Ⅰ 我國的人工合成金剛石
沈才卿
作者簡介:沈才卿,中寶協人工寶石專業委員會第一屆副主任委員,第二、三屆常務副主任委員兼秘書長,核工業北京地質研究院成礦模擬實驗室高級工程師。
一、金剛石的性質
金剛石的化學成分是碳(C),可含有硼和氮等雜質。
結晶狀態:晶質體。
晶系:等軸晶系,常見八面體、菱形十二面體、立方體等晶形,晶體常發育階梯狀生長紋、生長錐或蝕象。
常見顏色:①白色系列,無色至淺黃、淺褐;②彩色系列,深黃、褐、灰色,淺至深的藍、綠、橙黃、粉紅、紅、紫紅色,偶見黑色。
光澤:金剛光澤。
摩氏硬度:10。
密度:(3.52±0.01)g/cm3。
光性特徵:均質體,偶見異常消光。
折射率:2.417。
雙折射率:無。
色散率:0.044。
紫外熒光:長波下熒光從無至強均有,熒光顏色有藍色、黃色、橙黃色、粉色等,短波較長波的熒光弱。
特殊性質:鑽石熱導率高於所有其他物質(最近人工合成的碳硅石除外),另外,發光性較特殊,將鑽石置於日光下暴曬後,會發出淡青藍色的磷光;在X射線照射下大多數發天藍色或淺藍色熒光,極少數不發熒光;在陰極射線下發藍色或綠色光。
無論是天然金剛石還是人工合成金剛石,它們對所有的酸都是很穩定的,甚至在高溫下酸也不能在金剛石晶體上顯示出任何作用;但是,金剛石在鹼、含氧鹽類和金屬等溶體中,很容易受浸蝕。由於金剛石的成分是碳,所以在純氧中溫度達到700~780℃可燃燒;在空氣中不斷加熱至800~1000℃時也可燃燒;在真空中800~1700℃條件下,僅在結晶表面的薄層有石墨化,內部無變化;在惰性氣體中,約1700℃以上時,整個結晶體迅速發生石墨化,最後成為石墨粉末,石墨化的開始溫度隨結晶體而異,在1600~1800℃之間。金剛石的熔化溫度為(3700±100)℃。有缺陷的金剛石晶體,在加熱時往往破裂,但結晶完好的金剛石晶體可以加熱到1800~1850℃,且可急速冷卻,此時它們不僅沒有被破壞,反而由於消除了局部應力而使晶體得到強化。
最常見的金剛石晶體是八面體,其次是斜十二面體,真正的立方體是很少的。金剛石的硬度最高,卻很容易裂開,它最容易沿晶體面網間距最大的(111)面裂開,這個面也稱金剛石的「解理面」,著名的金剛石「庫利南」原石重 3106.9克拉,就是利用金剛石的解理面劈成許多小塊的。對於晶體完好、無可見缺陷的金剛石來說,將晶體劈開的壓力在300~1000N/cm2之間。
二、金剛石的人工合成歷史、方法和原理
1.人工合成金剛石的歷史
1953年人工合成金剛石首次在瑞士 ASEA公司試驗成功,但沒有報道。1955年2月15日美國通用電氣公司最先報道了人工生長金剛石獲得成功的消息,取得了發明權。自此,世界各國紛紛進行人工合成金剛石的試驗和開發,起初人們只能大量合成出細小的、質量不高的工業級金剛石,主要供工業方面應用。但人們一直在設法長出優質的金剛石大單晶。終於在1970年,美國通用電氣公司宣布用晶種法、經過七天時間生長出了5~6mm的寶石級金剛石,晶體重量達1克拉左右。後來,他們致力於提高晶體生長速率的研究,只需幾十小時就可生長出上述同樣大小的金剛石。1992年,該公司合成出熱導率比天然金剛石大2倍的超級金剛石,顆粒重量達到3克拉。南非 De Beers公司在20世紀70年代初能生長出寶石級金剛石,1987年生長出了11.14克拉的大單晶,是淺黃色、透明的寶石級八面體歪晶形金剛石,1990年又宣布生長出了14.3克拉的金剛石大單晶,資料表明,後來又合成出重30多克拉的黃—棕色金剛石晶體。前蘇聯科學院西伯利亞分院1990年宣布生長出了7.5mm,重1.5克拉的不同顏色的寶石級金剛石。他們是目前世界上唯一能將人工合成鑽石(通常將加工好的金剛石稱鑽石)進入市場的國家。如今,俄羅斯與泰國的合資企業 Tairus公司生產人工合成鑽石,既供裸鑽又供鑲嵌好的鑽飾。據報道,美國向俄羅斯購買了人工合成寶石級金剛石的技術,因此,市場上也有美國生產的人工合成鑽石。
