A. 蓝光光盘的历史
* 2002年2月19日,“蓝光光盘联盟”的前身“Blu-ray Disc Founders”成立,由新力集团为首开始策划及研发蓝光光盘。
* 2004年5月18日,“Blu-ray Disc Founders”正式更改名称为“蓝光光盘联盟”(Blu-ray Disc Association)。
* 2004年9月21日,新力电脑娱乐(SCE)宣布次世代游戏机“PlayStation 3”将会采用蓝光光盘为标准格式。
* 2006年1月5日,蓝光光盘联盟原先准备在国际消费电子展(CES)发布蓝光光盘相关产品,后来因为蓝光规格问题将发布日期推迟到同年6月。
* 2006年10月14日,新力推出全球首部配载蓝光光盘播放器的笔记型电脑“VAIO A”系列。
* 2006年11月11日,配备蓝光光盘播放器的次世代游戏机“PlayStation 3”在日本地区开始发售。
* 2007年1月10日,日本经济新闻报道蓝光光盘在日本地区占有94.8%的次世代光盘市场,并预料蓝光光盘于次世代光盘格式之争中最终会取得胜利。
* 2007年8月20日,派拉蒙(Paramount)电影公司由原先同时支持蓝光光盘及HD-DVD,改为以HD-DVD作为派拉蒙唯一认可的高清电影存储光盘,同时宣布派拉蒙旗下的梦工场、梦工场动画SKG、派拉蒙优势、Nickelodeon Movies以及MTV电影等子公司转为只支持HD-DVD。派拉蒙电影公司高层透过Viacom承认,派拉蒙共收取了HD-DVD阵营的1亿5千万美金,以提供一年半之HD-DVD独占权,款项以现金及未来收益分帐支付。
* 2007年9月1日,蓝光光盘联盟于德国柏林消费电子产品展(IFA)上宣布蓝光光盘目前已经压倒性占有日本90%的次世代光盘市场,在欧洲地区蓝光光盘的销量也一直以3:1的比例领先于HD-DVD,在美国也有超过66%的次世代光盘市场被蓝光光盘占据。
* 2007年11月29日,东亚娱乐推出首张香港红馆Blu-ray影碟《景福Show Mi郑秀文2007演唱会》。
* 2008年1月4日,华纳兄弟(Warner Bros. Entertainment)电影公司宣布脱离HD-DVD阵营,并且由2008年6月开始停止发行HD-DVD影碟,往后只支持蓝光光盘作为影碟格式。华纳兄弟的行政总裁Barry Meyer认为,支持蓝光光盘独占对整个高清市场普及化有利,长久的格式之争只会令影业在高清市场上错失良机。华纳附属的新线影业(New Line Cinema)于翌日作出同样的决定,将会停止HD-DVD影碟的发行。1月8日,派拉蒙宣布将放弃HD DVD、支持蓝光;微软也表示考虑支持蓝光。
B. 光盘发展历史存储量 变化
一.只读式光盘存储器CD-ROM
自1985年Philips和Sony公布了在光盘上记录计算机数据的黄皮书以来,CD-ROM驱动器便在计算机领域得到了广泛的应用。CD-ROM光盘不仅可交叉存储大容量的文字、声音、图形和图象等多种媒体的数字化信息,而且便于快速检索,因此CD-ROM驱动器已成为多媒体计算机中的标准配置之一。MPC标准已经对CD-ROM的数据传输速率和所支持的数据格式进行了规定。MPC 3标准要求CD-ROM驱动器的数据传输率为600KB/秒(4倍速),并支持CD-ROM、CD-ROM XA、Photo CD、Video CD和CD-I等光盘格式。
CD-ROM是发行多媒体节目的优选载体。原因是它的存储容量大,制造成本低,大批量生产时每片不到5元人民币。目前,大量的文献资料、视听材料、教育节目、影视节目、游戏、图书、计算机软件等都通过CD-ROM来传播
二.一次写光盘存储器CD-R
信息时代的加速到来使得越来越多的数据需要保存,需要交换。由于CD-ROM是只读式光盘,因此用户自己无法利用CD-ROM对数据进行备份和交换。在CD-R刻录机大批量进入市场以前,用户的唯一选择就是采用可擦写光盘机。
可擦写光盘机根据其记录原理的不同,有磁光驱动器MO和相变驱动器PD。虽然这两种产品较早进入市场,但是记录在MO或PD盘片上的数据无法在广泛使用的CD-ROM驱动器上读取,因此难以实现数据交换和数据分发,更不可能制作自己的CD、VCD或CD-ROM节目。
CD-R的出现适时地解决了上述问题,CD-R是英文CD Recordable的简称,中文简称刻录机。CD-R标准(橙皮书)是由Philips公司于1990年制定的,目前已成为工业界广泛认可的标准。CD-R的另一英文名称是CD-WO(Write Once ),顾名思义,就是只允许写一次,写完以后,记录在CD-R盘上的信息无法被改写,但可以象CD-ROM盘片一样,在CD-ROM驱动器和CD-R驱动器上被反复地读取多次。
CD-R盘与CD-ROM盘相比有许多共同之处,它们的主要差别在于CD-R盘上增加了一层有机染料作为记录层,反射层用金,而不是CD-ROM中的铝。当写入激光束聚焦到记录层上时,染料被加热后烧溶,形成一系列代表信息的凹坑。这些凹坑与CD-ROM盘上的凹坑类似,但CD-ROM盘上的凹坑是用金属压模压出的。
CD-R驱动器中使用的光学读/写头与CD-ROM的光学读出头类似,只是其激光功率受写入信号的调制。CD-R驱动器刻录时,在要形成凹坑的地方,半导体激光器的输出功率变大;不形成凹坑的地方,输出功率变小。在读出时,与CD-ROM一样,要输出恒定的小功率。
通常,CD-ROM除了要符合黄皮书以外,还要遵照一个附加的国际标准:ISO9660。这是因为当初Philips和Sony没有定义CD-ROM的文件结构,而且各种计算机操作系统也只规定了该操作系统下的硬盘和软盘文件结构,使得不同厂家生产的CD-ROM具有不同的文件结构,曾经一度引起了混乱。后来,ISO 9660规定了CD-ROM的文件结构,Microsoft公司很快就为CD-ROM开发了设备驱动软件MSCDEX,使得不同生产厂家的CD-ROM在不同的操作系统环境下都能彼此兼容,就象该操作系统下的另外一个逻辑驱动器--目录或磁盘。
