当前位置:首页 » 资源管理 » 什么公司数据资源最重要
扩展阅读
如何分析一个成本核算 2025-08-01 21:08:22
广告怎么费用 2025-08-01 20:58:33

什么公司数据资源最重要

发布时间: 2022-09-05 02:03:59

‘壹’ 企业最有价值的数据在哪里

企业最有价值的数据在哪里

当前,传统(非互联网类)企业已认识到大数据的价值,但如何结合企业现状有效应用大数据,仍普遍存在着迷茫。针对这种现状,HCR基于企业大数据应用的相关服务经验,提出一些可行性的思路和建议,供企业客户了解和实施。

本文内容适合拥有较多客户资源(ToC和部分ToB)和内部数据的大中型企业,对拥有大量企业/个人管理数据的政府机构(如税务)的大数据应用也有借鉴意义。

一、企业最有价值的数据在哪里

大数据的价值基础来自于数据,对于企业最有价值的数据,我们认为有两点:

1)内部业务大数据(而非外部大数据)具有最高的应用价值

企业的大数据,从来源讲可分为内部(自身业务生产经营环节产生的所有数据)和外部(来自外部,如第三方/互联网)。当前企业热衷于引入来自外部的大数据(如互联网/电商/移动互联网)和相关服务应用,而忽视了一个事实:现有的内部业务大数据才是最大的价值挖掘目标。

大中型企业在信息化与数据应用过程中,大都已经完成了第一阶段(信息化系统建设与业务数据采集的自动化/常态化)的工作。多年来建立的各种业务信息系统已积累了大量业务数据。而进入第二阶段(挖掘数据提升企业业务经营管理)后,却进度缓慢。相比外部数据,内部业务数据体量大,内容多样,时间跨度长,是企业大数据的主体。因其与企业特性直接相关,深入覆盖经营的各个环节,其对企业的价值远大于各种外部数据。然而,这些数据很少发挥出应有的价值,大都沉睡在那里,甚至成为负担。

2)内部业务大数据中,应优先关注服务客户相关的数据

企业内部业务大数据,如果按逻辑属性划分,可分为两大类:

1) 产品/服务相关:围绕企业产品/服务相关的(研发/设计/原材料/生产/制造/反馈)的数据

2)服务客户相关:围绕着目标客户(可为B或者C)的相关(售前/销售/客服/运维/活动/CRM等等)数据

以上两类数据中,服务客户相关的业务行为对企业经营影响巨大。其数据也是企业内部大数据的主体,应优先作为内部大数据挖掘应用的目标。

二、实施的流程

下面,针对企业最有价值的内部业务数据集,结合消费者研究与标签化研究方法,我们来介绍如何有效挖掘其大数据价值的机制。

首先我们给出一个主要的流程,后续将对每个步骤进行详细说明。

数据来源:大数据平台部@HCR

Step1总体体系设计: 对现有内部数据进行重构设计

对现有的业务数据体系,结合实际情况与未来的应用目标,重新进行数据组织和规划。过程中要关注两点:

要点1:数据的组织,要从功能为中心转向以客户为中心(按生命期阶段组织)。企业内部业务数据,当前大多是以业务功能(系统)为中心组织,相互间未充分打通。用于价值挖掘的业务数据,要以每个客户为中心,以用户生命期为线,将其所有业务功能阶段的数据串起来。

要点2:以类标签化的思想建立客户的数据描述体系,作为未来全景数据整合的框架。描述体系的来源数据不仅有内部数据,也包含外部数据(辅助)。实际的数据整合处理将基于该体系进行:已有的数据可直接引入,缺失数据内容作为后续采集/外购的主要目标。

以某车企客户为例,其相关的大数据,对应由9大内部业务系统产生,各自独立。在数据体系重构整合中,重构的示意图如下:

数据来源:大数据平台部@HCR

Step2 数据整合集中:对现有数据进行实际整合,建立一个统一大数据平台

基于step1得到的规划方案,对现有的业务数据通过技术手段从各业务系统整合到统一大数据平台上。该平台作为数据分析平台,与生产业务系统分离,提供对数据仓库/结构化/非结构化数据的支持。

整合中要注意:

(1) 数据模型的设计以及数据ETL(清洗/转化),都需要以客户为中心进行统一规划

(2) 充分考虑新数据体系中缺失/不足的数据内容未来的融入和整合机制。

Step3 标签化分析:对客户进行全方位标签化分析,生成标签化描述结果

在step2整合得到的以用户为中心的多维度数据空间上,基于消费者研究与业务特性建立用户标签体系,并对客户进行实际的标签化分析。标签体系的定义,要兼顾用户基本信息、业务特点和未来应用的目的,并不断扩展。

比如前述的车企客户,对用户标签,已经定义了如下几类:基本属性(性别、年龄段、购买能力、职业阶层…)、家庭情况(家有儿童,第二辆车)、车型/驾驶偏好(如偏好SUV 、注重安全性.、追求速度感…)、配件关注点(喜欢原装、喜欢功能性配件)、内装偏好、保养习惯、参与活动偏好、触媒习惯等。

Step4 业务实际应用/挖掘:通过业务活动,进行客户大数据价值的实际挖掘和应用

对所有客户分析得到标签化描述结果,可通过统一的客户分析平台,提供给企业内部所有部门实际应用。各部门可根据实际业务需要,通过标签灵活准确筛选目标客户(如市场部可以查找80后家有儿童且购买能力强的目标客户做MPV家用车型推广),或发现产品客户群的深层特性(产品设计部门可分析车型的目标客户与实际购买客户是否一致)。

三、如何实施

在内部大数据应用流程闭环的5个主要步骤中,每一步工作都有着不同的重点:

Step1总体体系设计

总体体系设计,决定了企业内部大数据应用未来可以发挥的价值空间,所以需要高度重视。前期要做踏实,不要急于求成。

主要工作包括:

● 对企业现有数据情况深入摸底,确定客户相关数据在各业务系统中的情况(分布/数据属性/关联性/数据质量等)

● 通过在各业务部门调研和访谈方式,以及用户研究的发展趋势,确定企业各部门未来的应用总体需求目标,并抽象为相关对客户属性/标签的需求。

● 在前两步工作的基础上,通过用户研究人员与大数据架构/分析人员的合作,完成相关的总体设计。

输出结果至少包括:

● 新数据体系的设计与重构方案,定义以客户为中心的新数据模型的抽象/关联性/属性来源/生成机制等,包括对现有数据的整合机制,以及对当前(基于标签体系要求)缺失数据属性的采集和融合机制。

● 客户标签应用体系的框架性实现方案,包括对客户标签体系的框架与分类体系、重要标签设计与分析思路,以及未来的应用模式等

Step2 数据整合集中

基于新数据体系的设计要求,建立一个统一的内部大数据平台,将相关的数据整合于其中并进行有效管理。

主要的工作包括:

● 搭建统一大数据平台的软硬件/网络的基础架构(包括应用与数据库系统)

● 对于现有数据,基于新数据体系的设计,设计数据物理模型和对接方案,并通过技术手段(ETL/编程)对接各内部业务系统,将各业务系统的相关数据统一整合到大数据平台

● 对于缺失数据和外部来源的大数据,建立一套相应的机制,保证后续持续有效的整合此类数据。

输出结果包括:

● 一个统一的大数据平台,能够持续整合和管理来自企业内外部的用户相关的所有数据资源。

● 一套技术与业务实施机制,确保数据整合和采集的可持续性和有效性。

在现有数据整合时,企业由于内部业务信息系统众多,且往往对应不同的IT开发商,为保证整合多业务系统数据的准确性和效率,本步骤的实施者,建议优先选择企业内部现有业务信息系统的核心IT开发商,或由企业的信息中心完成,注意:实施过程中需要有大数据架构与数据专家提供咨询和指导。

Step3 用户标签化分析

本阶段工作对数据未来价值的影响最大。在实际的实施中不是一蹴而就的,是个长期递进的过程,需要根据业务变化和应用需要,不断优化和扩展用户标签体系。相关工作主要由熟悉行业的用户研究人员和数据挖掘/算法工程师根据企业业务的需要配合完成。

