⑴ 要做个吹塑模子,PE的塑料,模具钢用什么好
45#是比较差的才用,而且容易生锈,现在常用的好象是煅打的2Cr13(不锈铁),大概是16.5一公斤吧.
⑵ 吹塑成型中型胚厚度的调整方法有哪些
PVC、热塑性工程塑料、热塑性弹性体等聚合物及各种共混物,主要用于成型包装容器,储存罐与大桶,还可成型用于汽车工业等工业制件。挤出吹塑成型跟其他的塑料中空成型一样,其主要优点是生产的产品成本低,工艺简单,效益高,但其突出缺点是制品壁厚尺寸及均匀性不易控制[1]。
挤出吹塑成型是将挤出成型的半熔融状态的塑料管坯(型坯),趁热置于各种形状的模具中,并即时在管坯中通入压缩空气将其吹胀,使其紧贴于模腔壁上成型,经冷却脱模后得到中空制件的热成型过程。它的整个成型过程可以分为:型坯形成、型坯吹胀以及冷却和固化三阶段。
国内外的研究者从60年代一直到现在都力图用不同的方法来研究挤出吹塑成型的各个阶段以及全过程,但总的来说大致可分为两大类:实验研究和数值分析技术。数值分析法是建立在连续性方程,运动方程和能量方程三大基本方程上,须做大量假设来简化方程,用有限差分或有限元法求解。而且本构方程中的某些流变参数数据也不易得到。对于形状复杂的在制品,需要耗大量的计算机时间。实验研究则是最简单直接的方法。
下面对挤出吹塑各个阶段的实验研究状况进行综述分析。
2.型坯成型阶段研究状况
型坯形成是指通过挤出成型得到半熔融状态的塑料管坯(型坯)。随着中空吹塑制件的几何形状越来越复杂,设计良好的预成型型坯对以最小的材料消耗获得所需求的壁厚分布且结构稳定的制件有着重要的意义,也就是在型坯成型阶段通过采用调节型坯的壁厚分布形状,以使吹塑制品的壁厚分布趋于均匀。由于型坯形成时的挤出膨胀、下垂、回弹等因素使得型胚成型阶段型胚尺寸在长度方向不一致而变得非常复杂。
由于挤出的聚合物型坯温度高而无法直接测量,对挤出吹塑中型坯成型阶段的实验研究主要是设计实验方法来测量型胚直径分布和壁厚分布。最早用实验方法研究而获得型坯尺寸的是Sheptakr等人。他们设计了一种被称为“夹坯型”的特殊模具来分析型坯。这种装置只能得到型坯的质量膨胀Sw,但不能直接得到型坯的直径和壁厚膨胀。Kalyon等[2]在上述装置上增加了一套摄像装置,可用于拍摄模具夹坯前型坯的图像,从而可获得型坯的直径分布。这种方法能得到较精确的型坯直径分布,但较费时,且不能用于在线测量,因此限制了它的实际应用。
另一种测量型坯膨胀的方法是塑料熔体直接挤出到与熔体相同温度和密度的油中,这样可以在无垂伸和固化的条件下测量型坯的膨胀;同时由于油箱侧壁是透明玻璃,可在一定的时间间隔内对型坯进行拍照;又由于塑料熔体的透明性,根据照片就可确定型坯内外的直径分布。由于型坯膨胀,型坯的形状尺寸沿着型坯长度方向是不一致的。为了标识数据测量的位置,每隔固定时间用喷墨装置把碳黑粒子喷射到型坯表面上做记号。但这种方法没有考虑垂伸的影响,难以在实际生产中应用。
随着图像分析技术的发展,越来越多的研究者都偏向使用图像分析技术来确定型坯尺寸。型坯的直径分布可通过图像直接测量,但型坯的厚度分布则不能,它只能间接计算得到。许多的研究者试着用不同的测量手段和算法来计算型坯壁厚分布。P.L.Swan 等[3]设计了一套使用两台摄像机的装置来测量型坯膨胀尺寸(如图4所示)。让型坯挤入到温度与型坯一样的容器中,位于下面的摄像机(9)对准型坯的末端,而位于上端的摄像机(5)发出信号通过计算机控制摄像机(9)的位置以保证其在型坯挤出过程中总是对准型坯的末端。通过图像可以得到型坯的直径和壁厚尺寸。但实验装备复杂且只考虑等温的情况,实际应用不广。