CD-R的发展已有很多年的历史,但是也还存在上述类似的问题。我们无法在DOS或Windows环境下对CD-R驱动器直接进行读写,而是要依赖于CD-R生产厂家提供的刻录软件。大多数刻录软件的用户界面并不直观,而且系统安装设置也比较繁琐,给用户的使用带来很多麻烦和障碍。
为了改变这一状况,国际标准化组织下的OSTA(光学存储技术协会)最近制定了CD-UDF通用磁盘格式,只要对每一种操作系统开发相应的设备驱动软件或扩展软件,就可使操作系统将CD-R驱动器看作为一个逻辑驱动器。采用CD-UDF的CD-R刻录机会使用户感到,使用CD-R备份文件就如同使用软盘或硬盘一样方便。用户可以直接使用DOS命令对CD-R进行读写操作,如果用户使用如Windows Explorer这样的图形文件管理软件,可将文件拖曳或投入(drag and drop)到CD-R刻录机中,就可将文件课录到CD-R盘上。
CD-UDF也是沟通ISO9660与DVD-UDF文件结构的桥梁,采用CD-UDF文件结构的CD-R盘可在DVD-ROM驱动器上读出。
Philips公司推出的第四代CDD2600刻录机首先采用了CD-UDF文件格式,并可在Windows 环境下即插即用,使CD-R技术的发展步入了一个新的里程。
三.可擦写光盘存储器
1.MO可擦写光盘存储器
MO是英文Magnet-Optical的缩写,是指利用激光与磁性共同作用的结果记录信息的光磁盘。MO盘用来存储信息的媒体与软磁盘相似,但其信息记录密度和容量却比软磁盘高的多。这是由于记录时在盘的上面施加磁场,而在盘下面用激光照射。磁场作用于盘面上的区域比较大,而激光通过光学系统聚焦于盘面的光点直径只有1~2微米。在受光区域,激光的光能转化为热能,并使磁性层受热而变的不稳定,即变的易受磁场影响。这样,在直径只有1~2微米的极小区域内就可记录下一个单位的信息。通常的磁性记录方式存储一个单位的信息时,要占用相当大的区域,因而磁道也相应变宽,盘上记录信息的总量也就很小。
MO盘片虽然比硬盘和软盘便宜和耐用,但是与CD-R盘片相比就显得比较昂贵了。MO的致命缺点是不能用普通CD-ROM驱动器读出,因而不能满足信息社会对计算机数据进行交换和数据分发的要求,在网络技术和网络建设不发达的地方,这一问题日驱突出和严重。
2.可擦写光盘存储器CD-RW
为了使可擦写相变光盘与CD-ROM和CD-R兼容,早在1995年4月,飞利浦公司就提出了与CD-ROM和CD-R兼容的相变型可擦写光盘驱动器CD-E(CD Erasable)。CD-E得到了包括IBM、HP、Mitsubishi 、Mitsumi、松下电器、Sony、3M以及Olympus等公司的支持。1996年10月,Philips、Sony、HP、Mitsubishi和Ricoh五家公司共同宣布了这一新的可擦写CD标准,并将CD-E更名为CD-RW(CD-ReWritable)。CD-RW标准的制定标志着工业界可以开发并向市场提供这种新产品。
CD-RW兼容CD-ROM和CD-R,CD-RW驱动器允许用户读取CD-ROM、CD-R和CD-RW盘,刻录CD-R盘,擦除和重写CD-RW盘。由于CD-RW采用CD-UDF文件结构,因此CD-RW可作为一台海量软盘驱动器使用,也可在DVD-ROM驱动器读取,具有更广泛的应用前景。
MO虽然有不少特点,但是它们只能被其它同类驱动器读取,不能在广泛流行的CD-ROM上使用。MO没有市场共享性,购买者只是将它们用于数据备份,因此难以实现数据交换和数据分发,更不可能制作自己的CD、VCD或CD-ROM节目。 因此MO很难在市场上流行起来。
CD-R是可记录光盘市场上的后起之秀,虽然只能刻录一次,但由于它与广泛使用的CD-ROM兼容,并具有较低的记录成本和很高的数据可靠性赢得了众多计算机用户的普遍欢迎。CD-R目前是各种光盘存储产品中发展最迅猛的一种,。CD-R刻录机的价格相对几年前已下跌了很大幅度。在国外,CD-R刻录机正在逐步取代CD-ROM驱动器而成为计算机的一种标准配置。
CD-RW是一个已经得到众多公司和用户普遍支持的可擦写光盘标准。由于CD-RW仍沿用了CD的EFM调制方式和CIR检纠错方法,CD-RW盘与CD-ROM盘具有相同的物理格式和逻辑格式,因此CD-RW驱动器与CD-R驱动器的光学、机械、及电子部分类似,一些零部件甚至可以互换,这将大大节省CD-RW的开发和生产费用,降低CD-RW驱动器的成本,使CD-RW未来就能迅速在可擦写光盘产品市场占有一定的份额。光盘技术的发展与展望-光电技术光盘技术的发展与展望光盘技术的发展
C. cd光盘 历史
荷兰飞利浦(Philips)公司的研究人员开始使用激光光束来进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。
1982年,由飞利浦公司和索尼(Sony)公司制定了CD-DA激光唱盘的红皮书(Red Book)标准。由此,一种新型的激光唱盘诞生了。CD-DA激光唱盘记录音响的方法与LD系统不同,CD-DA激光唱盘系统首先把模拟的音响信号进行PCM(脉冲编码调制)数字化处理,再经过EFM(8~14位调制)编码之后记录到盘上。
在80年代中期,光盘的发展非常快,先后推出了WORM光盘、CD-ROM光盘、磁光盘(MOD)、相变光盘(PCD,Phase Change Disk)等新的品种。这些光盘的出现,给信息革命带来了很大的推动。
(3)光盘产品在历史上有多久扩展阅读:
光盘的一些分类:
1、CD:(Compact-Disc)光盘。CD是由liad-in(资料开始记录的位置);而后是Table-of-Contents区域,由内及外记录资料;在记录之后加上一个lead-out的资料轨结束记录的标记。在CD光盘,模拟数据通过大型刻录机在CD上面刻出许多连肉眼都看不见的小坑。
2、CD-DA:(CD-Audio)用来储存数位音效的光盘片。1982年SONY、Philips所共同制定红皮书标准,以音轨方式储存声音资料。CD-ROM都兼容此规格音乐片的能力。
3、CD-G:(Compact-Disc-Graphics)CD-DA基础上加入图形成为另一格式,但未能推广。是对多媒体电脑的一次尝试。