● 用户研究人员:基于全局的客户标签体系,对数据体现的用户行为进行深入研究和分析,并针对业务的需求,定义高应用价值的标签,并发现相关分析规则

● 数据挖掘/算法工程师:综合运用大数据技术(数据挖掘/机器学习等)方法,配合研究员进行挖掘,并完成标签分析的算法编程,使得大量标签的分析处理能以自动化方式来实现。

输出结果包括:

● 所有客户的标签化分析和描述结果。

● 特定客户群体/业务需求相关的深入分析报告。

Step4 业务实际应用

由企业各部门人员完成,业务人员对step3中产生的客户标签分析结果,结合实际业务需求提取和分析所需要的内容,并在后续的业务活动(如针对所选择客户的广告宣传、营销..)和决策分析中进行应用。

为了便于实际使用,对Step 3 中的分析结果建立统一的应用分析平台,支持业务人员灵活筛选/分析所有客户的标签化属性,并能够提供更深入的研究报告和最新的可视化分析工具,以支持企业更多更深层次的数据应用。

对于业务人员,如果缺乏使用分析结果的思路和想法,可通过培训和案例拓展其思路。同时在使用之后,需要根据业务情况与数据研究人员交流和不断反馈,协助提升标签分析模型的精度。

Step5 应用结果的反馈

在各部门使用数据开展业务后,需尽可能收集所接触客户的反馈结果。反馈结果的采集内容要参照全局数据体系的定义,通过便捷的电子化形式(如二维码问卷)完成和提交。这种反馈的闭环机制,可有效避免长期以来对客户实际感知的断裂,能有效提升用户标签化画像的准确度与后续应用价值。我们的一家外资药品企业客户,已经开始进行相关尝试,收到了良好的效果。

四、要注意的问题和解决方法

企业内部大数据整合挖掘与应用,当前已经受到许多行业内的领头企业的关注,并开始尝试。但由于缺乏体系化的思路和经验,遇到不少困难。企业在进行计划相关实施时,首先要注意如下问题:

1、建设思路与实施者的选择

从前面的阐述可以发现,内部大数据整合与应用挖掘,本质是用户深入研究与相关应用。不仅数据组织和标签体系,甚至IT相关的数据平台整合与建设,也遵循用户研究的思路来完成。用户研究/大数据挖掘技术(如数据挖掘/算法)人员是实施的核心团队。

遗憾的是,在我们接触的一些企业中,建设思路仍有很大偏差。有的仍然遵循IT系统建设的思路,认为应由IT企业来完成此事。实际上,IT企业并不具备实施中最重要的用户研究/数据挖掘等专业能力(其更适合step2/4所需的相关IT平台的开发)。而有的企业则认为这是CRM业务的延伸,适合CRM服务商完成。这也是不对的,CRM数据 /业务只是企业用户大数据/应用中的子集,CRM人员是用户研究结果的应用者而不是建立者。

以上错误认识直接影响了诸多企业内部大数据挖掘与相关应用的有效推进。某主流手机制造厂商,就是重技术平台,不重深入研究,觉得采集整合了大量数据后应用价值就水到渠成了。而某合资车企则是意向将该项目由国际着名it服务咨询企业来完成(事实上我们并不认为该咨询企业能够深入了解汽车行业的产业规律与用户特点)。某省移动运营商,在针对集团客户进行大数据整合与营销支撑服务时,由某上市it企业进行实施。虽然该企业的it研发能力很强,但由于因循传统业务流程管理的思路,一线客户经理无法从系统中获得对所服务集团客户的深入认识,也难以进行针对性的业务推广。

因此,企业内部大数据应用的实施,选择一个能力全面的实施者很重要。该实施者既要熟悉企业业务特性、具有专业的用户研究能力外,也要具有大数据相关的技术(平台架构设计/数据挖掘/大数据算法分析)能力,两者缺一不可。

2、整合数据时会遇到较大困难

企业在实施step2(数据整合集中)时大都遇到相同的问题:进度延误和数据集中未达设计目标,大大影响了后续的数据应用。

其原因主要如下:

●数据涉及的内部业务系统众多,而且开发商往往不同,加上各系统通常又被不同业务部门管理。因此,从各部门各业务系统整合数据,要牵扯多方(管理方、开发方)的部门权限、利益和精力。相关的协调/推进通常比较低效。

