查找有用的行情資料,學習更多百科知識
当前位置:首页 » 资源管理 » impala怎么用cpu资源
扩展阅读
期货卖出价格如何定价 2025-07-27 12:00:09

impala怎么用cpu资源

发布时间: 2022-07-10 07:36:45

① 大数据需要学编程吗

导读:

  • 第一章:初识Hadoop

  • 第二章:更高效的WordCount

  • 第三章:把别处的数据搞到Hadoop上

  • 第四章:把Hadoop上的数据搞到别处去

  • 第五章:快一点吧,我的SQL

  • 第六章:一夫多妻制

  • 第七章:越来越多的分析任务

  • 第八章:我的数据要实时

  • 第九章:我的数据要对外

  • 第十章:牛逼高大上的机器学习

  • 经常有初学者在博客和QQ问我,自己想往大数据方向发展,该学哪些技术,学习路线是什么样的,觉得大数据很火,就业很好,薪资很高。如果自己很迷茫,为了这些原因想往大数据方向发展,也可以,那么我就想问一下,你的专业是什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。。

    其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。请不要问我哪个容易,哪个前景好,哪个钱多。

    先扯一下大数据的4V特征:

  • 数据量大,TB->PB

  • 数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;

  • 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来;

  • 处理时效性高,海量数据的处理需求不再局限在离线计算当中。

  • 现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:

    文件存储:Hadoop HDFS、Tachyon、KFS
    离线计算:Hadoop MapRece、Spark
    流式、实时计算:Storm、Spark Streaming、S4、Heron
    K-V、NOSQL数据库:HBase、Redis、MongoDB
    资源管理:YARN、Mesos
    日志收集:Flume、Scribe、Logstash、Kibana
    消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
    查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
    分布式协调服务:Zookeeper
    集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
    数据挖掘、机器学习:Mahout、Spark MLLib
    数据同步:Sqoop
    任务调度:Oozie
    ……

    眼花了吧,上面的有30多种吧,别说精通了,全部都会使用的,估计也没几个。

    就我个人而言,主要经验是在第二个方向(开发/设计/架构),且听听我的建议吧。

    第一章:初识Hadoop

    1.1 学会网络与Google

    不论遇到什么问题,先试试搜索并自己解决。

    Google首选,翻不过去的,就用网络吧。

    1.2 参考资料首选官方文档

    特别是对于入门来说,官方文档永远是首选文档。

    相信搞这块的大多是文化人,英文凑合就行,实在看不下去的,请参考第一步。

    1.3 先让Hadoop跑起来

    Hadoop可以算是大数据存储和计算的开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

    关于Hadoop,你至少需要搞清楚以下是什么:

  • Hadoop 1.0、Hadoop 2.0

  • MapRece、HDFS

  • NameNode、DataNode

  • JobTracker、TaskTracker

  • Yarn、ResourceManager、NodeManager

  • 自己搭建Hadoop,请使用第一步和第二步,能让它跑起来就行。

    建议先使用安装包命令行安装,不要使用管理工具安装。

    另外:Hadoop1.0知道它就行了,现在都用Hadoop 2.0.

    1.4 试试使用Hadoop

    HDFS目录操作命令;
    上传、下载文件命令;
    提交运行MapRece示例程序;

    打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。

    知道Hadoop的系统日志在哪里。

    1.5 你该了解它们的原理了

    MapRece:如何分而治之;
    HDFS:数据到底在哪里,什么是副本;
    Yarn到底是什么,它能干什么;
    NameNode到底在干些什么;
    ResourceManager到底在干些什么;

    1.6 自己写一个MapRece程序

    请仿照WordCount例子,自己写一个(照抄也行)WordCount程序,
    打包并提交到Hadoop运行。

    你不会Java?Shell、Python都可以,有个东西叫Hadoop Streaming。

    如果你认真完成了以上几步,恭喜你,你的一只脚已经进来了。

    第二章:更高效的WordCount

    2.1 学点SQL吧

    你知道数据库吗?你会写SQL吗?
    如果不会,请学点SQL吧。

    2.2 SQL版WordCount

    在1.6中,你写(或者抄)的WordCount一共有几行代码?

    给你看看我的:

    SELECT word,COUNT(1) FROM wordcount GROUP BY word;

    这便是SQL的魅力,编程需要几十行,甚至上百行代码,我这一句就搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

    2.3 SQL On Hadoop之Hive

    什么是Hive?官方给的解释是:

    The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.