4、CD-ROM:(Compact-Disc-Read-Only-Memory)只读光盘机。1986年, SONY、Philips一起制定的黄皮书标准,定义档案资料格式。定义了用于电脑数据存储的MODE1和用于压缩视频图象存储的MODE2两类型,使CD成为通用的储存介质。并加上侦错码及更正码等位元,以确保电脑资料能够完整读取无误。
D. 光盘的开发历程
光盘是与计算机相结合,具有容量大、体积小、适用价廉的信息存储和检索的设备,它是20世纪80年代开始发展起来的光学存储技术。
20世纪60年代开始,荷兰飞利浦公司和美国的RCA公司都在研究和开发光盘。1972年,飞利浦公司研制出一种光盘,叫做光学录像盘,主要用来录制电视节目。但是因为当时已经有了录像带,再加上光盘没有统一标准,销路不好。
1978年又研制出一种激光唱盘,简称CD-A。盘上有大约3英里长的螺旋形轨道,可记录60~70分钟的音乐节目。为了统一标准飞利浦公司和日本的索尼公司合作,制定了统一规格。
到目前为止,已经开发出不同种类的光盘,例如只读光盘、可写一次型光盘和可擦型光盘。
E. cd光盘发展历程
飞力浦和SONY一起发明的
光盘有了很大的发展,它经历了三个阶段:①LD-激光视盘;②CD-DA激光唱盘;③CD-ROM。下面简单介绍这三个阶段性的产品特点。
LD-激光视盘 它就是通常所说的LCD,直径较大,为12英寸,两面都可以记录信息,但是它记录的信号是模拟信号。模拟信号的处理机制是指模拟的电视图像信号和模拟的声音信号都要经过FM(Frequency Molation)频率调制、线性叠加,然后进行限幅放大。限幅后的信号以0.5微米宽的凹坑长短来表示。
CD-DA激光唱盘 LD虽然赢得了成功,但由于事先没有制定统一的标准,使它的开发和制作一开始就陷入昂贵的资金投入中。1982年,由飞利浦公司和索尼(Sony)公司制定了CD-DA激光唱盘的红皮书(Red Book)标准。由此,一种新型的激光唱盘诞生了。CD-DA激光唱盘记录音响的方法与LD系统不同,CD-DA激光唱盘系统首先把模拟的音响信号进行PCM(脉冲编码调制)数字化处理,再经过EFM(8~14位调制)编码之后记录到盘上。数字记录代替模拟记录的好处是:对干扰和噪声不敏感;由于盘本身的缺陷、划伤或沾污而引起的错误可以校正。
F. cd被发明的时间
光盘的标准
光盘的标准
[光盘标准的源起]
"谁需要这些银色的光盘片?", 在1982年于雅典所举办的消费性电子工业代表聚会会议上, 飞利浦CEO部门的Mr.Jan Timmer 如此问到. CD 光盘片在音乐领域上的应用成友\简单而清楚的回答了这个问题. 不久, 电脑工业很快的对 CD 重新定义, 他们认为在音乐 CD 片上所储存的大型音乐资料也能被电脑资料所取代, 因为同样都是采用数位讯号, 于是CD-ROM就诞生了. 基本上是依循红皮书(Red Book, CD 音乐片格式标准, 由飞利浦及Sony所制定)的标准,而CD-ROM的详细规格及标准则订定于黄皮书(Yellow Book, 由 Philips 及Sony 所制定)上, 但是在消费性电子市场上, 其在音乐、视讯、动画的应用 (我们现今称之为"多媒体")上, 该规格并无法满足需求而必须延伸扩展, 所以于1987年Philips及Sony联合制定了CD-I(CD-Interactive 互动式光盘), 其规格写于绿皮书上(Green Book),要执行这些互动式光盘的程式必须使用内含电脑界面的CD-I拨放机, 这种机器有点像是一般 CD 音乐拨 放机 (CD-Player). 当然, 互动式程式也可应用在一般个人电脑上.
为了建立从消费电子世界到电脑世界的桥梁, 于是Philips, Sony 及 Microsoft 叁家公司在1988 年定义出 CD-ROM/XA格式, XA 是代表eXtended Architecture 二个字的缩写,它是CD-ROM规格的延伸, 是以CD-I的规格为基础而建立, 而后有许多系统厂商纷纷开 发出以此格式为基础的技术, 如: Commodore's CDTV, Intel's DVI, Tandy's VIS, Mixed Mode CDs, CD+G, CD+MIDI及一些由日本电视游乐器厂商所开发出的软体. 但是这其中一个最重要的开发是由飞利浦与柯达公司共同开发出的相片光盘(PhotoCD), 此种光盘片也是属于Bridge Disk的一种, 可使用在PhotoCD专用的拨放机、CD-I 拨放机或是连接在个人电脑上具有XA读取能力的CD-ROM光盘机上. BridgeDisk 的规格是由飞利浦与Sony在1991年10月制定出,白皮书 (Write Book)也是属于这类格式. 在以前, CD片是属于唯独型媒体, 但是相片光盘却是建立在一种新的单写型技术上(write once technology), 对于此种单写型光盘(CD-RRM,write once read many)及磁光式光盘(CD-MO,magneto optical) 的规格均于1990年11月定义在橘皮书(Orange Book)上.
[CD标准]
我们都知道, 一片空白的 CD-R 盘片可以烧录成为任何格式的光盘片, 包括最基本的CD-ROM与CD-Audio, 另外现有市面上所常见的其他格式光盘片亦可制作. 这些特殊的光盘片有的已存在数年, 有的刚刚才推出, 甚至有的还在研发阶段. 这个章节就是要讨论这些存于市面上光盘的种类, 格式与观念.
要知道CD的标准, 就必须先了解各'颜色'的标准书: 包括了红, 黄, 绿, 橘, 白及蓝皮书, 这些标准书为荷兰飞利浦公司联合相关的公司所制定, 因采用各不同的封面颜色而得名. 除此之外, 市面上还可以见到一些专属的CD格式, 像是由Sega, 3DO及任天堂公司推出的电视游戏机专用光盘片. 飞利浦的光盘标准是应用在光盘产业上,因此相关的光盘制造厂包括CD片工厂, 光盘机工厂等, 必须与飞利浦或是Sony公司签订授权合约才可生产 CD 相关产品. 此外还有其他相关的标准, 像是 ISO9660, MPEG 1/2 还有MPC 3 等, 有些是自由使用, 有些则要签订合约.