●实施整合的it企业,虽然熟悉内部数据细节,但大都是开发能力强,对大数据整合数据的主要工作(对接、同步和数据清洗等)缺乏经验和最优的方法

以上原因,再加上全局目标不明确,导致整合集中成为企业数据价值应用环节上最大的障碍。以某省运营商为例,其内部用户大数据整合工作,断断续续已经进行了近两年,仍未完成预期目标。

而要想避免此事,需要做到以下两点:

●高层要重视,且要有强有力的内部实施控制。公司层面的重视对打破各业务系统的数据壁垒有很大帮助,而专业的总控团队对进度和效果影响较大。以某大型企业客户为例,整合数据时涉及6个部门9大系统,难度相当大。公司由副总担任专项组长,信息中心组建专门团队负责实际协调和考核,最终按计划完成了相关工作,走在了同行的前列。

●由大数据处理与整合方面的技术专家,通过咨询/培训等手段,帮助it实施企业提升在数据整合技术方面的能力。

3、内部业务数据的完善任重而道远

数据属性缺失和数据质量问题,是企业内部业务数据最常见的问题,也很大影响了未来的应用价值。同时,在大数据环境下,客户数据的粒度/深度的不足也逐渐明显。如对某上市药企进行相关数据摸底时,发现客户相关的数据只到渠道级别,没有到达最终用户,导致大量最有价值的内容缺失。造成这些问题的核心原因是之前缺乏全局、体系性的数据框架和实施机制,业务各环节中采集数据的目标、方法和主动性都有不足,而这相关改变非一朝一夕可以完成。

对此,企业要注意:

●客户识别/接触体系不完善的,需尽快建立公司统一的客户体系(如会员系统)。

●要有明确的全局数据体系作为指导,相应建立采集和整合的制度化机制,使得各环节的业务人员对相关工作从自发变为自觉。

●要把外部大数据/应用反馈数据也纳入到数据体系中,统一规划构建相关的收集机制和融合方法。

●在此过程中不要摊子过大,结合情况分步骤实施,优先考虑最重要/最容易采集的数据资源。

三、hcr助力企业内部大数据应用

企业内部大数据研究应用要求实施者在行业/应用研究与大数据应用技术上具有全面而深入的综合能力。当前国内无论是研究行业还是it行业,符合相关要求的实施企业凤毛麟角。

而hcr作为领先的大小数据结合的数据研究公司,则完全具备相关能力:

●10多个行业的资深研究人员,长期面向企业研究,具有丰富的行业/用户研究经验。以b,qgroup为代表的研究团队,在帮助企业进行内外大数据研究方面经验丰富。

●hcr大数据平台部具有行业最强的大数据技术能力。数据架构组可帮助企业进行业务数据摸底,设计/规划适合企业特点的大数据体系与平台,并具有实际的技术实施能力。而挖掘算法组,在大数据环境下的挖掘算法/机器学习/非结构化文本分析方面实力强大,在配合研究人员进行用户标签化分析方面已经取得了丰富成果。

正是由于研究与技术的综合优势,hcr当前在帮助多个客户企业实现内部业务大数据的价值挖掘,使得客户能够通过大数据应用,为企业经营带来新的提升。

以上是小编为大家分享的关于企业最有价值的数据在哪里的相关内容,更多信息可以关注环球青藤分享更多干货

‘贰’ 什么样的企业更加需要重视数据分析

一、数据和信息量巨大的企业:企业在运营过程中能够采集和积累大量的数据和信息,如客户数据、产品数据、交易数据、原材料供应数据等等。电商、传统零售、餐饮、连锁等企业具有该特征。通过从大量的数据中挖掘潜力和数据的价值,能够大幅度改善企业的经营绩效。


二、资产密集型企业:资产密集的企业,需要充分发挥资产的价值,在数据分析的基础上,能够让企业充分挖掘资产价值潜力,提升企业经营绩效。


三、劳动密集型:劳动密集型的企业,通过数据分析,建立效率模型,在劳动力配备、劳动力潜力、劳动力闲置(idle time)、不作业分析、生产损失(loss analysis)、等等方面的数据分析,可以更好地利用劳动力,发挥效率,提升本来就不高的利润率。