2.我國的人工合成金剛石歷史
我國的人工合成金剛石於 1963年獲得成功,由於工藝比較成熟,還有專門生產設備的廠家,供求量又大,不少鄉鎮企業都能生產。據1998年統計,我國有大小人工合成金剛石廠3000家左右,年產量5億克拉左右,但這些人工合成金剛石都比較小,只能作工業用,其質量屬於工業級。對於大顆粒金剛石,曾於1974年由上海硅酸鹽研究所用金屬薄膜法生長出了優質金剛石大單晶,並於1977年生長出最大達4mm,重量達0.29克拉的含硼半導體金剛石大單晶,後於1985年又採用晶種法獲得了直徑3.2mm,重量為0.2克拉的優質人工合成金剛石大單晶。但直到現在,我國尚未進入商業生產人工合成寶石級金剛石的行列,也就是說,珠寶首飾市場上至今沒有我國生產的人工合成鑽石。據2002年年中的不完全統計,我國人工合成金剛石廠有4000~5000家,但生產單顆粒工業級人工合成金剛石的廠家只有450家左右,其他主要是生產聚晶金剛石或生產金剛石製品的。然而,這450家左右的人工合成工業級金剛石廠的產量較大,從消耗的原材料與觸媒量估算(原材料與觸媒的用量與人工合成金剛石的產量之間有一定的比例),我國人工合成工業級金剛石的年產量應當有12億克拉左右,估算年生產能力可達15億~20億克拉。通過強強聯合或兼並,我國目前年產量達2000萬克拉人工合成工業級金剛石的廠有10家左右,最大的廠家可達年產量1億~2億克拉人工合成工業級金剛石。六面頂金剛石壓機用的葉蠟石外形見圖1,合成金剛石原料分選機見圖2。
圖1 六面頂金剛石機用葉蠟石外形
3.我國人工合成工業級金剛石的優勢與劣勢
我國人工合成工業級金剛石年產達12億克拉左右,但目前全世界年產人工合成工業級金剛石(除中國外)有7億~8億克拉,其中主要生產國及公司有:俄羅斯,年產 2億克拉左右,美國,年產2億克拉左右,De Beers公司年產2億克拉左右,可見我國年產量的優勢很大。但是,我國生產人工合成工業級金剛石的劣勢也很大,主要差距有:①每一次合成金剛石產量(單產)的差距:國外達到單產600~700克拉;我國97%以上的人工合成工業級金剛石生產廠用的是六面頂金剛石壓機,最少的單產僅10克拉左右,好的能達到單產30克拉左右,最好的能達到單產40克拉左右;二面頂金剛石壓機單產較高,可達60克拉左右,可見與國外人工合成金剛石單產差距很大。②人工合成工業級金剛石質量的差距:人工合成工業級金剛石的質量主要有下列幾方面:合成金剛石單顆粒抗壓強度、晶體形態、熱穩定性、抗沖擊強度、粒度大小等,與國外主要生產國生產的人工合成工業級金剛石比,我國生產的人工合成工業級金剛石質量比較差。國內同類產品比較,二面頂金剛石壓機生產的人工合成工業級金剛石的質量比六面頂金剛石壓機生產的人工合成工業級金剛石質量好。③價格差距:我國出口的人工合成工業級金剛石以原料為主,每克拉平均銷售價為10美分左右;國外的人工合成工業級金剛石原料平均售價70~80美分,最高售價可達1~2美元。