所有的光盘格式都是以CD-Audio格式为基础而发展的, CD-Audio的标准记在红皮书内, 而CD-ROM的标准则记录在黄皮书上. 红皮书与黄皮书是最常用到的标准书, 虽然如此, 但是这只是众多标准书的其中两本. 其它还有包括定义CD-i规格的绿皮书, 定义 Video CD与 Kaoarke CD规格的白皮书, 白皮书内规格尚需要参考红及黄皮书, 另外还有定义 CD-R, CD-E及MO规格的橘皮书, 在橘皮书中包括定义CD-R盘片的规格, 使CD-R光盘片可使用于任何一台光盘烧录器, 橘皮书中还定义了全新的档案系统, 这种档案系统是为了可将资料分次存放在CD-R而定的, 叫做多段式(Multi-session)写入规格. 蓝皮书则记载加强型光盘片(CD-Extra)的规格, 此种光盘片是以CD-Audio为基础, 利用Multi-session的方法将资料加于音乐轨的后面, 使一般CD唱机无法拨放到资料轨(保 护), 而电脑上的光盘机则可顺利抓到资料.
对于新的CD标准, 或者是原有标准新加入的部份, 均无法独立成为一个单一标准,而需彼此参考, 举例来说, CD-R 要记录成为 CD-Audio, 需参考橘皮书与红皮书, 彼此缺一不可. 有的时候, 光盘片上可以记录不只一种的CD标准.
在不久的将来, 你可以看到有些新格式的光盘片将成为家用多媒体世界中不可或缺的一环. 举例来说, Video CD 带给我们影音数位化, 将电影存放在CD之中, 接着取而代之的次世代高密度光盘(DVD)更是高画质影音的展现. 将来的CD音乐片不再只是音乐片, 放入电脑中就可以变成一片多媒体光盘, 歌词, 歌手资料甚至MTV皆可在电脑上看到.
红皮书
红皮书代表 CD-Audio, 或称为数位音乐光盘片, 这是飞利浦与Sony公司在1980年制定的. 所有其他规格的光盘片均以此为基础而发展. Audio CD 是将类比音乐以44.1Khz频率采样(每秒取样44100单位), 而每个采样单位都有一个 16 bit (65535) 范围的值,将类比转换为数位资料, 此二进位码还要经过8到14编码(EFM)才完成数位化动作, 再将0与1转换成为CD上的pit与land, 最后放在螺旋状的轨道(track)上. 以上是一个简单的过程说明, 此外CD上的资料还包括了 Sub-code channels, index points 及 CIRC ( Cross- Interleaved Reed-Solomon Code) 错误修正码等. 因为CD-Audio光盘片的主要功能只是提供播放音乐, 而且是循序播放, 每首歌都是从头开始播到尾, 因此红皮书的规格在当时是很单纯, 完整, 而且足够的, 其最主要的目的就是提供一个标准的播放规格, 所有的CD光盘片可以在所有的CD音响上播放, 全世界都一样.
CD+G
当研发人员在设计红皮书规格时, 他们已经想到替CD加上一个未来可用到的功能,可以在CD上与数位音乐同时并存图形资料, 这些图形资料存放在每个音乐资料的控制区内, 每一个控制区内包含了8个bits, 分别为P,Q,R,S,T,U,V 和 W. 每一个字母代表了一 个Sub-code channel, 而P, Q channel包含了位置与时间资料, 大部分的 CD 音响靠着这两个channel得知正在播放的时间并显示在面板上.其他从R到W的6个bits则可存放使用者的资料, 在大多数CD音乐片上这个部份都存放为*0*, 如果幸运的话, 你可以在市场上找到含有图形资料在其中的CD片, 就是所谓的CD-G盘片, 而这些图形资料有什麽用途呢? 一般来说, 可以存放与歌曲有关的资料, 像是歌词, 照片或是注意文字等, 但是因为存放的空间受到限制, 每张CD片最多存放20MB的资料, 而且使用上有限制, 必须连续播放7秒钟才可得出一张低解析全萤幕的资料, 因此实用性并不是很大.大多数的CD音响会忽略掉这些Graphic的资料, 因为这并不影响到音乐的播放. 如果你要将这些资料显示出来, 必须还要使用特殊的CD系统, 它可以读出R到W sub-code channel的资料并有影像输出的端子才行. 以CD-G为应用的例子在早期有CD I, Karaoke CD等系统. CD-G 的编码方式为飞利浦与Sony公司所发展出来, 因此如果要制作此种CD片, 必须先得到这两个公司的授权. 脍然CD-G因为种种的限制而无法被市场接受, 但是CD-G光盘杜算是最早的多媒体应用了, 而且在当时CD-G给了发展CD-i一个确定的方向.
黄皮书
飞利浦与Sony在1983年发表了黄皮书, 定义了CD-ROM(Compact Disc - Read OnlyMemory) 的规格, 黄皮书是以红皮书为基础, 发展出适合存放电脑资料的CD格式, 而且可以快速随机的找寻资料(与CD-Audio比较起来). 存在CD片上的资料可分为两种,一种为正确性要求较低的音乐或图形资料, 可容许一些Byte的错误, 另一种是正确性要求非常严格的电脑数字或文字资料) 错一个bit也不行.
Mode 1与Mode 2
黄皮书规 定义了灾种不同型态的资料结构: Mode 1与Mode 2, 在CD-ROM磁* (Sector)的表头区(Header field)内, 含有指示本区内资料为 Mode 1 或 Mode 2 的 Byte.Mode 1代表CD-ROM资料含有错误修正码(Error Correction Code - ECC), 每个磁区存放2048Byte的资料. 而Mode 2的资料则没有错误修正码, 将那些空间省下来, 因此每个磁区可以多存放288Byte, 达到2336Byte, 因此Mode 2较适合存放图形, 声音或影音资料. 你可以指定在CD上的每一个资料轨为Mode 1 or Mode 2, 但是其内的磁区只能有一种格式来存放资料. 大部分的CD-ROM电脑用光盘片, 包括资料库, 电脑游戏, 网络全书或共享软体, 是采用 Mode 1方式存放资料, 而 Mode 2从不采用它最"原始"的方式来存放资料. 其它的光盘片, 像是相片光盘(Photo CD), CD-I 及影音光盘 ( Video CD)等, 是采用Mode 2, Form1及Form2来存放.
黄皮书的逻辑格式变化
如同前文所言, 黄皮书内定义了在CD-ROM光盘片上两种基本型态的资料存放方式, 但是黄皮书到此处停止继续定义, 留给 CD-ROM 研展人员去决定如何订出磁区的逻辑格式, 与电脑档案的存放格式(光盘档案系统), 在早期各 CD-ROM 的研展人员制定了属于他们自己的专用格式, 彼此各不相容, 直到 High Sierra 小组的出现, 他们订出了全球通用的标准, 也就是后来的ISO 9660档案系统格式, 然而, 一些研展者发现 ISO 9660 档案系统在他们的作业系统上, 并不能允许他们存放一些像是表现档案特性的资料, 因此他们开始研究扩展ISO9660的规格.
