑及其同系物,其中以含釩和鎳的金屬卟啉化合物最為重要。

原油中的卟啉化合物首先是由特雷勃斯(C.Treibs,1934)發現的。包括初卟啉和脫氧玫紅初卟啉,並提出石油中的卟啉是由植物的葉綠素和動物的氯化血紅素轉化而來。這個發現為石油有機成因說提供了有力的證據,引起了廣泛的注意和重視。目前對卟啉的研究已逐步深入並發現了多種類型。卟啉是以四個吡咯核為基本結構,由4個次甲基(—CH)橋鍵聯結的含氮化合物,又稱族化合物。在石油中卟啉常與釩、鎳等金屬元素形成絡合物,因而又稱為有機金屬化(絡)合物,其基本結構與葉綠素結構極為相似(圖2-5)。

圖2-5 葉綠素(A)與原油中的卟啉(B)、植烷(Ph)、姥鮫烷(Pr)結構比較圖(據G.D.Hobson等,1981)

但是,並不是所有原油中都含有卟啉,有相當一部分原油中不含或僅含痕量。一般中新生代地層中形成的原油含卟啉較多,而古生代地層中石油含卟啉甚低或不含。這可能與卟啉的穩定性差有關。在高溫(>250℃)或氧化條件下,卟啉將發生開環裂解而遭破壞。

此外,原油中的卟啉類型還與沉積環境有密切關系,海相石油富含釩卟啉,而陸相石油富含鎳卟啉。

(3)含氧化合物

石油中含氧化合物已鑒定出50多種,包括有機酸、酚和酮類化合物。其中主要是與酸官能團(—COOH)有關的有機酸,有C2~24的脂肪酸,C5~10的環烷酸,C10~15的類異戊二烯酸。石油中的有機酸和酚(酸性)統稱石油酸,其中以環烷酸最多,占石油酸的95%,主要是五員酸和六員酸。幾乎所有石油中都含有環烷酸,但含量變化較大,在0.03%~1.9%之間。環烷酸易與鹼金屬作用生成環烷酸鹽,環烷酸鹽又特別易溶於水。因此地下水中環烷酸鹽的存在是找油的標志之一。

(三)石油的餾分組成

石油是若干種烴類和非烴有機化合物的混合物,每種化合物都有自己的沸點和凝點。石油的餾分就是利用組成石油的化合物各自具有不同沸點的特性,通過對原油加熱蒸餾,將石油分割成不同沸點范圍的若幹部分,每一部分就是一個餾分。分割所用的溫度區間(餾程)不同,餾分就有所差異(表2-1)。

表2-1 石油的餾分組成

據亨特對美國一種相對密度為35°API(0.85g/cm3)的環烷型原油所做的分析結果,以脫氣後各餾分總和計算,各餾分的體積百分比為:汽油27%,煤油13%,柴油12%,重質瓦斯油10%,潤滑油20%,渣油18%。其與化合物組成的關系如圖2-6所示。

通常石油的煉制過程可以看作就是對石油的分餾,餾程的控制是根據原油的品質及對油品質量的具體要求來確定的。現代煉油工業為了提高石油中輕餾分的產量和提高產品質量,除了採用直餾法外,還採用催化熱裂化、加氫裂化、熱裂解、石油的鉑重整等一系列技術措施。例如在常壓下分餾出的汽油只佔原油的15%~20%,在採用催化熱裂化後,可使汽油的產量提高到50%~80%,以滿足各方面以汽油作能源燃料的需求。

圖2-6 相對密度為35°API的環烷型石油的餾分與化合物組成的關系圖(據J.M.Hunt,1979)

(四)石油的組分組成

石油組分分析是過去在石油研究中曾廣泛使用的一種方法。它是利用有機溶劑和吸附劑對組成石油的化合物具有選擇性溶解和吸附的性能,選用不同有機溶劑和吸附劑,將原油分成若幹部分,每一部分就是一個組分。

一般在作組分分析之前,先對原油進行分餾,去掉低於210℃的輕餾分,切取>210℃的餾分進行組分分析(圖2-7)。凡能溶於氯仿和四氯化碳的組分稱為油質,它們是石油中極性最弱的部分,其成分主要是飽和烴和一部分低分子芳烴。溶於苯的組分稱為苯膠質,其成分主要是芳烴和一些具有芳環結構的含雜元素的化合物(主要為含S、N、O的多環芳烴)。用酒精和苯的混合液(或其他極性更強的如甲醇、丙酮等)作溶劑,可以得到酒精-苯膠質(或其他相應組分),此類膠質的成分主要是含雜元素的非烴化合物。用石油醚分離,溶於石油醚的部分是油質和膠質。其中能被硅膠吸附的部分是膠質;不被硅膠吸附的部分是油質;剩下不溶於石油醚的組分(但可溶於苯、二硫化碳和三氯甲烷等中性有機溶劑,呈膠體溶液,可被硅膠吸附)為瀝青質;後者是渣油的主要組分,其主要成分是結構復雜的大分子非烴化合物。

顯然,石油的組分組成是一個比較模糊的概念,特別是膠質和瀝青質,在石油地質學中使用頻率較高,使用上也不是很嚴謹。膠質和瀝青質是一些分子量較大的復雜化合物的混合體。膠質的視分子量約在300~1200;瀝青的視分子量多大於10000,可能達到甚至於超過50000,其直徑平均為40~50nm。膠質和瀝青質占原油的0~40%,平均為20%。膠質和瀝青質可能主要是由多環芳核或環烷-芳核和雜原子鏈如含S、N、O等的化合物組成,其平均元素組成如表2-2所示,大量分布於未成熟以及經過生物降解和變質的原油中,尤其在天然瀝青礦物或瀝青砂岩中更為多見。

石油的組分在石油的成因演化研究和原油品質評價中經常涉及。

圖2-7 原油組分分析流程圖

表2-2 膠質和瀝青質的平均元素組成