R.W.Diraddo和A.Garcia-Rejon[4]提出只建立在图像分析基础上非接触式测量型坯壁厚分布的方法。该实验只使用一台摄像机对型坯挤出过程进行拍照,测量出型坯长度随时间的变化关系、型坯的直径分布、挤出流率、型坯沿长度方向的温度梯度,再根据型坯壁厚分布与这些参数的关系计算出型坯壁厚分布。R.W.Diraddo等用此方法分别研究了不同分子量大小的HDPE树脂,流率、熔体温度、口模间隙对型坯壁厚分布的影响。这种方法理论复杂,实验数据处理较繁琐。
W.I.Patterson和M.R.Kamal[5]开发了型坯壁厚尺寸分布在线闭环控制系统。在该系统中,型坯的长度和直径可通过相机及与其相连的图像分析仪直接得到,型坯壁厚分布则通过几何关系计算获得,但其中所用的经验参数比较难得到。若要实现对型坯壁厚尺寸分布的在线闭环控制,则需要一种能直接在线测量型坯壁厚分布的方法。
假定熔体流量为一常数的前提下,型坯壁厚可由一简单方法计算得到,且可用于在线测量。最早使用该方法的是德国Kaise,后由Svein Eggen和Arne Sommerffeldt[6]改进,测量装置简图如图5所示。由摄像机和向型坯表面喷墨的装置及图形分析仪组成。型坯的直径分布可直接由所拍摄的图片得到,再测量相邻墨点间的距离,根据流量为一常数的假设,型坯的壁厚分布可由计算得到。
其中R是型坯半径,q是流率,ρ是熔体密度,z是相邻墨点间的距离。这种方法理论简单,实验装置简易,测量精度较高,但实验数据较多,处理较繁琐。
有些研究者利用光学方法来研究型坯成型。P.L.Swan、M.R.Kamal和A.Garcia-Rejon[7]研制开发了一套光学传感器测量装置,如图6所示,它可在闭模前在线测量型胚的厚度尺寸分布。该装置是基于光学中光线反射的原理设计的。一束激光一定的角度射向型坯表面,激光束经型坯内外表面反射形成两束激光,摄像镜头检测出这一间隔并将送入计算机分析系统,根据几何关系,计算机就能算出型坯壁厚分布。但在光线反射的同时还存在光线的折射问题,而光线的折射在这种测量方法中是不容忽视的,要把折射考虑进去并且要确定型坯的折射率无疑给这种测量方法增加了很大的复杂性和难度。
3.型坯吹胀阶段研究状况
型坯吹胀是指将塑料管坯趁热置于模具中,并即时在管坯中通入压缩空气将其吹胀,紧贴于模腔壁上成型,这个阶段的成型直接影响制品的外形,壁厚均匀性以及制品的性能,是整个成型过程的关键环节。
在这一阶段,型坯吹胀的实验研究主要包括两个方面:一方面是型坯吹胀动力学研究,另一方面是型坯吹胀完毕后,型坯壁厚尺寸的测量。最早建立实验装置对型坯吹胀动力学研究的是Musa R.Kamal、Victor Tan和Dilhan Kalyon[8]。他们自行设计透明吹塑模具,并用两台摄像机来拍摄型坯在模具内的胀大行为,其装置简图如图8所示,所拍的图片送入图形分析仪分析,从而确定型坯的直径分布随时间的变化关系。
Ryan和Dutta[9]利用摄像技术在无模具条件下监测了型坯的自由膨胀行为,并得到了型坯胀大尺寸。其后大部分研究者都是用此类似的方法来研究型坯的吹胀行为的。
Wagner和 Kalyon[10]在Kamal[8]基础上再设计内部装有固体压力传感器,如图8所示。它可测量型坯吹胀时的压力,同时,另一压力传感器装在模具型腔的飞边上,这样,两传感器就可测量吹塑过程中吹塑阶段型坯内外的真实压力差。他们用此装置研究了三种PA-6在吹胀压力下对吹胀行为的影响。