ISO9660
ISO9660标准内有叁层透通性(Interchange), 只有第一层支援大多数的作业系统,第一层要求每个档案的资料必须是连续不中断的方式存放于CD上, 每个档案内容不可分开存放或与其他档案交错, 档名必须符合英文 A 到 Z, 数字 0 到 9 和底线"_"所组成的字集, 而且格式必须依照DOS的规定, 8 个字符的主档名与 3 个字符的副档名. 第二层则是可以采用任何的字符作为档名, 包括使用超过 8+3 个字的长档名, 但是档案的内容亦不可中断, 交错或是分开存放. 在第叁层则是不受任何的限制. 在所有的叁层规定中, ISO9660档案系统规定均不可使用超过8层的目录结构.
Rock Ridge Interchange Protocol (RRIP)
ISO9660标准的设计是相容于大多数的作业系统, 但是它也保留空间作为延伸与改编用, 在Unix的作业系统世界中, 长档名与超过8层的目录结构是稀疏平常的, 因此Unix系统的CD-ROM档案系统研展人员对ISO9660的第一层限制非常反感, 因此就有些人不采用ISO9660的规格, 而自行设计符合Unix作业系统的规格. 但是因为Unix作业系统有太多种不同的版本, 所以设计起来也特别困难, 但是这件事情引起了High Sierra小组的注意. 当这件事情同样被其他公司引起注意, 并开始讨论后, 于1990年, 由16家公司派代表组成了Rock Ridge小组, 他们共同的目标是延伸 ISO9660 的规格以使 CD-ROM 能符合 Unix 的档案系统与结构. 他们提出一个规格叫做: System Use Sharing Protocol (SUSP), 它可重新分配ISO9660规格中的系统使用区域 (System Use Area field),转变成为一种可变长度的系统记录区(Variable-length System Use fields), 这个区域内记载了不同的作业系统之相关资讯. 因此RRIP就是负责处理记录这些Unix下的长档名与超过8层的目录资讯, 而且除了Unix以外的作业系统将不会看到这些专为Unix而设计的区域. 这种新的CD-ROM档案系统可以在不同的UXIX作业平台使用, 这就是Rock Ridge格式, 至今已被广泛的使用在Unix的CD-ROM光盘片上.
Apple Extensions
麦金塔CD-ROM的研展人员是另外一批研究麦金塔专属CD-ROM档案系统的组织, 他们的档案系统称为Hierarchical File Structure (HFS), 在ISO9660标准内无法存放HFS之特有资讯, 像是档案代表图形(Icon), 与其摆放在桌面的位置资料, 还有资料档与执行档之间的关连资讯等. Apple采用的ISO延伸系统与Rock Ridge较相似, 它们都准许以ISO9660第二层的方式在CD-ROM上存放长档名, 以及存放资料档案与程式之间的关连资讯. 存放在第二层的资讯无法被麦金塔以外的电脑系统所读取.
Hybridm
采用 Hybrid 或是Janus格式的光盘片, 通常会有两个或两个以上的资料区 (Parti- tion), 每个资料区各自含有完整的档案记录与资讯, 两个资料区可以采用不同作业系统的档案格式, 目前有四种档案格式可以相互结合, 分别为DOS(Windows), HFS,Unix与OS/2, 但是最常看到的Hybrid光盘片是结合DOS与麦金塔档案格式: DOS采用ISO9660档案系统, 麦金塔则采用HFS档案系统. 有时候这种Hybrid的光盘片又叫做Janus格式. (源自古罗马帝国一位双面神的名字)
Shared Hybrid
可分享式的Hybrid光盘片也可以在两种或两种以上的作业系统间使用, 各不同的作业系统可读取CD-ROM上相同的资料, 这种格式的光盘片只有一个资料区(Partition), 所有相关的资料与各作业系统使用的程式都放在一起, 但是在DOS上只会看到 DOS的程式档, 麦金塔上也只能看到麦金塔的执行档.
El Torito (Bootable CD-ROM)
关于可开机式的CD-ROM规格, 目前版本到1.0, 其主要的方法是将硬盘或软碟上的开机磁区内资料搬到CD-ROM光盘片上, 并且可以同时有数个开机磁区映像档(Image file)可供开机时选用. El Torito规格是开放给各电脑产业使用, 不用签约, 自由使用的. 要使CD-ROM光盘片可以开机, 还必须采用支援CD-ROM开机的BIOS(电脑主机板上), 或是采用SCSI界面, 并配合像是新版本Adaptec SCSI卡才可以.
CD-i与CD-ROM/XA
如同CD-ROM是CD-Audio的延伸一样, CD-i与CD-ROM/XA就是CD-ROM的延伸,CD-i的全名叫做CD-interactive. 说起它发展的经过, 在于飞利浦与Sony两家公司自订出红皮书(for CD-Audio)与黄皮书(for CD-ROM)后, 发现在CD的应用上应该可以更多加以整合文字, 图形, 影音, 动画, 照片等多媒体的应用, 并且应该要有一个适合的硬体平台来播放, 此硬体的环境应该要考虑Video的播放规格, 软体所采用的作业系统以及音效处理等等, 使得这样的电脑系统能在全球统一, 也使这种光盘片的格式一致, 就像是CD-Audio一样的成功, 因此, 于1986年二月CD-i (规格订于绿皮书) 就正式发表了. 值的注意是在当时, PC还未普及于一般家庭, 更唐皇每台PC都装有CD-ROM光盘机了. 在绿皮书内除了定义CD光盘片的规格外, 还包括了播放系统硬体的规格, 软体的作业系统,声音与影像的压缩方式, 还有那些文字, 图片与语音的交错编排方式(Interleaving)等, 至于CD-ROM/XA的规格是将黄皮书的规格加以延伸并取用部份绿皮书的规格整理而成,于1989年发表. CD-ROM/XA规格中也包括了声音与资料的交错编排方式, 如果你要了解XA与CD-i的光盘片有何不同, 那最好是从它们相同处开始了解. 一般来说CD-ROM/XA 与 CD-i 的观念相同, 都采用资料交错的编排方式储存资讯, ADPCM 方式的语音压缩以及具有互动式的功能.