    为什么说Hive是数据仓库工具,而不是数据库工具呢?有的朋友可能不知道数据仓库,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库中的数据有这两个特点:最全的历史数据(海量)、相对稳定的;所谓相对稳定,指的是数据仓库不同于业务系统数据库,数据经常会被更新,数据一旦进入数据仓库,很少会被更新和删除,只会被大量查询。而Hive,也是具备这两个特点,因此,Hive适合做海量数据的数据仓库工具,而不是数据库工具。

    2.4 安装配置Hive

    请参考1.1 和 1.2 完成Hive的安装配置。可以正常进入Hive命令行。

    2.5 试试使用Hive

    请参考1.1 和 1.2 ,在Hive中创建wordcount表,并运行2.2中的SQL语句。
    在Hadoop WEB界面中找到刚才运行的SQL任务。

    看SQL查询结果是否和1.4中MapRece中的结果一致。

    2.6 Hive是怎么工作的

    明明写的是SQL,为什么Hadoop WEB界面中看到的是MapRece任务?

    2.7 学会Hive的基本命令

    创建、删除表;
    加载数据到表;
    下载Hive表的数据;

    请参考1.2,学习更多关于Hive的语法和命令。

    如果你已经按照《写给大数据开发初学者的话》中第一章和第二章的流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

  • 0和Hadoop2.0的区别;

  • MapRece的原理(还是那个经典的题目,一个10G大小的文件,给定1G大小的内存,如何使用Java程序统计出现次数最多的10个单词及次数);

  • HDFS读写数据的流程;向HDFS中PUT数据;从HDFS中下载数据;

  • 自己会写简单的MapRece程序,运行出现问题,知道在哪里查看日志;

  • 会写简单的SELECT、WHERE、GROUP BY等SQL语句;

  • Hive SQL转换成MapRece的大致流程;

  • Hive中常见的语句:创建表、删除表、往表中加载数据、分区、将表中数据下载到本地;

  • 从上面的学习,你已经了解到,HDFS是Hadoop提供的分布式存储框架,它可以用来存储海量数据,MapRece是Hadoop提供的分布式计算框架,它可以用来统计和分析HDFS上的海量数据,而Hive则是SQL On Hadoop,Hive提供了SQL接口,开发人员只需要编写简单易上手的SQL语句,Hive负责把SQL翻译成MapRece,提交运行。

    此时,你的”大数据平台”是这样的:

    那么问题来了,海量数据如何到HDFS上呢?

    第三章:把别处的数据搞到Hadoop上

    此处也可以叫做数据采集,把各个数据源的数据采集到Hadoop上。

    3.1 HDFS PUT命令

    这个在前面你应该已经使用过了。

    put命令在实际环境中也比较常用,通常配合shell、python等脚本语言来使用。

    建议熟练掌握。

    3.2 HDFS API

    HDFS提供了写数据的API,自己用编程语言将数据写入HDFS,put命令本身也是使用API。

    实际环境中一般自己较少编写程序使用API来写数据到HDFS,通常都是使用其他框架封装好的方法。比如:Hive中的INSERT语句,Spark中的saveAsTextfile等。

    建议了解原理,会写Demo。

    3.3 Sqoop

    Sqoop是一个主要用于Hadoop/Hive与传统关系型数据库Oracle/MySQL/SQLServer等之间进行数据交换的开源框架。

    就像Hive把SQL翻译成MapRece一样,Sqoop把你指定的参数翻译成MapRece,提交到Hadoop运行,完成Hadoop与其他数据库之间的数据交换。

    自己下载和配置Sqoop(建议先使用Sqoop1,Sqoop2比较复杂)。

    了解Sqoop常用的配置参数和方法。

    使用Sqoop完成从MySQL同步数据到HDFS;
    使用Sqoop完成从MySQL同步数据到Hive表;

    PS:如果后续选型确定使用Sqoop作为数据交换工具,那么建议熟练掌握,否则,了解和会用Demo即可。

    3.4 Flume

    Flume是一个分布式的海量日志采集和传输框架,因为“采集和传输框架”,所以它并不适合关系型数据库的数据采集和传输。

    Flume可以实时的从网络协议、消息系统、文件系统采集日志,并传输到HDFS上。

    因此,如果你的业务有这些数据源的数据,并且需要实时的采集,那么就应该考虑使用Flume。

    下载和配置Flume。

    使用Flume监控一个不断追加数据的文件,并将数据传输到HDFS;

    PS:Flume的配置和使用较为复杂,如果你没有足够的兴趣和耐心,可以先跳过Flume。

    3.5 阿里开源的DataX

    之所以介绍这个,是因为我们公司目前使用的Hadoop与关系型数据库数据交换的工具,就是之前基于DataX开发的,非常好用。

    可以参考我的博文《异构数据源海量数据交换工具-Taobao DataX 下载和使用》。

    现在DataX已经是3.0版本,支持很多数据源。

    你也可以在其之上做二次开发。

    PS:有兴趣的可以研究和使用一下,对比一下它与Sqoop。

    如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

    第四章:把Hadoop上的数据搞到别处去

    前面介绍了如何把数据源的数据采集到Hadoop上,数据到Hadoop上之后,便可以使用Hive和MapRece进行分析了。那么接下来的问题是,分析完的结果如何从Hadoop上同步到其他系统和应用中去呢?