價格是由產品質量決定的,這也印證了我國生產人工合成工業級金剛石的質量較差的評價。④設備的差距:國外以二面頂金剛石壓機為主要生產設備,其壓力相當於6000~10000t,合成腔的體積大,所以單產高;我國有97%的人工合成金剛石是用六面頂金剛石壓機生產的,其優點是投資低,技術難度不高;但缺點是合成壓腔小,單產低,質量差;對於二面頂金剛石壓機來說,其壓力比六面頂金剛石壓機大,但壓力相當於2500噸,比國外的二面頂金剛石壓機的壓力小很多,合成腔也比國外的小,所以單產比較低。我們能把壓力提高嗎?!難。據說主要是國內生產的相當於6000噸壓力用的合成腔材料質量達不到要求。目前,國內已有單位從國外引進相當於6000噸壓力的金剛石壓機用以生產高質量的人工合成工業級金剛石。
圖2 合成金剛石原料分選機
4.我國人工合成金剛石的最新進展
1)在20世紀90年代,原國家建材部人工晶體研究所,曾用化學氣相沉澱法(CVD)法生長出2mm厚、5mm邊長的黑色金剛石戒面供應市場。據北京航空航天大學陳汴琨教授介紹,2006年我國某單位已能用此法生長出厚1mm左右,面積100cm2左右,重量為150克拉的金剛石塊體,只不過價格還偏高,這樣一塊金剛石原料的價格在1萬元人民幣左右。
2)2003年8月14日,《寶玉石周刊》刊登了「我成功在440℃下合成金剛石」的消息。中國科學技術大學陳乾旺教授領導的研究組在關於「低溫還原 CO2合成金剛石」研究中,實現了在440℃的低溫條件下,以CO2為碳源成功地合成了250μm的大尺寸金剛石,首次實現了從CO2到金剛石的逆轉變,在國際學術界引起極大反響。陳乾旺教授和同事們自行研製高壓反應釜進行實驗,用安全無毒的CO2作原料,使用金屬Na作為還原劑,在440℃和80MPa的條件下,經過12h的化學反應,終於將CO2還原成了金剛石。目前,已能生長出1.2mm的金剛石,有望達到寶石級,CO2轉化金剛石的產率達8.9%,X射線衍射及拉曼光譜的分析結果都證實,這些合成的顆粒就是金剛石,它無色、透明,可與天然金剛石媲美。該工藝重復性很好,用其他碳源和還原劑也取得了成功,有關結果已申請國際專利。
5.人工合成金剛石的原理
眾所周知,金剛石的化學成分與石墨相同,都是碳(C),但石墨很軟,金剛石很硬,區別在於石墨為六方結構,金剛石為立方結構。要把石墨的六方結構轉化成金剛石的立方結構,條件很苛刻,需2700℃溫度和12.5GPa的壓力。這樣高的溫度和壓力給生產設備的製造帶來相當大的困難,且轉化率不高。後來人們採用了過渡族金屬元素鐵、鈷、鎳、鉻、錳等組成的「觸媒劑」,便可以在1200℃和4GPa下使石墨轉化成金剛石。石墨在觸媒作用下轉變成金剛石的結構簡圖見圖3。
圖3 石墨在觸媒作用下轉變成金剛石的結構簡圖
比較轉變前後的結構變化,可以看出石墨層間距縮小了大約1.3×10-10m。石墨層中的相鄰原子分別相對於層平面垂直方向向上和向下位移了大約2.5×10-10m,變成相距為5.0×10-11m的雙層。雙層中原子間以共價鍵連接形成了扭曲的六邊形格子,原子間距伸長為1.54×10-10m。這樣,上雙層的下次層與下雙層中的上次層的原子彼此完全對應,且亦相距1.54×10-10m。只要原來的自由 2Pz電子成對地集中到這些相對應的原子對間形成鍵長為1.54×10-10m的垂直共價鍵,就可以變成金剛石的結構。這種轉變方式顯然要比把石墨中的碳原子拆散,再重新組成金剛石的轉變容易得多。目前,世界各國的人工合成工業級金剛石都採用此方法,操作時採用一片高純石墨片,一片金屬觸媒片交互重疊組裝後放入專用裝置中,再在二面頂或六面頂金剛石壓機中進行合成(圖4)。但我國至今沒有生產寶石級合成金剛石(通常認為要達到 5mm大小的晶體)的廠家,幾乎全部是工業級合成金剛石和金剛石產品深加工企業。