资料的交错编排(Data Interleaving): Form1与Form2
在黄皮书上说明了CD-ROM Mode1的规格, 我们也知道在这种规格下, 资料/程式与声音/影像是分开存放的. 如果你的 CD 光盘片上要包含 CD-Audio, 那你必须将资料与Audio分开放在不同的轨道(Track)上, 就是所谓的混合式(Mixed-Mode)光盘片, 这种方式的基本操作原理是先将图形/照片先从光盘片上读出到电脑显示出来, 然后才开始播放CD -Audio. 当然程式部份也是先行读出并在电脑上执行, 如此目的是分为两个步骤来完成"多媒体"的展示, 这种情况下, 你不可能顺利播放CD-Audio又平顺播放动画/影片. 其实这最重要的原因就是资料与CD-Audio是分别放在CD光盘片上不同的轨道,光盘机上的读取头无法在同一时间内跑到两个轨道读取资料. 在绿皮书的规格中, 黄皮书规格中的Mode2又被细分为Form1与Form2两种, Form1的磁区(Sector)结构为 2048Byte 资料区加上错误侦测码(EDC)及错误修正码(ECC), 使其可当成Mode1的方式储存电脑的资料. Form2则没有加上EDC与ECC, 整个磁区(2328Byte)皆可存放资料. 或许你会问, Mode2的磁区不是应该可存放2336Byte的资料吗? 是的, 这里我们把那剩下的 8个Byte用来存放磁区的种类(A/V资料或是Data资料), 位置资讯(这个磁区在光盘片上的位置), 这样光盘机才能辨识这个磁区是不是它要找的资料了. 在Mode2的轨道里,我们可以同时存在 Form1 与 Form2 的磁区.所谓资料交错编排(Interleaving)主要目的是可以光盘机同时抓到语音/影像(A/V)资料与电脑资料(Data), 以使播放不至中断. 举例来说, 一个言讲者的影像播放可同时配合他的声音来同步播放, 不会断续. 或是一段电脑动画搭配着其语音说明叙述. 光盘机上特殊的硬体设计可读取并分离交错编排在光盘片上的资料, 声音部份解压缩后送到喇叭放出, 电脑资料则送进电脑内处理, 影视 / 动画资料则被送到电脑或是电视上播放. 现在在市场上所看到的 Mode 2 光盘片包括了Video CD, CD-i, 与一些特殊的CD-ROM/XA光盘片.
绿皮书
绿皮书包括定义了CD-i的光盘片格式与CD-i的硬体规格, 这并且是所有规格书中唯一包括硬体规格的标准, 其中包括了中央处理单元(CPU), 作业系统, 记忆体, Video与 Audio 的控制器以及影音资料的压缩方式等. CD-i 是被定义成一个消费性的电子产品, 也就是类似电视, 录放影机等功能的产品, 它是可以直接接上电视, 并且采用遥控器控制, 它没有软式磁盘机(Floppy)与硬盘机(Hard Disk), 完全采用光盘机作为资料的输入装置, 并且采用即时性的作业系统(Real-time operating system)
* 现在, 我们重新对CD-ROM的格式做一整理如下:
格式 说明
CD-Audio(CD-DA) 雷射数位音乐
CD-ROM High Sierra PC 资料原始标准(现已不用)
CD-ROM ISO 9660 MS-DOS & Machintosh 档案标准
CD-ROM HFS Machintosh 高速档案系统
CD-ROM/XA 黄皮书延伸标准
CD-I 互动式光盘
CD-I Ready 可用于一般雷射唱盘与CD-I
CD-Bridge XA的标准并可用于CD-I上
CD-R(CD-RRM) 单写型CD光盘片
CD-MO 可读写型光盘片
CD-G CD音乐加影像(卡拉OK)
Video CD CD影碟(74分钟MPEG-1规格)
各标准书规格说明
红皮书(Red Book)
CD-Audio
2352 Audio Data
黄皮书(Yellow Book)
CD-ROM Mode 1
12 Sync 4 Header 2048 User Data 4 EDC 8 Blanks 276 ECC
CD-ROM Mode 2
12 Sync 4 Header 2336 User Data
黄皮书延伸规格--XA(Extended Architecture), 本规格均是属于Mode 2下的规格
延伸.
CD-ROM Mode XA Form 1 (Computer Data)
12 Sync 4 Header 8 Sub-header 2048 User Data 4 EDC 276 ECC
CD-ROM Mode XA Form 2 (压缩音乐、影像及照片)
12 Sync 4 Header 8 Sub-header 2324 User Data 4 EDC
绿皮书(Green Book)
所有 CD-ROM/XA 的规格加上对 CD-I 机器的硬体规格 (如 CPU 等) 及 CD-I
的作业系统的定义.
橘皮书(Orange Book)
CD-ROM
Lead-In&TOC Data Track Lead-Out Lead-In&TOC Data Track Lead-Out
<--------------- Session 1> <--------------- Session 2>
* Sync 同步信号, EDC(Error Detecting Code), ECC(Error Correcting Code)
[CD-R光盘的新标准DIS13490]
目前, 国际标准组织已经开始研究一种新的CD-R档案格式, 尚未正式定案的格式叫做DIS13490, 此种标准容许使用者的资料维持跨越平台的交换性, 并可以在CD-R光盘片上更灵活的增加或修改资料.
唯读式光盘机 CD-ROM 不负众望, 已严然成为这个年代最重要的资料储存和传输媒介. 放眼今日的电脑就可见一斑: 麦金塔电脑多数出货时搭配了CD-ROM光盘机,多媒体电脑 (MPC-Multimedia PC) 更少不了它, 而几乎每台 Unix 工作站也都内含 CD-ROM 光盘机, 以供安装系统软体之用.
造成光盘机产业成功的关键之一, 在于当初设立了 ISO 9660 标准, 使得各 CD- ROM 光盘片可通用于麦金塔、MS-DOS、Unix、VAX/VMS 等各种电脑平台上.
然而, ISO9660 驱动程式用在各种作业系统上的时候, 会产生一些设计上的问题举例言之, 使用目录列表指令要读取Unix的档案资料时, 因为部份有关目录属性等的 延伸资料是随着档案内容一起存放, 而非存放在目录记录区域内, 如此一来每当执行一项单纯的目录指令, 都得先到每个资料档案所在的位置上搜寻相关资料, 造成时间的延误与效率的不彰.
ISO9660 还有一个严重的致命伤, 那就是无法支援在光盘片上增加资料的功能,也就是我们常说的 Multi-Session 光盘片, 而当柯达相片光盘 (PhotoCD) 出现时, 这项ISO9660 的限制变成了一个急待解决的问题, 因为相片光盘容许在已有相片资料的光盘片上再增加相片, 直至装满为止. 此外, 企业界可以借助光盘记录器, 将专业资料等自行生产制作成少量的光盘片. 他们可以分次写入资料到光盘片上, 不会浪费光盘片的空间.