    其实,此处的方法和第三章基本一致的。

    4.1 HDFS GET命令

    把HDFS上的文件GET到本地。需要熟练掌握。

    4.2 HDFS API

    同3.2.

    4.3 Sqoop

    同3.3.

    使用Sqoop完成将HDFS上的文件同步到MySQL;
    使用Sqoop完成将Hive表中的数据同步到MySQL;

    4.4 DataX

    同3.5.

    如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

    如果你已经按照《写给大数据开发初学者的话2》中第三章和第四章的流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

    知道如何把已有的数据采集到HDFS上,包括离线采集和实时采集;

    你已经知道sqoop(或者还有DataX)是HDFS和其他数据源之间的数据交换工具;

    你已经知道flume可以用作实时的日志采集。

    从前面的学习,对于大数据平台,你已经掌握的不少的知识和技能,搭建Hadoop集群,把数据采集到Hadoop上,使用Hive和MapRece来分析数据,把分析结果同步到其他数据源。

    接下来的问题来了,Hive使用的越来越多,你会发现很多不爽的地方,特别是速度慢,大多情况下,明明我的数据量很小,它都要申请资源,启动MapRece来执行。

    第五章:快一点吧,我的SQL

    其实大家都已经发现Hive后台使用MapRece作为执行引擎,实在是有点慢。

    因此SQL On Hadoop的框架越来越多,按我的了解,最常用的按照流行度依次为SparkSQL、Impala和Presto.

    这三种框架基于半内存或者全内存,提供了SQL接口来快速查询分析Hadoop上的数据。关于三者的比较,请参考1.1.

    我们目前使用的是SparkSQL,至于为什么用SparkSQL,原因大概有以下吧:

    使用Spark还做了其他事情,不想引入过多的框架;

    Impala对内存的需求太大,没有过多资源部署;

    5.1 关于Spark和SparkSQL

    什么是Spark,什么是SparkSQL。
    Spark有的核心概念及名词解释。
    SparkSQL和Spark是什么关系,SparkSQL和Hive是什么关系。
    SparkSQL为什么比Hive跑的快。

    5.2 如何部署和运行SparkSQL

    Spark有哪些部署模式?
    如何在Yarn上运行SparkSQL?
    使用SparkSQL查询Hive中的表。

    PS: Spark不是一门短时间内就能掌握的技术,因此建议在了解了Spark之后,可以先从SparkSQL入手,循序渐进。

    关于Spark和SparkSQL,可参考http://lxw1234.com/archives/category/spark

    如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

    第六章:一夫多妻制

    请不要被这个名字所诱惑。其实我想说的是数据的一次采集、多次消费。

    在实际业务场景下,特别是对于一些监控日志,想即时的从日志中了解一些指标(关于实时计算,后面章节会有介绍),这时候,从HDFS上分析就太慢了,尽管是通过Flume采集的,但Flume也不能间隔很短就往HDFS上滚动文件,这样会导致小文件特别多。

    为了满足数据的一次采集、多次消费的需求,这里要说的便是Kafka。

    6.1 关于Kafka

    什么是Kafka?

    Kafka的核心概念及名词解释。

    6.2 如何部署和使用Kafka

    使用单机部署Kafka,并成功运行自带的生产者和消费者例子。

    使用Java程序自己编写并运行生产者和消费者程序。

    Flume和Kafka的集成,使用Flume监控日志,并将日志数据实时发送至Kafka。

    如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

    这时,使用Flume采集的数据,不是直接到HDFS上,而是先到Kafka,Kafka中的数据可以由多个消费者同时消费,其中一个消费者,就是将数据同步到HDFS。

    如果你已经按照《写给大数据开发初学者的话3》中第五章和第六章的流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

  • 为什么Spark比MapRece快。

  • 使用SparkSQL代替Hive,更快的运行SQL。

  • 使用Kafka完成数据的一次收集,多次消费架构。

  • 自己可以写程序完成Kafka的生产者和消费者。

  • 从前面的学习,你已经掌握了大数据平台中的数据采集、数据存储和计算、数据交换等大部分技能,而这其中的每一步,都需要一个任务(程序)来完成,各个任务之间又存在一定的依赖性,比如,必须等数据采集任务成功完成后,数据计算任务才能开始运行。如果一个任务执行失败,需要给开发运维人员发送告警,同时需要提供完整的日志来方便查错。

    第七章:越来越多的分析任务

    不仅仅是分析任务,数据采集、数据交换同样是一个个的任务。这些任务中,有的是定时触发,有点则需要依赖其他任务来触发。当平台中有几百上千个任务需要维护和运行时候,仅仅靠crontab远远不够了,这时便需要一个调度监控系统来完成这件事。调度监控系统是整个数据平台的中枢系统,类似于AppMaster,负责分配和监控任务。