最近Yong Li等[11]使用可以测得瞬时表面形状的高速光学测量系统来测量聚合物薄膜的胀大行为。其测量简图如图9所示。聚合物薄膜型坯两端固定在两平板间,通入压缩空气至压力腔使聚合物薄膜型坯胀大。光学探头内有CCD摄像机和光栅发射器。测量时,光栅发射器发射光栅投到聚合物薄膜型坯表面,光栅随着聚合物薄膜型坯变形而变形,因此光栅图中就包含了聚合物薄膜型坯表面形状的信息。摄像机快速拍摄到光栅图并送入计算机内处理就可得到聚合物薄膜型坯胀大尺寸。MCDL是多通道数据集线器,它可同时采集压力和光栅图信号以便得到胀大过程中压力与聚合物薄膜型坯形状之间的关系。实验证明其测量精度比图7高得多。
型坯壁厚尺寸测量有离线测量和在线测量,由于离线测量测简单,因此使用较多。离线测量包括有红外,超声波和千分尺测量。这些方法不仅费时,而且由于离线测量而引起的时间滞后需对加工过程产生的偏差进行修正,导致测量的不精确而出现许多不合格制品。
在线测量制品壁厚尺寸能把滞后时间减少到最小,因此提高加工过程工过程产生的偏差修正的精度。Diderichs 和Oeynhauser[12]使用置于模具内的超声波传感器来测量壁厚分布。其测量原理如图10所示。在超声波传感器内压电晶体产生的短超声波在物体,之后被物体壁面反射,返回传感器。被测量物体的壁厚s就等超声波在物体内的速度乘超声波在物体内传送所需时间的一半。但是超声波测量的精度受聚合物性能(如密度、结晶度)与温度的影响很大。
4.制品冷却及固化阶段研究进展
制品冷却及固化是指型坯吹胀紧贴模壁后凭借热扩散率较高的模具和压缩空气进行冷却,冷却至一定温度后开模,再在空气中冷却的过程。一般包括外冷却(制品外表面与模腔间的导热),内冷却(制品内表面与冷却空气或其它介质间的对流传热)及开模后冷却(制品的内外表面与空气或其它介质的自然对流传热)。
制品冷却及固化阶段的实验研究主要是测量制品瞬态温度、收缩率、翘曲等。
制品的瞬态温度一般是利用高灵敏度的热电偶和数据采集器来测量。1981年,Edward[13]等人设计“半瓶成型实验”来验证其挤出吹塑冷却过程的理论预测。如图11所示。实验中外表面的瞬时温度用热电偶测得,内表面温度在制品一离开模具用辐射高温计测得。其结果与理论预测结果基本一致。1995年Diraddo等[14]用六个热电偶从模具的不同部位插入制品的不同厚度处,并通过与之连接的温度采集器采集温度,获得制品不同厚度处的瞬态温度,这与只测量内、外表面温度有了较大的改进。
而最早测得制品的收缩率是Diraddo等[14]。他们在模腔内加工出尺寸为5mmx5mm的网格,型坯吹胀后网格印在制品的表面上,这样可直接测出制品在轴向和周向收缩,然后根据质量守恒定律计算径向收缩。
制品翘曲一般用三维激光数字系统测量制品的形状[15],进而得到制品的收缩和翘曲。
5.结论
实验研究一直是指导工程应用最直接的方法,也是理论研究的基础和依据。挤出吹塑成型过程包括型坯成型、型坯吹胀以及制品冷却与固化三个阶段。各国的研究者正采用不同的实验方法和装置对挤出吹塑各个阶段进行研究,其研究发展对工艺及模具结构优化和生产效率的提高有重要意义。随着科技的发展,实验手段的改善,挤出吹塑成型过程的实验研究将会更上一层楼,为实际生产提供更好的指导,生产出在质量、性能等各方面适应社会需求的中空吹塑件
⑶ 吹塑产品的壁厚怎样控制
使用中空吹塑机进行生产的产品,要求壁厚均匀。通常0.2L以下的中空容器可以不带型坯壁厚控制装置,其他情况应考虑使用型坯壁厚控制装置,特别是复杂截面的中空成型制品。目前,通常采用改变机头套与模芯处的模唇间隙的方法实现壁厚控制。根据机头套、模芯形状的不同,唇口间隙的调节方法也不同。模芯的上下运动一般采用液压缸驱动。
当中空吹塑机加工形状较简单的塑料中空容器时,可用开关式液压系统实现。电液换向阀只接受通电或断电信号,使液压缸向上或向下,液压缸移动的距离(即口模的开度变化)由上、下限位螺母调定,液压缸移动的速度由流量阀的节流作用设定,电液换向阀的电信号由时间继电器控制。这种控制方法简单、价廉,但壁厚变化规律简单,只有两种壁厚变化,只能用于挤吹形状简单的中空容器。