圖4 兩面頂金剛石壓機及產品
對於寶石級大顆粒金剛石的人工合成,一般採用金剛石作晶種,用金剛石粉代替石墨作碳源,生長腔的中間溫度比兩端高,必須採用金屬觸媒劑。晶種觸媒法生長寶石級金剛石的兩種不同合成腔結構如圖5。
圖5 合成寶石級金剛石的兩種不同合成腔結構
其生長工藝過程如下:腔體中部(熱區)放置金剛石粉(或光譜純石墨與金剛石粉的混合物),用鎳鐵(1:1)合金為觸媒劑,金剛石晶種安放在兩端冷區,在高溫超高壓條件下(5.5GPa,1300~1400℃之間),原料區的碳源迅速溶解於熔融觸媒金屬液中,在溫度梯度30~50℃的推動下,熱區中的碳向冷區的金剛石晶種方向擴散,在溫度的降低過程中必然出現部分過飽和濃度的碳,這些碳沉積在金剛石晶種上,從而使晶種不斷長大成金剛石大晶體,直到碳源消耗完為止。若在原料中人為加入某些雜質,就可以使金剛石著色,如加入氮(通過加入少量的鈦吸附氮元素)可獲得黃色或綠色;加入硼則可獲得藍色,並具有半導體性質;加入足夠量的鈦可使合成鑽石變成無色;加入一定量的鐵也可使合成鑽石獲得近於無色的合成鑽石。在這里,觸媒劑既起溶解碳的作用,又起加快金剛石生長的催化劑作用。
6.人工合成金剛石方法面面觀
人工合成金剛石的方法很多,上面說的兩種方法是最常用的方法。因不同的用途還有不同的方法,隨著科學技術的發展也發明了一些新的合成方法,總共有數十種,下面介紹5種:
(1)爆炸法
利用烈性炸葯爆炸時產生的高溫高壓使石墨轉化成金剛石,但由於保持溫度和壓力的時間很短,所以形成的金剛石顆粒很小,平均粒度不到10μm,最大粒度約40μm,最佳情況下,每千克炸葯能合成 60克拉金剛石微粉,產品適宜製造研磨膏,也可作為聚晶金剛石的原料。此法的最大優點是便宜、投資少、單次產量高(可達500克拉)。
(2)液中放電法
將含有觸媒金屬的石墨電極及空心圓筒石墨(或金屬)作成兩電極,浸在低蒸發熱的液體介質中(如四氯化碳),空心圓筒電極與石墨電極同軸,當接通很大的電流電壓時,兩電極間產生火花放電,使液體產生沖擊波,形成高溫高壓區,石墨可轉化成金剛石。此法可獲得0.5mm的金剛石微粉,主要缺點是產量不高。
(3)常壓高溫合成法
也稱CVD法,這是在常壓下合成金剛石的方法。此法用含碳的甲烷氣體或酒精濃度的白酒作原料,在常壓下經加熱分解出碳原子(等離子體),在電場的作用下,游離的碳原子在金剛石籽晶表面上沉積生長出金剛石,也可以在非金剛石表面鍍金剛石微粒。用這個方法生長的金剛石原來速度很慢,顆粒很細,常用於表面鍍膜,例如在導彈頭上用此法鍍金剛石薄層。近年來,國際上對此法的研究獲得了技術上的突破,生長速度大大提高,已能生長出 10克拉以上的大單晶金剛石,成為各國競相開發的熱門工藝,我國也在迎頭趕超。
(4)常壓真空合成法
在真空爐中放入觸媒金屬,再撒上石墨粉,然後抽真空加熱,在900℃下恆溫10h,可用於鑽頭和磨料的工業級金剛石就在加熱的混合物中結晶析出,經過分離即可使用。
(5)還原二氧化碳合成金剛石