四、多元化、跨区域经营的企业:多元化,特别是相关多元化的企业,需要利用数据分析,发挥多元化产业间的协同效应;跨区域经营,特别是有国际化的企业,需要通过数据分析,将企业的管理效率进一步提升。


五、多产品或多品牌经营的企业:通过数据分析可以分析各个产品或者品牌的效率效能,将产品组合或者品牌组合的合力发挥到极致,发挥组合的正效能,降低产品组合间的负影响。


六、决策风险高的企业:任何的决策对企业的战略绩效影响非常大,风险非常高,需要企业在做出重大决策时,不仅仅要谨慎、科学,还要多方论证,充分分析。因此对数据分析要求高。


七、决策响应速度要求高的企业:决策的响应速度关乎企业的生存,所以需要在短时期内处理大量的信息和数据,容不得长时间论证,为了保证决策的正确性,必须在平时做好功课,建立完善的数据分析系统,在需要做出决策的时候,有充分的数据分析作为保障。


八、流程衔接要求高的企业:企业在价值链上跨度大,需要上下游充分地合作,流程上相互间的衔接协作,保证效率,这要求各个环节信息对称,数据分析充分。通过数据分析,也能够清晰地认识如果出问题,是哪里出了问题,应该如何解决问题。发现问题所在,是解决问题的钥匙。


九、分权决策型的企业:分权而治,给分公司或业务单元充分的授权,能够提高企业针对业务特征和地方的特点,发挥地方的优势。但是,也会带来风险,数据分析能够降低信息的不对称性,让分权决策更加合理和科学,管理更加高效。


十、企业所处的环境竞争激励:在竞争越充分的市场上的企业越加需要数据分析来挖掘企业的潜力、资源潜力、提升竞争力,包括业务模式创新、产品创新、改善客户体验等以在激烈的市场上能够获得更高的竞争优势,因此更加需要将数据分析作为提升竞争力的关键要素。

‘叁’ 我想了解数据在企业在的重要性

数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。有了普遍深入的数据质量,企业在任何时候都可以信任满足所有需求的所有数据。

为了充分实现数据资产的业务价值,您需要一个数据集成平台。而Informatica 平台则是一个强大的数据集成平台,也是唯一可以让您向扩展型企业交付及时、可信的相关数据的数据集成平台(任何数据、任何时间、任何地点),无论是内部预置还是在云中。

Informatica Data Quality能帮助企业找出并修正藏匿于任意位置、令您的公司动辄花费上百万的数据质量问题。揭露所有数据域、应用程序和地域。汇集所有相关人员并帮助他们承担责任。清洗数据并保持数据清洁。

IDQ转换了您的业务部门工作方式。它使每个人都可以始终相信满足其各类用途的所有数据。

IDQ扩展了 Informatica 平台的现有数据质量功能,通过一个统一平台,为所有项目和业务应用程序的所有相关人士、项目和数据域(无论在内部预置,还是在云中),提供普遍深入的数据质量控制。

凭借 Informatica Data Quality,您的整个组织可以:
• 为所有应用程序主动清洗数据,保持数据清洁
• 共同肩负数据质量控制和数据治理责任
• 建立对企业数据的信心和信赖感

Informatica Data Quality的主要优势是:
降低成本
 通过重复使用一组单一的规则和工具和单一的开发环境来管理数据质量,从而降低成本:
 在所有应用程序中
 适用于所有数据域
 跨所有国家/地区和语言
 适用于所有数据集成项目

更高效地运作
 使业务分析师和数据管理员既可以查看和参与提高数据质量,又可以针对数据质量对其应用程序和流程的影响采取有效对策
 通过使业务部门能够参与数据质量流程,更快地解决业务问题
 通过给予业务分析师合适的工具来自行管理数据质量任务,从而减轻对 IT 部门的依赖
 可以更为高效地协作,以便在几天(而不是几月)内设计和实施满足业务需求所必需的数据规则
 凭借高质量的数据为合规性方案提供支持