    7.1 Apache Oozie

    1. Oozie是什么?有哪些功能?
    2. Oozie可以调度哪些类型的任务(程序)?
    3. Oozie可以支持哪些任务触发方式?
    4. 安装配置Oozie。

第八章:我的数据要实时

在第六章介绍Kafka的时候提到了一些需要实时指标的业务场景,实时基本可以分为绝对实时和准实时,绝对实时的延迟要求一般在毫秒级,准实时的延迟要求一般在秒、分钟级。对于需要绝对实时的业务场景,用的比较多的是Storm,对于其他准实时的业务场景,可以是Storm,也可以是Spark Streaming。当然,如果可以的话,也可以自己写程序来做。

8.1 Storm

1. 什么是Storm?有哪些可能的应用场景?
2. Storm由哪些核心组件构成,各自担任什么角色?
3. Storm的简单安装和部署。
4. 自己编写Demo程序,使用Storm完成实时数据流计算。

8.2 Spark Streaming

1. 什么是Spark Streaming,它和Spark是什么关系?
2. Spark Streaming和Storm比较,各有什么优缺点?
3. 使用Kafka + Spark Streaming,完成实时计算的Demo程序。

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

至此,你的大数据平台底层架构已经成型了,其中包括了数据采集、数据存储与计算(离线和实时)、数据同步、任务调度与监控这几大模块。接下来是时候考虑如何更好的对外提供数据了。

第九章:我的数据要对外

通常对外(业务)提供数据访问,大体上包含以下方面:

离线:比如,每天将前一天的数据提供到指定的数据源(DB、FILE、FTP)等;离线数据的提供可以采用Sqoop、DataX等离线数据交换工具。

实时:比如,在线网站的推荐系统,需要实时从数据平台中获取给用户的推荐数据,这种要求延时非常低(50毫秒以内)。

根据延时要求和实时数据的查询需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。

OLAP分析:OLAP除了要求底层的数据模型比较规范,另外,对查询的响应速度要求也越来越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的数据模型比较规模,那么Kylin是最好的选择。

即席查询:即席查询的数据比较随意,一般很难建立通用的数据模型,因此可能的方案有:Impala、Presto、SparkSQL。

这么多比较成熟的框架和方案,需要结合自己的业务需求及数据平台技术架构,选择合适的。原则只有一个:越简单越稳定的,就是最好的。

如果你已经掌握了如何很好的对外(业务)提供数据,那么你的“大数据平台”应该是这样的:

第十章:牛逼高大上的机器学习

关于这块,我这个门外汉也只能是简单介绍一下了。数学专业毕业的我非常惭愧,很后悔当时没有好好学数学。

在我们的业务中,遇到的能用机器学习解决的问题大概这么三类:

  • 分类问题:包括二分类和多分类,二分类就是解决了预测的问题,就像预测一封邮件是否垃圾邮件;多分类解决的是文本的分类;

  • 聚类问题:从用户搜索过的关键词,对用户进行大概的归类。

  • 推荐问题:根据用户的历史浏览和点击行为进行相关推荐。

  • 大多数行业,使用机器学习解决的,也就是这几类问题

② 求大数据分析技术

目前,大数据领域每年都会涌现出大量新的技术,成为大数据获取、存储、处理分析或可视化的有效手段。大数据技术能够将大规模数据中隐藏的信息和知识挖掘出来,为人类社会经济活动提供依据,提高各个领域的运行效率,甚至整个社会经济的集约化程度。

01 大数据生命周期

③ 为什么Impala要使用C++语言,而不是Java

Impala的最大特点也是最大卖点就是它的快速
因为c++直接编译成机器指令的,执行效率相对java要高一些,java是在jvm虚拟机里运行的,效率相对c++要低一些。
就好比苹果手机和android手机一样,android用java开发的app体验总的来说流畅度还是没有objective-c、swift编写的app(objective-c、swift也是编译成机器指令的)好

④ impalashell的用法 shell脚本怎么写

我们可以使用Impala Shell来运行查询任务。当然首先服务端的Impala必须先运行起来。
(1)运行Impala服务端
1.运行statestored
GLOG_v=1 nohup /usr/bin/statestored -state_store_port=24000
2.运行impalad
GLOG_v=1 impalad -state_store_host=slaver1 -state_store_port=24000 -ipaddress=**** -nn=master -nn_port=9000
(2)运行Impala客户端
1.启动Impala shell,连接到Impalad

2.运行connect命令连接到Impala instance

按两次Tab键或者输入help命令可以查看可运行的命令
(1)按两次Tab键,显示如下:

(2)输入help命令,显示如下:

运行select命令进行查询

⑤ 大数据分析应该掌握哪些基础知识呢

前言,学大数据要先换电脑:

保证电脑4核8G内存64位操作系统,尽量有ssd做系统盘,否则卡到你丧失信心。硬盘越大越好。
1,语言要求

java刚入门的时候要求javase。

scala是学习spark要用的基本使用即可。

后期深入要求:
java NIO,netty,多线程,ClassLoader,jvm底层及调优等,rpc。
2,操作系统要求
linux 基本的shell脚本的使用。

crontab的使用,最多。

cpu,内存,网络,磁盘等瓶颈分析及状态查看的工具。

scp,ssh,hosts的配置使用。

telnet,ping等网络排查命令的使用
3,sql基本使用
sql是基础,hive,sparksql等都需要用到,况且大部分企业也还是以数据仓库为中心,少不了sql。

sql统计,排序,join,group等,然后就是sql语句调优,表设计等。

4,大数据基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析。

5,maprece及相关框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件输入格式,map数目,rece数目,调优等。
6,hive和hbase等仓库
hive和hbase基本是大数据仓库的标配。要回用,懂调优,故障排查。

hbase看浪尖hbase系列文章。hive后期更新。

7,消息队列的使用
kafka基本概念,使用,瓶颈分析。看浪尖kafka系列文章。

8,实时处理系统
storm和spark Streaming

9,spark core和sparksql
spark用于离线分析的两个重要功能。

10,最终方向决策
a),运维。(精通整套系统及故障排查,会写运维脚本啥的。)

b),数据分析。(算法精通)

c),平台开发。(源码精通)

自学还是培训?
无基础的同学,培训之前先搞到视频通学一遍,防止盲目培训跟不上讲师节奏,浪费时间,精力,金钱。
有基础的尽量搞点视频学基础,然后跟群里大牛交流,前提是人家愿意,
想办法跟大牛做朋友才是王道。

⑥ Hadoop的应用领域有哪些

Hadoop本身是一个生态圈. 整个生态圈里包含了底层的分布式存储HDFS, 计算框架Maprece, 集群调度管理工具Zookeeper,集群资源管理工具YARN, 分布式数据库HBASE等等. 我拿淘宝的店铺淘生意举一个例子吧, 可能不是那么准确:
比如一个店铺一天有10万的访客量, 你想分析的诸如这些访客来自哪里,性别,年龄,访问过什么商品,买过什么商品等等都会在访问网站的时候留下相关的痕迹文件(简称日志),比如这些文件一天就有1TB,那么你怎么存大文件?一个客户可能对应的特性就有上万条,你怎么在数据库里存大表,又怎么分析用户特性?这些都依赖于Hadoop的框架.
现在假设你有一个10台机器的集群:
HDFS:可以将你每天生成的1TB文件拆分存储在这个集群内. Zookeeper可以监控你的文件系统以及其他主从框架的服务是否正常在线. YARN则可在集群内协调你的CPU/内存资源,当有任务的时候可以合理分配资源进行计算,Maprece则是执行分析计算的基本框架,HBASE则可以将你分析后的数据保存在整个分布式集群内. 以供其它应用来进行进一步的分析展示. 其它的Spark/Storm/HIVE/Impala/cassandra 等等在这就不说了.
总之,涉及超大数据进行存储分析等领域,都是以Hadoop为基本框架的,至少底层都是HDFS 纯手打,忘采纳.

⑦ 什么是impala,如何安装使用Impala

一、Impala简介
Cloudera Impala对你存储在Apache Hadoop在HDFS,HBase的数据提供直接查询互动的SQL。除了像Hive使用相同的统一存储平台,Impala也使用相同的元数据,SQL语法(Hive SQL),ODBC驱动程序和用户界面(Hue Beeswax)。Impala还提供了一个熟悉的面向批量或实时查询和统一平台。
二、Impala安装
1.安装要求
(1)软件要求

Red Hat Enterprise Linux (RHEL)/CentOS 6.2 (64-bit)
CDH 4.1.0 or later
Hive
MySQL

(2)硬件要求
在Join查询过程中需要将数据集加载内存中进行计算,因此对安装Impalad的内存要求较高。
2、安装准备

(1)操作系统版本查看
>more/etc/issue
CentOSrelease 6.2 (Final)
Kernel \ron an \m
(2)机器准备
10.28.169.112mr5
10.28.169.113mr6
10.28.169.114mr7
10.28.169.115mr8

各机器安装角色
mr5:NameNode、ResourceManager、SecondaryNameNode、Hive、impala-state-store
mr6、mr7、mr8:DataNode、NodeManager、impalad
(3)用户准备
在各个机器上新建用户hadoop,并打通ssh
(4)软件准备
到cloudera官网下载:
Hadoop:
hadoop-2.0.0-cdh4.1.2.tar.gz
hive:
hive-0.9.0-cdh4.1.2.tar.gz
impala:
impala-0.3-1.p0.366.el6.x86_64.rpm
impala-debuginfo-0.3-1.p0.366.el6.x86_64.rpm
impala-server-0.3-1.p0.366.el6.x86_64.rpm
impala-shell-0.3-1.p0.366.el6.x86_64.rpm
impala依赖包下载:

4、hadoop-2.0.0-cdh4.1.2安装

(1)安装包准备
hadoop用户登录到mr5机器,将hadoop-2.0.0-cdh4.1.2.tar.gz上传到/home/hadoop/目录下并解压:
tar zxvf hadoop-2.0.0-cdh4.1.2.tar.gz
(2)配置环境变量
修改mr5机器hadoop用户主目录/home/hadoop/下的.bash_profile环境变量:
exportJAVA_HOME=/usr/jdk1.6.0_30
exportJAVA_BIN=${JAVA_HOME}/bin
exportCLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export JAVA_OPTS="-Djava.library.path=/usr/local/lib-server -Xms1024m -Xmx2048m -XX:MaxPermSize=256m -Djava.awt.headless=true-Dsun.net.client.defaultReadTimeout=600
00-Djmagick.systemclassloader=no -Dnetworkaddress.cache.ttl=300-Dsun.net.inetaddr.ttl=300"
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=$HADOOP_HOME
exportHADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
export PATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
(3)修改配置文件
在机器mr5上hadoop用户登录修改hadoop的配置文件(配置文件目录:hadoop-2.0.0-cdh4.1.2/etc/hadoop)
(1)、slaves :
添加以下节点
mr6
mr7
mr8

(2)、hadoop-env.sh :
增加以下环境变量
exportJAVA_HOME=/usr/jdk1.6.0_30
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=${HADOOP_HOME}
export HADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop

(3)、core-site.xml :

fs.default.name
hdfs://mr5:9000
The name of the defaultfile system.Either the literal string "local" or a host:port forNDFS.
true

io.native.lib.available
true

hadoop.tmp.dir
/home/hadoop/tmp
A base for other temporarydirectories.

(4)、hdfs-site.xml :

dfs.namenode.name.dir
file:/home/hadoop/dfsdata/name
Determines where on thelocal filesystem the DFS name node should store the name table.If this is acomma-delimited list of directories,then name table is replicated in all of thedirectories,for rendancy.
true

dfs.datanode.data.dir
file:/home/hadoop/dfsdata/data
Determines where on thelocal filesystem an DFS data node should store its blocks.If this is acomma-delimited list of directories,then data will be stored in all nameddirectories,typically on different devices.Directories that do not exist areignored.

true

dfs.replication
3

dfs.permission
false

(5)、mapred-site.xml:

maprece.framework.name
yarn

maprece.job.tracker
hdfs://mr5:9001
true

maprece.task.io.sort.mb
512

maprece.task.io.sort.factor
100

maprece.rece.shuffle.parallelcopies
50

maprece.cluster.temp.dir
file:/home/hadoop/mapreddata/system
true

maprece.cluster.local.dir
file:/home/hadoop/mapreddata/local
true

(6)、yarn-env.sh :
增加以下环境变量
exportJAVA_HOME=/usr/jdk1.6.0_30
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=${HADOOP_HOME}
exportHADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop

(7)、yarn-site.xml:

yarn.resourcemanager.address
mr5:8080

yarn.resourcemanager.scheler.address
mr5:8081

yarn.resourcemanager.resource-tracker.address
mr5:8082

yarn.nodemanager.aux-services
maprece.shuffle

yarn.nodemanager.aux-services.maprece.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler

yarn.nodemanager.local-dirs
file:/home/hadoop/nmdata/local
thelocal directories used by the nodemanager

yarn.nodemanager.log-dirs
file:/home/hadoop/nmdata/log
thedirectories used by Nodemanagers as log directories

(4)拷贝到其他节点
(1)、在mr5上配置完第2步和第3步后,压缩hadoop-2.0.0-cdh4.1.2
rm hadoop-2.0.0-cdh4.1.2.tar.gz
tar zcvf hadoop-2.0.0-cdh4.1.2.tar.gz hadoop-2.0.0-cdh4.1.2

然后将hadoop-2.0.0-cdh4.1.2.tar.gz远程拷贝到mr6、mr7、mr8机器上
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr6:/home/hadoop/
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr7:/home/hadoop/
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr8:/home/hadoop/

(2)、将mr5机器上hadoop用户的配置环境的文件.bash_profile远程拷贝到mr6、mr7、mr8机器上
scp/home/hadoop/.bash_profile hadoop@mr6:/home/hadoop/
scp/home/hadoop/.bash_profile hadoop@mr7:/home/hadoop/
scp/home/hadoop/.bash_profile hadoop@mr8:/home/hadoop/
拷贝完成后,在mr5、mr6、mr7、mr8机器的/home/hadoop/目录下执行
source.bash_profile
使得环境变量生效
(5)启动hdfs和yarn
以上步骤都执行完成后,用hadoop用户登录到mr5机器依次执行:
hdfsnamenode -format
start-dfs.sh
start-yarn.sh
通过jps命令查看:
mr5成功启动了NameNode、ResourceManager、SecondaryNameNode进程;
mr6、mr7、mr8成功启动了DataNode、NodeManager进程。
(6)验证成功状态
通过以下方式查看节点的健康状态和作业的执行情况:
浏览器访问(本地需要配置hosts)