2003年8月14日,《寶玉石周刊》刊登了「我成功在440℃下合成金剛石」的消息。中國科學技術大學陳乾旺教授領導的研究組在關於「低溫還原CO2合成金剛石」研究中,實現了在 440℃的低溫條件下,以 CO2為碳源成功地合成了250μm的大尺寸金剛石,首次實現了從 CO2到金剛石的逆轉變,在國際學術界引起極大反響。
三、人工合成金剛石的用途和前景
人工合成金剛石有著廣泛的用途。
1)我們常見的地質勘探用金剛石鑽頭,切割石頭和道路的金剛石鋸片(圖6)。加工寶石用的金剛石磨盤、金剛石微粉拋光膏,金剛石拉絲模等等都少不了金剛石,並且用量是很大的,據1975年統計資料,全世界每年金剛石用量為12.5億克拉,其中絕大部分用的是人工合成金剛石。
圖6 人工合成金剛石制的鋸片
除此之外,人工合成金剛石在高科技和國防工業上也有很大的用處。
2)利用金剛石的高導熱性,可以用來作固體微波器件及固體激光器件的散熱片,為製造微型雷達和通訊設備創造了有利條件。
3)利用Ⅱa型金剛石的半導體特性,及耐高溫與散熱、高硬度和抗腐蝕等優良性能,可以做金剛石整流器、金剛石三極體、金剛石溫度計等,在宇宙航行中可大顯身手。
4)廚具革命:在日用消費品領域,各種廚具的表面可鍍上合成金剛石膜,這樣,鑽石的低摩擦系數使食物更不易粘在鍋底;鑽石的高硬度使廚具不會輕易遭到損壞等。
5)無油軸承:在現有的軸承表面鍍上合成金剛石膜,可大大降低摩擦系數,不用油且不易損壞,同時可保護軸承免遭海水的腐蝕。
6)鑽石窗:鑽石對可見光及紅外光等光譜范圍內的電磁輻射是完全透明的,對高速雨滴及塵埃具有較強的抵抗力,又可迅速傳導由於空氣摩擦而產生的熱量,這些特性使鑽石在航天探測中具有重要意義。如1978年,美國先鋒號宇宙探測器在對金星進行的探測中,就安裝了鑽石窗,由於金星的大氣壓是地球的近100倍,因此當探測器在金星的大氣層中下降時,鑽石窗既能承受巨大的熱量和壓力,又能使金星大氣層中的紅外線穿過鑽石窗而不被吸收,從而使探測器能成功地測量到金星大氣中的紅外輻射。當時的這一鑽石窗是從一塊寶石級天然金剛石上切下來的,現在可以用CVD方法人工合成出類似或更大直徑的鑽石窗了。
7)超級計算機應用:採用數字集成電路的大型計算機的運算速度取決於信號在各塊晶元之間的傳送速度,人們採用了三維多晶元模塊,但信號在晶元之間的高速傳送會釋放出大量的熱量,以前用液氮來解決,現在採用晶元直接安放在高純度的合成金剛石膜上進行散熱,可大大提高超級計算機的運算速度。
由此可見,人工合成金剛石對工業的發展、科學技術的發展和國防工業的發展具有重要作用。從這里,我們也看到了人工合成金剛石或鑽石的前景非常廣闊。
參考文獻
沈才卿,吳國忠.1994.人造寶石學 .北京:中國地質大學出版社.
郭永存等.1984.金剛石的人工合成與應用.北京:科學出版社.
何雪梅,沈才卿.吳國忠.1997.寶石的人工合成與鑒定.北京:航空出版社.
何雪梅,沈才卿.2005.寶石人工合成技術.北京:化學工業出版社.
張蓓莉等.1997.系統寶石學.北京:地質出版社.
《寶玉石周刊》(報紙)2003年8月14日.
Ⅱ 金剛石是最硬的物質,那麼鑽石是用什麼雕刻的呢
首先回答問題
現在有一種最先進的切割儀器——水刀
它的原理是利用高壓水流來完成(所以避免了高溫)
其次鑽石句對不可以用普通的道具或磨具來切還有激光
因為我相信你該知道鑽石的主要化學成分是碳( C )
一遇到高溫它的化學結構就會會發生變化
變成一堆碳粉!