⑷ 吹塑模具结构的类型和特点都有哪些
吹塑产品都是中空的;注塑因为有注塑口,所以成型后的产品会多出一小快不要的部分,会有道工序把它剪掉,不过如果仔细观察还是可以发现的;注射成型(注塑)是使热塑性或热固性模塑料先在加热料筒中均匀塑化,而后由柱塞或移动螺杆推挤到闭合模具的模腔中成型的一种方法。注射成型几乎适用于所有的热塑性塑料。近年来,注射成型也成功地用于成型某些热固性塑料。注射成型的成型周期短(几秒到几分钟),成型制品质量可由几克到几十千克,能一次成型外形复杂、尺寸精确、带有金属或非金属嵌件的模塑品。因此,该方法适应性强,生产效率高。吹塑成型。借气体压力使闭合在模具中的热型坯吹胀成为中空制品,或管型坯无模吹胀成管膜的一种方法。该方法主要用于各种包装容器和管式膜的制造。凡是熔体指数为0.04~1.12的都是比较优良的中空吹塑材料,如聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、热塑性聚酯、聚碳酸酯、聚酰胺、醋酸纤维素和聚缩醛树脂等,其中以聚乙烯应用得最多。(1)注射吹塑成型。系用注射成型法先将塑料制成有底型坯,接着再将型坯移到吹塑模中吹制成中空制品。(2)挤出吹塑成型。系用挤出法先将塑料制成有底型坯,接着再将型坯移到吹塑模中吹制成中空制品。注射吹塑成型和挤出吹塑成型的不同之处是制造型坯的方法不同,吹塑过程基本上是相同的。吹塑设备除注射机和挤出机外,主要是吹塑用的模具。吹塑模具通常由两瓣合成,其中设有冷却剂通道,分型面上小孔可插入充压气吹管。(3)拉伸吹塑成型。拉伸吹塑成型是双轴定向拉伸的一种吹塑成型,其方法是先将型还进行纵向拉伸,然后用压缩空气进行吹胀达到横向拉伸。拉伸吹塑成型可使制品的透明性、冲击强度、表面硬度和刚性有很大的提高,适用于聚丙烯、聚对苯二甲酸乙二醇酯(PETP)的吹塑成型。拉伸吹塑成型包括:注射型坯定向拉伸吹塑,挤出型坯定向拉伸吹塑,多层定向拉伸吹塑,压缩成型定向拉伸吹塑等。(4)吹塑薄膜法。成型热塑性薄膜的一种方法。系用挤出法先将塑料挤成管,而后借助向管内吹入的空气使其连续膨胀到一定尺寸的管式膜,冷却后折叠卷绕成双层平膜。塑料薄膜可用许多方法制造,如吹塑、挤出、流延、压延、浇铸等,但以吹塑法应用最广泛。该方法适宜于聚乙烯、聚氯乙烯、聚酰胺等薄膜的制造。
⑸ 常见塑胶件的壁厚是多少
塑胶件不同材料的常用壁厚 :
ABS:一般最先选择的材料,壁厚通常为1, 1.2, 1.5, 2, 2.5, 3mm,视乎产品的大细和功能而定。
PP :因为比较软身,而且基于缩水的问题,所以不能太厚,一般为1, 1.2, 1.5mm。
PVC :因为多用由于figure上和多是实心,所以限制不大。
POM:一般为1, 1.2, 1.5, 2, 2.5, 3mm视乎产品大细而定。
Nylon:因为缩水率比较高,所以平均料厚和筋骨的比例可比较少。
Kraton:因为多数用作摩打垫或不外露件,所以限制不大。
壁厚的大小取决于产品需要承受的外力、是否作为其它零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑料材料而定。一般的热塑性塑料的壁厚设计应以4mm为限。从经济角度来看,过厚的产品设计不但增加物料成本,延长生产周期(冷却时间),增加生产成本。从产品设计角度来看,过厚的产品增加引至产生空穴(气孔)的可能性,大大削弱产品的刚性及强度。
⑹ 塑料模具加工一般能达到的精度是多少啊