5、hive-0.9.0-cdh4.1.2安装

(1)安装包准备
使用hadoop用户上传hive-0.9.0-cdh4.1.2到mr5机器的/home/hadoop/目录下并解压:
tar zxvf hive-0.9.0-cdh4.1.2

(2)配置环境变量
在.bash_profile添加环境变量:
exportHIVE_HOME=/home/hadoop/hive-0.9.0-cdh4.1.2
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${HIVE_HOME}/bin
exportHIVE_CONF_DIR=$HIVE_HOME/conf
exportHIVE_LIB=$HIVE_HOME/lib

添加完后执行以下命令使得环境变量生效:
..bash_profile

(3)修改配置文件
修改hive配置文件(配置文件目录:hive-0.9.0-cdh4.1.2/conf/)
在hive-0.9.0-cdh4.1.2/conf/目录下新建hive-site.xml文件,并添加以下配置信息:

hive.metastore.local
true

javax.jdo.option.ConnectionURL
jdbc:mysql://10.28.169.61:3306/hive_impala?createDatabaseIfNotExist=true

javax.jdo.option.ConnectionDriverName
com.mysql.jdbc.Driver

javax.jdo.option.ConnectionUserName
hadoop

javax.jdo.option.ConnectionPassword
123456

hive.security.authorization.enabled
false

hive.security.authorization.createtable.owner.grants
ALL

hive.querylog.location
${user.home}/hive-logs/querylog

(4)验证成功状态
完成以上步骤之后,验证hive安装是否成功
在mr5命令行执行hive,并输入”show tables;”,出现以下提示,说明hive安装成功:
>hive
hive>show tables;
OK
Time taken:18.952 seconds
hive>

6、impala安装
说明:
(1)、以下1、2、3、4步是在root用户分别在mr5、mr6、mr7、mr8下执行
(2)、以下第5步是在hadoop用户下执行
(1)安装依赖包:
安装mysql-connector-java:
yum install mysql-connector-java
安装bigtop
rpm -ivh bigtop-utils-0.4+300-1.cdh4.0.1.p0.1.el6.noarch.rpm
安装libevent
rpm -ivhlibevent-1.4.13-4.el6.x86_64.rpm
如存在其他需要安装的依赖包,可以到以下链接:
http://mirror.bit.e.cn/centos/6.3/os/x86_64/Packages/进行下载。
(2)安装impala的rpm,分别执行
rpm -ivh impala-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-server-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-debuginfo-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-shell-0.3-1.p0.366.el6.x86_64.rpm
(3)找到impala的安装目录
完成第1步和第2步后,通过以下命令:
find / -name impala
输出:
/usr/lib/debug/usr/lib/impala
/usr/lib/impala
/var/run/impala
/var/log/impala
/var/lib/alternatives/impala
/etc/default/impala
/etc/alternatives/impala

找到impala的安装目录:/usr/lib/impala
(4)配置Impala
在Impala安装目录/usr/lib/impala下创建conf,将hadoop中的conf文件夹下的core-site.xml、hdfs-site.xml、hive中的conf文件夹下的hive-site.xml复制到其中。
在core-site.xml文件中添加如下内容:

dfs.client.read.shortcircuit
true

dfs.client.read.shortcircuit.skip.checksum
false

在hadoop和impala的hdfs-site.xml文件中添加如下内容并重启hadoop和impala:

dfs.datanode.data.dir.perm
755

dfs.block.local-path-access.user
hadoop

dfs.datanode.hdfs-blocks-metadata.enabled
true

(5)启动服务
(1)、在mr5启动Impala state store,命令如下:
>GLOG_v=1 nohup statestored-state_store_port=24000 &
如果statestore正常启动,可以在/tmp/statestored.INFO查看。如果出现异常,可以查看/tmp/statestored.ERROR定位错误信息。

(2)、在mr6、mr7、mr8启动Impalad,命令如下:
mr6:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr6 -ipaddress=10.28.169.113 &
mr7:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr7 -ipaddress=10.28.169.114 &
mr8:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr8 -ipaddress=10.28.169.115 &
如果impalad正常启动,可以在/tmp/impalad.INFO查看。如果出现异常,可以查看/tmp/ impalad.ERROR定位错误信息。