金剛石是天然存在的最硬物質,但有比它更硬的,例如:
經過40多年探索,俄羅斯科學院化學物理研究所的一科研小組日前終於成功地研製出由大分子構成的三維結構聚合物材料,其硬度已超過金剛石。有關專家指出,該科研成果發展了著名的「弗洛里聚合作用」理論,為研製新型聚合物材料提供了新的理論基礎和實驗方法。
眾所周知,金剛石是世界上最硬的物質,在工業上獲得了廣泛運用。金剛石具有超硬特性的奧妙在於其晶格中原子的排列呈特殊的三維結構。科研人員發現,三維結構聚合物的性質完全不同於線形結構聚合物的性質。如果能用巴基球分子組成三維結構的聚合物,它的硬度將超過金剛石。因此多年來,世界各國的科研人員一直在積極探索人工製造三維結構聚合物的理論與方法,研製由單一分子組成的三維結構聚合物材料。20世紀50年代,美國物理化學家弗洛里成功地提出了建立三維結構聚合物的理論。為此,弗洛里獲得了1974年的諾貝爾化學獎,並被譽為聚合物理論之父。
以俄羅斯科學院化學物理研究所根納季?科羅廖夫博士為學術帶頭人的科研小組,從上世紀60年代開始研究三維結構聚合物。實驗研究工作首先以弗洛里的聚合物理論為基礎。但科羅廖夫與同事們在進行研製三維結構聚合物時遇到了很大困難,他們無法獲得大量的由單一分子組成的聚合物質。原因是在化學反應合成過程中,根基附著生長鏈的過程像雪崩似地非常快,無法控制。這樣的過程導致聚合物在大量反應液中形成。如此形成的三維微型物質影響了相臨原子的生長及其之間的相互連接。盡管科研人員進行了無數次實驗,只獲得了一種鬆散的、摻入了具有一定硬度的聚合物成分,而不是由單一分子構成的三維結構的聚合物。
實驗結果與弗洛里的理論不相符。問題發生在哪裡?
科羅廖夫領導研究小組開始詳細分析三維聚合作用的動力學原理。經過大量分析與研究,他們發現了弗洛里理論的不足之處,並大膽地提出了新的理論。由於合成過程的數學模型非常復雜,科羅廖夫運用計算機獲得了大量計算數據,並在此基礎上提出了建立三維結構聚合物的理論。2002年科羅廖夫的科研小組因該理論計算工作獲得了「俄羅斯學院出版獎」。
理論工作獲得成功後,科研人員立即將成果運用到實踐中。科羅廖夫研究小組認為,建立三維結構聚合物的關鍵在於控制合成過程中不同成分的生長速度。比如,在一定時間內使一部分聚合鏈進入「睡眠」狀態,而使另一部分「激活」。在該理論的指導下,科羅廖夫領導的小組終於找到了有效控制分子行為的方法,並成功地合成了大分子三維結構聚合物。科研人員將這一技術工藝稱為「激活聚合作用」。它的特點是不僅整個合成過程具有很高的均勻性,獲得的三維結構聚合物也具有很高的均勻性。
專家認為,科羅廖夫的科研成果發展了著名的「弗洛里聚合作用」理論,為研製新的聚合物材料提供了新的理論基礎和實驗方法。目前,世界各國對聚合物材料的研究發展很快。世界上一些大公司在研製新型聚合物材料方面也不惜財力與物力。俄研製出的新型三維結構聚合物材料在銷毀火箭動力燃料方面有著重要的使用價值,當火箭燃料超過使用期限時,可以不用爆炸的方法銷毀,而用「激活聚合作用」的方法將其改造為民用產品。
Ⅲ 金剛石是怎麼形成