塑料模具精度一般在0.02之内。
加工塑料模具精度表现以下几个方面:
1、采用高速切削机床、刀具和工艺,可加工淬硬材料。对于小型塑料模具,在材料热处理后,粗、精加工可以在一次装夹中完成;对于大型塑料模具,在热处理前粗加工和半精加工,热处理淬硬后精加工。
2、硬切削加工最后成型表面,提高表面质量、形状精度(不仅表面粗糙度低,而且表面光亮度高),用于复杂曲面的塑料模具加工更具优势。
3、采用专业塑料模具加工设备、先进机床、件发热少、切削力减小,热变形小,结合CAD/CAM技术用于快速加工电极,特别是形状复杂、薄壁类易变形的电极。
(6)吹塑模产品厚度多少扩展阅读:
塑料模具,是塑料加工工业中和塑料成型机配套,赋予塑料制品以完整构型和精确尺寸的工具。由于塑料品种和加工方法繁多,塑料成型机和塑料制品的结构又繁简不一,所以,塑料模具的种类和结构也是多种多样的。
主要分类:
1、塑料注射(塑)模具
2、 塑料压塑模具
3、塑料挤出模具
4、塑料吹塑模具
5、塑料吸塑模具
6、高发泡聚苯乙烯成型模具
模具设计和制造与塑料加工有密切关系。塑料加工的成败,很大程度上取决于模具设计效果和模具制造质量,而塑料模具设计又以正确的塑料制品设计为基础。
塑料模具设计要考虑的结构要素有:
①分型面,即模具闭合时凹模与凸模相互配合的接触表面。它的位置和形式的选定,受制品形状及外观、壁厚、成型方法、后加工工艺、模具类型与结构、脱模方法及成型机结构等因素的影响。
②结构件,即复杂模具的滑块、斜顶、直顶块等。结构件的设计非常关键,关系到模具的寿命、加工周期、成本、产品质量等,因此设计复杂模具核心结构对设计者的综合能力要求较高,尽可能追求更简便、更耐用、更经济的设计方案。
③模具精度,即避卡、精定位、导柱、定位销等。定位系统关系到制品外观质量,模具质量与寿命,根据模具结构不同,选择不同的定位方式,定位精度控制主要依靠加工,内模定位主要是设计者充分去考虑,设计出更加合理易调整的定位方式。
②浇注系统,即由注塑机喷嘴至型腔之间的进料通道,包括主流道、分流道、浇口和冷料穴。特别是浇口位置的选定应有利于熔融塑料在良好流动状态下充满型腔,附在制品上的固态流道和浇口冷料在开模时易于从模具内顶出并予以清除(热流道模除外)。
③塑料收缩率以及影响制品尺寸精度的各项因素,如模具制造和装配误差、模具磨损等。此外,设计压塑模和注塑模时,还应考虑成型机的工艺和结构参数的匹配。在塑料模具设计中已广泛应用计算机辅助设计技术。
⑺ 吹塑薄膜 PE 关于调节模口间隙调整薄膜厚度的问题
吹膜机模具出口是内外模芯组成,即两个同心圆组成的间隙,作为熔体挤出口。
一般内模芯固定,而外模芯可以水平移动调节,调节出口间隙大小。通过改变出口间隙几何大小,来控制熔体挤出量,从而调节薄膜厚薄。
⑻ 请问吹塑机口模有具体的计算公式吗
我也想知道,谁可以告诉我
⑼ 开一套类似瓶子的吹塑模具要多少钱
感觉吹塑可以做,就是吹出来的产品的螺口精度没有可乐瓶的高,而且壁厚可能不太均匀(主要是产品太长。搞注吹模的话应该没上述问题。可乐瓶就是注吹模.但成本太高.模具复杂产品量少的话不划算)至于你补充的问题不难解决在一头的瓶口多做一段封口产品出来后再把封口切掉就OK了....还有你说的壁厚的问题(壁厚是吹塑机控制的)
材料的话45#就可以了 (价钱的话五六千的样子)
希望楼主采纳我的回答 谢谢!...
⑽ 吹塑和注塑有什么不一样
吹塑:先注胚体,再用气吹起来,适用于壁厚薄的瓶体。
注塑:直接将溶化的塑料注进模具中,适用于壁厚1MM以上,各类结构产品。
吸塑:将塑料板材加热软化后,放在模具上面冷却成型,再进行处理,适用于小批量,结构简单的产品。