(6)使用shell
使用impala-shell启动Impala Shell,分别连接各Impalad主机(mr6、mr7、mr8),刷新元数据,之后就可以执行shell命令。相关的命令如下(可以在任意节点执行):
>impala-shell
[Not connected]> connect mr6:21000
[mr6:21000] >refresh
[mr6:21000]>connectmr7:21000
[mr7:21000]>refresh
[mr7:21000]>connectmr8:21000
[mr8:21000]>refresh
(7)验证成功状态
使用impala-shell启动Impala Shell,分别连接各Impalad主机,刷新元数据,之后就可以执行shell命令。相关的命令如下(可以在任意节点执行):
>impala-shell
[Not connected]> connect mr6:21000
[mr6:21000]>refresh
[mr6:21000] >show databases
default
[mr6:21000] >
出现以上提示信息,说明安装成功。

⑧ 为什么impala主要场景用于数据分析(应用层)与而hive的使用场景却是(数仓)

impala擅长的是秒级查询数据,不擅长数据的清洗和计算

⑨ 基于spark SQL之上的检索与排序对比性能测试

之前做过一年的spark研发,之前在阿里与腾讯也做了很久的hive,所以对这方面比较了解。

第一:其实快多少除了跟spark与hive本身的技术实现外,也跟机器性能,底层操作系统的参数优化息息相关,不能一概而论。

第二:hive 目前应该还是业界的主流,毕竟快与慢很多时候并非是至关重要的,对于一个生产系统来说,更重要的应该是稳定性,spark毕竟还算是比较新兴的事务,快确实快,但是稳定性上距离hive相差甚远。关于spark我们也修复了很多关于内存泄露的BUG,因为您问的是性能,所以不过多介绍(可以跟我要YDB编程指南,里面有我对这些BUG的修正)

第三:关于性能,我测试的可能不够全面,只能在排序与检索过滤上提供我之前的基于YDB的BLOCK sort测试报告供您参考(网络上贴word太费劲,您可以跟我要 word文档)。

排序可以说是很多日志系统的硬指标(如按照时间逆序排序),如果一个大数据系统不能进行排序,基本上是这个系统属于不可用状态,排序算得上是大数据系统的一个“刚需”,无论大数据采用的是hadoop,还是spark,还是impala,hive,总之排序是必不可少的,排序的性能测试也是必不可少的。
有着计算奥运会之称的Sort Benchmark全球排序每年都会举行一次,每年巨头都会在排序上进行巨大的投入,可见排序速度的高低有多么重要!但是对于大多数企业来说,动辄上亿的硬件投入,实在划不来、甚至远远超出了企业的项目预算。相比大数据领域的暴力排序有没有一种更廉价的实现方式?

在这里,我们为大家介绍一种新的廉价排序方法,我们称为blockSort。

500G的数据300亿条数据,只使用4台 16核,32G内存,千兆网卡的虚拟机即可实现 2~15秒的 排序 (可以全表排序,也可以与任意筛选条件筛选后排序)。

一、基本的思想是这样的,如下图所示:

1.将数据按照大小预先划分好,如划分成 大、中、小三个块(block)。

2.如果想找最大的数据,那么只需要在最大的那个块里去找就可以了。

3.这个快还是有层级结构的,如果每个块内的数据量很多,可以到下面的子快内进行继续查找,可以分多个层进行排序。

4.采用这种方法,一个亿万亿级别的数据(如long类型),最坏最坏的极端情况也就进行2048次文件seek就可以筛选到结果。

五、哪些用户适合使用YDB?


1.传统关系型数据,已经无法容纳更多的数据,查询效率严重受到影响的用户。

2.目前在使用SOLR、ES做全文检索,觉得solr与ES提供的分析功能太少,无法完成复杂的业务逻辑,或者数据量变多后SOLR与ES变得不稳定,在掉片与均衡中不断恶性循环,不能自动恢复服务,运维人员需经常半夜起来重启集群的情况。

3.基于对海量数据的分析,但是苦于现有的离线计算平台的速度和响应时间无满足业务要求的用户。

4.需要对用户画像行为类数据做多维定向分析的用户。

5.需要对大量的UGC(User Generate Content)数据进行检索的用户。

6.当你需要在大数据集上面进行快速的,交互式的查询时。

7.当你需要进行数据分析,而不只是简单的键值对存储时。

8.当你想要分析实时产生的数据时。


ps:说了一大堆,说白了最适合的还是踪迹分析因为数据量大,数据还要求实时,查询还要求快。这才是关键。

⑩ Hadoop下的impala数据库语法应用

Impala的SQL解析与执行计划生成部分是由impala-frontend(Java)实现的,监听端口是21000。用户通过Beeswax接口BeeswaxService.query()提交一个请求,在impalad端的处理逻辑是由void ImpalaServer::query(QueryHandle& query_handle, const Query& query)这个函数(在impala-beeswax-server.cc中实现)完成的。
在impala中一条SQL语句先后经历BeeswaxService.Query->TClientRequest->TExecRequest,最后把TExecRequest交由impala-coordinator分发给多个backend处理。本文主要讲一条SQL语句是怎么一步一步变成TExecRequest的。