原生金剛石是在地下深外處(130—180Km)高溫(900—1300℃)高壓(45—60)×108Pa下結晶而成的,它們儲存在金伯利岩或榴輝岩中,其形成年代相當久遠。南非金伯利礦,橄欖岩型鑽石約形成於距今33億年前,這個年齡幾乎與地球同歲;而奧大利亞阿蓋爾礦、波札那奧拉伯礦,榴輝岩型的鑽石雖說年輕,也分別已有15.8億年和9.9億年了。藏於如此大的地下深處達億萬年之久的鑽石晶體要重見天日,得有助於火山噴發,熔岩流將含有鑽石的岩漿帶入至地球近地表處,或長途遷徒淀於河流沙土之中。前者形成的是原生管狀礦,後者形成的則為沖積礦。這些礦體歷經艱辛開采後,還需經過多道處理遴選,才可從中獲怪毛坯金剛石。毛坯金剛石中僅有20%左右可作首飾用途的鑽坯,而大部分只能用於切割、研磨及拋光等工業用途上。有人曾粗略地估算過,要得到1ct重的鑽石,起碼要開采處理250噸礦石,采獲率是相當低的;如果想從成品鑽中挑選出美鑽,那兩者的比率更是十分懸殊的了
已知現今世界上只有三十餘個國家和地區產鑽石,且分布極不均勻,主要集中在澳洲、非洲,次為亞洲和南美洲。其中澳大利亞、扎伊爾、波札那、前蘇聯和南非為世界上五大鑽石生產國,佔全球鑽坯供應量八成有多。
我國鑽礦開發雖有著較長歷史,清道光年間湘西桃源、常德一帶、山東郯城區都先後發現過鑽石。20世紀中葉湖南還找到過鑽石砂礦。然而,鑽石原生礦床60—70年代僅在遼寧瓦房店、山東蒙陰和貴州東部地區發現
物以稀為貴。綜觀當今世界,鑽石分布范圍小,產量低。加之開采困難,自然鑽石就更顯彌足珍貴了。一顆鑽石,從孕育於地殼岩漿之中至佩戴於您的手上,輾轉周遊萬里,途經數百人之手,個中開采、加工艱辛復雜,做成精緻的飾品更是藝術的創造,最後又經您慧眼上識,佩戴,才再度炫耀於世,因此,這是一種何等奇特的福緣!
人造金剛石
鑽石由金剛石加工琢磨而成,是珠寶中的貴族,它通明剔透,散發著清冷高貴的光輝,頗有「出淤泥而不染」的氣質。天然金剛石的形成和發現極為不易,它是碳在地球深部高溫高壓的特殊條件下歷經億萬年的「苦修」轉化而成的,由於地殼的運動,它們從地球的深處來到地表,蘊藏在金伯利岩中,從而被人類發現和開采。
金剛石不僅可以加工成價值連城的珠寶,在工業中也大有可為。它硬度高、耐磨性好,可廣泛用於切削、磨削、鑽探;由於導熱率高、電絕緣性好,可作為半導體裝置的散熱板;它有優良的透光性和耐腐蝕性,在電子工業中也得到廣泛應用。18世紀末,人們發現身價高貴的金剛石竟然是碳的一種同素異形體,從此,制備人造金剛石就成為了許多科學家的光榮與夢想。
一個世紀以後,石墨 ——碳的另一種單質形式被發現了,人們便嘗試模擬自然過程,讓石墨在超高溫高壓的環境下轉變成金剛石。為了縮短反應時間,需要2 000 ℃高溫和5.5萬個大氣壓的特殊條件。
1955年,美國通用電氣公司專門製造了高溫高壓靜電設備,得到世界上第一批工業用人造金剛石小晶體,從而開創了工業規模生產人造金剛石磨料的先河,現在他們的年產量在20噸左右;不久,杜邦公司發明了爆炸法,利用瞬時爆炸產生的高壓和急劇升溫,也獲得了幾毫米大小的人造金剛石。
金剛石薄膜的性能稍遜於金剛石顆粒,在密度和硬度上都要低一些。即便如此,它的耐磨性也是數一數二,僅5微米厚的薄膜,壽命也比硬質合金鋼長10倍以上。我們知道,唱片的唱針在微小的接觸面上要經受極大的壓力,同時要求極長的耐磨壽命,只要在針尖上沉積上一層金剛石薄膜,它就可以輕松上陣了。如果在塑料、玻璃的外面用金剛石薄膜做耐磨塗層,可以大大擴展其用途,開發性能優越又經濟的產品。
更重要的是,薄膜的出現使金石的應用突破了只能作為切削工具的樊籬,使其優異的熱、電、聲、光性能得以充分發揮。目前,金剛石薄膜已應用在半導體電子裝置、光學聲學裝置、壓力加工和切削加工工具等方面,其發展速度驚人,在高科技領域更加誘人。
將來技術進步了,人造金剛石會成為普通材料的。