提高 IT 部门工作效率
 通过协作工具和通用的项目环境,加速 IT 和业务部门之间的规范与复查的周期
 快速访问所有数据,从而更快完成数据质量项目
 跨所有应用程序,轻松构建、集中管理和快速部署可重用的数据质量规则
 通过运用能够为进行匹配和地址清洗提供数据探查和预建规则的开发环境,并在此熟悉的开发环境中构建数据质量映射,加快展开项目
 利用中途探查来快速验证数据质量转换情况
 成批或实时地部署数据质量规则,而不必重新编码

降低风险
 防范于未然,找出、解决和避免数据质量问题,从而让您的客户不会因此破费和丧失竞争优势
 构建可长期持续保持的数据质量流程并信任所有的企业数据
 通过在全球所有应用程序中统一实施数据质量控制,提高对企业数据对数据治理流程的支持的信心
 凭借久经考验的企业级部署技术,降低故障风险

‘肆’ 数据在企业中的重要地位是什么

各类数据在企业生产经营中起着至关重要的作用,
数据是企业,生产,经营,战略,等等,几乎所有的经营活动所依赖的,不可或缺的信息。数据就犹如企业经营者的眼睛一样,通过数据可以反映出经营的问题,就犹如舵手依赖导航一样。

数据类型可以分为:财务数据,生产数据,销售数据,市场数据,人力资源数据,等等,各种各样的数据,起到的作用也是不一样的。

举例销售数据:可以反映销售状况,通过不同的时间,市场环境,好坏,趋势,等等变量,反映经营状况,生产状况,企业经营者要根据数据做判断,来指导销售,生产,以及库存,制定生产计划等等。例如:去年焦炭企业连续亏损,企业就要根据市场数据做生产调整,来压缩产能,换取市场价格回升。等等。

财务数据,生产数据,等等的作用都是必须的,并且都是至关重要的,数据的缺失,或者统计不出来。企业经营者,管理者,就像瞎子过马路一样,危险的很。

其他数据的重要性都是一样的,我不在一一举例了,希望能够帮助你。

‘伍’ 为什么数据是人力资源最重要的资产

因为数据决定了招聘方对于应聘者的信息掌握完整程度。大数据时代,需要更多的详细数据对人的各项信息进行统计分析,并得出最适合公司人才需求结论。而人力资源研究的主体人,要对人的管理服务达到最科学最有效的状态,就需要有数据的支持,所以这就是为什么要建立数据库的原因

‘陆’ 国内大数据公司有哪些

国内大数据主力阵营:

1.阿里巴巴
阿里巴巴拥有交易数据和信用数据,更多是在搭建数据的流通、收集和分享的底层架构。

2.华为华为云服务
整合了高性能的计算和存储能力,为大数据的挖掘和分析提供专业稳定的IT基础设施平台,近来华为大数据存储实现了统一管理40PB文件系统

3.网络
网络的优势体现在海量的数据、沉淀十多年的用户行为数据、自然语言处理能力和深度学习领域的前沿研究。近来网络正式发布大数据引擎,将在政府、医疗、金融、零售、教育等传统领域率先开展对外合作。

4.浪潮
浪潮互联网大数据采集中心已经采集超过2PB数据,并已建立5大类数据分类处理算法。近日成功发布海量存储系统的最新代表产品AS130000。

5.腾讯
腾讯拥有用户关系数据和基于此产生的社交数据,腾讯的思路主要是用数据改进产品,注重QZONE、微信、电商等产品的后端数据打通。

‘柒’ 哪家公司做大数据采集做的比较好最好有一些成功案例的

深圳视界信息技术有限公司是一家以大数据技术与服务为核心的高新技术型企业。多年来致力于企业级数据整合、数据采集、清洗、分析及挖掘,在大数据领域拥有多项国际领先的知识产权和专利。旗下的“八爪鱼”大数据采集平台“数多多”数据资源交易平台均处于行业领先地位。

典型客户:

联想、当当网、三星、中国建设银行、每日经济新闻、快乐购、国家统计局、国泰安、陕西省信息中心、IDC咨询北京、艾瑞咨询、中国科学院、国家统计局国际统计信息中心、澳门大学、四川大学、台湾长庚大学。