ISO9660 早在1988年就已设立. 过去几年之间, 单写型光盘 (Compact Disc Write Once, 简称 CD-R)技术已有长足的进步. 并由唯读型光盘(CD-ROM)演变而成今日的CD-R.
其实在当时单写型系统(WORM)有很多种, 应用方面也不同, 如12寸的单写型光盘是用在记录视讯资料(如影碟)或其他大容量资料的应用(如地政资料), 这种光盘片的容量一片在5.6GB (双面). 另外在可读写磁光式光盘系统(MO)上, 也有一些厂牌将WORM 的功能加入, 其方式为采用材质不同之光盘片(即WORM DISC), 此类光盘机可使用二种型态的光盘片, 可读写磁光式式及单写式光盘片, 达到双功能的目的 (市场上称之为Multi-Function光盘机), 现已很少见于市面. 而 CD-R 则为单写型系统中应用最成功的产品.
相较于 ISO 9660, DIS 13490 这项新标准可说是青出于蓝. 它对光盘片上的轨(Track)及段 (Session)提供了逻辑化的运用能力. 这项突破是利用现有CD-R标准的碟轨记录达成的.各界接受这项新标准的经过, 也与接受 ISO9660 的管道如出一彻. 在当年ISO9660定案前是由High Sierra Group 所拟定的光盘片上册(Volume)资料及档案结构标准, 由欧洲电脑制造厂商公会ECMA加以修改, 并且设定为ECMA 119 标准,随后被又被设为 DIS9660 标准, 最后定名为 ISO9660. 同样地, 法兰克福小组(Frankfurt Group, 由于首次集合的地点在德国法兰克福而得名)起草了唯读型光盘和单写型光盘的 Volume 区架构及档案结构标准, 也由欧洲电脑制造厂商公会 (ECMA) 加以修改, 设定为 ECMA168 标准.
目前, 这项命明为 DIS13490 的逻辑标准, 正由全球各界人士评估. 在评估其之后, 可能设定为 ISO13490 标准. 请读者留意: 本文中所指的“橘皮书”是对 CD-R所定的实体(Physical)标准, 而 DIS13490 则是订出 CD-R光盘片上资料的逻辑架构 (Logical).
唯读型光盘的基本概念
在详述 CD-R册区资料及档案架构之前, 先简单介绍目前所通用的ISO9660架构.这项标准将光盘片划分为四个主要部份, 分别为“册区说明”(Volume Descriptors)、“路径表格”(Path Table)、“目录记录”(Directory Records) 和“扩充属性记录”(Extended Attribute Records, 即 XAR). 这四个区域均用以说明资料组织情况, 因此统称为“描述区”(Descriptors).
在“册区说明”区域, 主要记载了档案路径、根目录及其他光盘重要资讯在光盘上的位置,在此与CD-R光盘最大的不同即是: 唯读型光盘上的目录及档案位置一但被设定后就固定无法变更,因此唯读型光盘上的档案路径及根目录的位置资料是记录在“册区说明”区域内. “路径表格”区域内描述的是根目录和子目录之间的关系. 而“目录记录”区域是列出各目录下的子目录或档案名称.
这种架构的机能, 可以提供系统两种方式来回读取唯读型光盘上的树状档案目录.其一是经由“目录记录”, 其二是经由“路径表格”. CD-R 应用这种方式处理档案,一但更动了某个档案或目录, 就得随即将每笔目录记录重新写入. 因此之故, 在 CD-R档案结构下, 各目录与各档案之间的关系仅载于“路径表格”, 换言之, 在CD-R 档案结构之下的“目录记录”并不包含子目录或档案的指标.
ISO9660的最后一个区域“扩充属性记录”(XAR) 则提供了档案或目录的所有者(Owner)及群组 (Group) 的识别码 (ID) 和架构记录. 然而,“扩充属性记录”系记录在档案或目录上, 因此常会阻碍光盘机的运作. 在 CD-R 档案架构上, 这个问题已经解决了,在后文中解释.
DIS13490 描述区所使用的内部结构资料栏, 与 ISO9660 内部格式所使用资料栏的格式及数值近似. 然而部份资料栏位已经加以修改, 以便 DIS 13490 的结构可支援Posix. 这样一来, DIS13490 标准便足以涵盖市场中主要的作业系统, 如 DOS、Mac-OS和 VMS 等等, 其实这些系统厂商的研发者, 都是当初法兰克福小组的成员.
每当连置(mount)上一个册区(Volume)时, 作业系统都得了解记录在该媒体上的资料种类及格式. DIS13346 (非单次连续写入性媒体 nonsequential write-once media 及可重复读写式媒体 rewritable media 的册区及档案标准)、DIS13490、可能还有一种新的磁带标准为此特别共同订定了叁者通用的册区辨识流程. 借此, 系统可以将适当的册区标准安装在适合的媒体上, 之后再利用这种媒体来开机. 此外, 字符集的定义系由ISO9660 标准扩充而成, 对特殊字符的需要已经大幅降低了.
ISO9660 所定义的“扩充属性记录”部份业已取消, 因为在目录及表格路径内记录延申属性的区域已扩充了其记录的功能.