Ⅳ 作為世界上最硬的金剛石,究竟是用什麼工具和技術將它雕琢成鑽石的
金剛石由粘附在轉碟片上的其它金剛石或金剛石粉末進行機械加工
Ⅳ 金剛石是最堅硬的物質,那麼是用什麼方法把它打造成鑽石的
也用金剛石,用的金剛石粉末溶液。現在大多是胚料用金剛石溶液打磨。後期用鐳射進行精工打磨
Ⅵ 什麼是人造金剛石
製造方法
直接法
人造金剛石或利用瞬時靜態超高壓高溫技術,或動態超高壓高溫技術,或兩者的混合技術,使石墨等碳質原料從固態或熔融態直接轉變成金剛石,這種方法得到的金剛石是微米尺寸的多晶粉末。
熔媒法
人造金剛石用靜態超高壓(50~100kb,即5~10GPa) 和高溫(1100~3000°C)技術通過石墨等碳質原料和某些金屬(合金)反應生成金剛石,其典型晶態為立方體(六面體)、八面體和六-八面體以及它們的過渡形態。在工業上顯出重要應用價值的主要是靜壓熔媒法。採用這種方法得到的磨料級人造金剛石的產量已超過天然金剛石,有待進一步解決的問題是增大粗粒比,提高轉化率和改善晶體質量。目前正在實驗室中用靜壓熔媒法研究優質大顆粒單晶金剛石的形成。加晶種外延生長法曾得到重1克拉左右的大單晶;用一般試驗技術略加改進後,曾得到2~4毫米左右的晶體。採用這種方法還生長和燒結出大顆粒多晶金剛石,後者在工業上已獲得一定的應用,其關鍵問題在於進一步提高這種多晶金剛石的抗壓強度、抗沖擊強度、耐磨性和耐熱性等綜合性能。
外延法
人造金剛石是利用熱解和電解某些含碳物質時析出的碳源在金剛石晶種或某些起基底作用的物質上進行外延生長而成的。
人造金剛石的形成機制
目前主要有下述幾種學說:溶劑學說認為所用金屬(合金)起著碳的溶劑作用;催化學說則認為是一種催化劑;固相轉變學說則強調石墨晶體無需斷鍵解體,經過簡單形變就形成金剛石晶體。但這三種典型學說所提出模型往往同一些主要實驗現象和規律相矛盾。因此,近十年來,出現了溶劑-催化劑、催化劑-溶劑、熔(溶)劑-觸媒(簡稱為熔媒)等學說進一步探討所用金屬(合金)的作用。總的說來,人造金剛石的形成機制目前尚是一個仍在探討中的復雜問題。
Ⅶ 用什麼來切割金剛石,使之成為鑽石或鑽頭等。
1、劈開。將鋼制劈刀置於金剛石的夾縫中,用短而重的鐵棒敲擊劈刀,使金剛石按照紋路劈開。
2、鋸開。就是用一塊在機器上飛速旋轉的銅片(鑽石鋸)把金剛石按鑽石紋路進行分割。
3、激光切割,也叫鐳射切割,就是用一個能夠聚集激光的聚光頭射出溫度極高的激光,按程序對金剛石進行切割。
由於科技的進步,現在使用最為廣泛的金剛石切割方法是激光切割,它效率高,精確度高,加工成本低,已經逐步取代前兩種加工方法。
Ⅷ 鑽石是用什麼打磨的
能夠切磨鑽石的只有鑽石。
由於鑽石是地球上最堅硬的物質,它只能被另一顆鑽石切割。因此,在鋸上使用金剛石粉塵,以及由切割的晶體產生的實際金剛石粉塵。
用於金剛石加工的鋸是一種薄薄的磷青銅圓盤,它在水平主軸上以大約4,000轉/分的轉速旋轉。鑽石被夾緊,因此它靠在刀片上,並根據鑽石的大小鋸切數小時。
鑽石的硬度高、折光率高、色散力很強,再經過精心雕琢後更是光彩奪目。
(8)用什麼鑽石變成金剛擴展閱讀:
鑽石的化學成分為純碳(C),硬度是10,在以「莫氏硬度表」為標准來衡量物體硬度的比較中,鑽石是最硬的,如常見的玻璃就只有5或6。鑽石的硬度高、折光率高、色散力很強,再經過精心雕琢後更是光彩奪目。
由於鑽石中的C-C鍵很強,所以所有的價電子都參與了共價鍵的形成,沒有自由電子,所以鑽石不僅硬度大,熔點極高,而且不導電。