IS13490 标准
分为四部份, 概述如后:
第一部份: 总论, 列
G. 光盘的保存年限是多少呢
假如一张光盘的镀层较厚,使用的镀层材料又是很耐久的铬黄,保护膜有很厚实,存放地温度保持在25度的常温下,立面不互相挤压排放,有资料介绍,寿命能达到15年左右。
金属铝镀层就很难保证其使用寿命,一旦光盘背面的保护膜被刮开,空气中的氧气会对铝产生氧化反应变黑,很难保存的。而氧化铬的分子非常稳定,空气中的氧对这类的化合物质影响甚微,基本不氧化的。
除了用氧化各做镀层的光盘之外,凡使用铝做镀层的光盘很难有长寿命的保证。就连用铬黄做镀层的光盘才有十几年的寿命,其它镀层的光盘就可想而知了。
(7)光盘产品在历史上有多久扩展阅读:
档案光盘为国家重要文献资料的数字化保护和存储提供高品质要求的可记录光盘产品,不仅要提出“档案光盘”本身质量的适合档案存储的高标准技术要求,还要建立“档案光盘”使用、保存和数据监测、迁移的规范要求,使相关部门在使用“档案光盘”时做到有章可循、有法可依。
为防止假冒伪劣产品,“国家档案局档案科学研究所”和“清华大学光盘国家工程研究中心”于2009年7月共同组建了“光盘保护技术联合实验室”,为档案光盘的产品质量认定和检测提供了技术保证。对每批次的档案光盘,“光盘保护技术联合实验室”将提供第三方独立检测报告,使客户能够放心使用这样的高端可录光盘产品。
H. cd的CD发展史
在1982年10月1日,索尼在日本发布了世界上第一部商用光盘播放器CDP-101,揭开了数字音频革命的序幕。它昭示了一种新的音频媒介的“黎明”,这种媒介承诺向习惯了黑胶唱片那种嘶嘶噼噼声的一代消费者交付一种如水晶般透明清澈的音乐体验。
在上市以后的头一个十年里,光盘机对许多消费者而言都代表着一种可以触摸到的、连接现实与未来的纽带。它将激光和数字电脑这两种当时的尖端技术结合在一起,变成了一种相对来说不那么贵的消费者产品,其功能仅仅在十年以前都是令人无法想象的。
然后,光盘出现了,这种产品在微小的凹点中存储音频,然后由播放器用反射激光来进行读取。虽然之前曾有过光学影碟,但CD才真正成为了激光在大众市场上进行应用的重大突破点。就这种音频格式所取得的令人震惊的成功而言,CD代表着对激光的“最终辩护”——无论作为一种发明,还是作为一种商业化的产品来说都是如此。
在1972年,飞利浦向新闻界展示了一种新型的家庭音频媒介,也就是光学影碟。这种技术被飞利浦称为“Video Long Play”(VLP),是在飞利浦经过多年研究后开发出来的,目标是将其作为一种把家庭视频引入大众市场的方式。VLP影碟看起来就像是一种体型较大的CD,但需要在大得多的光盘中存储音频和视频内容,而且使用的是一种模拟格式(这种技术随后被称为“激光视盘”)。
在1979年3月8日,飞利浦在荷兰召开了一次新闻发布会。在这次发布会上,新闻记者首次体验了数字音乐。飞利浦的这种新产品得到了热烈的回应,但这家公司能感觉到亚洲电子行业巨头正虎视眈眈。在几年以前,多家日本电子公司都已经展示了自己的数字音频光盘原型
接下来的两年时间里,整个音频电子行业都在争相研究新技术,目的是开发出体积更小的CD播放器,使其尺寸能符合hi-fi机箱的要求。索尼碰巧首先发布了自己的能满足这种要求的CD播放器;在当时,短短六个月时间里就出现了10种各有不同的CD播放器。
电子行业在不久以后就发现了CD的潜力,明白这种产品不只是能作为一种音乐的搭载工具。电子公司开始将其用于静止视频图像(CD+G)、模拟视频/数字音频混合(CD Video)、纯数字视频(Video CD)、互动元素(CD-i)、照片存储(Photo CD)等许多领域。
在音频光盘首次问世的时候,消费者媒体自然而然地从实用的角度来看待这种发明,那就是可作为体积很小的、耐用性强的无噪声音频媒介。电脑工程师也同样在关注这项技术,注意到一张4.7英寸(约合12厘米)的光盘能存储令人惊愕的63亿字节的信息。
有六家电脑媒体公司几乎是在马上就展开了一场竞争,目的是重新定义CD的用途,将其作为用于电脑软件的一种媒介。由这六家电脑媒体公司所创造的与消费者紧密联系的CD光驱原型最早在1983年底就已经出现,这种趋势一直持续到1984年。索尼和飞利浦认识到,一场可能发生的子格式“大战”正在酝酿中,因此两家公司决定创造一种官方的标准,它们将这种标准称作CD-ROM(CompactDisc Read-Only Memory的缩写,即只读光盘驱动器)。
随着时间的推移,CD-ROM的地位已经被DVD-ROM以及其他的光学技术所取代,其人气度也已经渐渐衰退。但是,真正“杀死”CD-ROM作为最流行的软件交付方法的发明并非DVD-ROM或其他技术,而是互联网。具有讽刺意味的是,现在正在逐渐“杀死”音频CD的同样也正是互联网。
I. 光盘技术的发展史
早在1968年,美国的ECD(Energy Conversion Device)公司就开始研究晶态和非晶态之间的转换。1971年ECD和IBM公司合作研制成功了世界上第一片只读相变光盘存储器,随后相继开发成功了利用相变原理制造的一次写WO盘。1983年,日本松下公司推出了世界上第一台可擦写相变型光盘驱动器。1994年,松下公司又将相变型可擦写光盘驱动器与四倍速CD-ROM相结合,推出了PD光盘驱动器,在一台光盘驱动器上同时具有相变型可擦写与四倍速CD-ROM功能。松下公司一在声称PD并不是英文缩写,但是人们通常将其理解为英文Phase-change Disk或Power Drive的缩写。
与MO技术相比,由于相变光盘仅用光学技术来读/写,所以读/写光学头可以做的相对比较简单,存取时间也就可以提高;由于相变光盘的读出方法与CD-ROM、CD-R光盘相同,因此兼容CD-ROM和CD-R的多功能相变光盘驱动器就变的容易实现,PD、CD-RW和可擦写DVD-RAM等新一代可擦写光盘存储器均采用了相变技术。
相变光盘存储技术经过20多年的不断研究和稳步发展,具有比MO存储密度高、记录成本低、介质寿命长、驱动器结构简单、读出信号信噪比高和不受外界磁场环境影响等突出优点,特别是相变光盘存储器能向下兼容目前广泛使用的CD-ROM和CD-R,因此相变光盘技术已成为光存储技术中的主流技术,具有广阔的应用前景。
光盘发展历史
光盘存储技术是70年代初开始发展起来的一项高新技术。光盘存储具有存储密度高、容量大、可随机存取、保存寿命长、工作稳定可靠、轻便易携带等一系列其它记录媒体无可比拟的优点,特别适于大数据量信息的存储和交换。光盘存储技术不仅能满足信息化社会海量信息存储的需要,而且能够同时存储声音、文字、图形、图象等多种媒体的信息,从而使传统的信息存储、传输、管理和使用方式发生了根本性的变化。
光盘存储技术近年来不断取得重大突破,并且进入了商业化大规模生产,在日本、北美及欧洲工业化国家已逐渐形成了独立的光盘产业,其应用范围也在不断扩大,几乎已深入到人类社会活动和生活的一切领域,对人类的工作方式、学习方式和生活方式产生了深远的影响。在过去的几年中,世界各主要光盘产业国家的光盘产业销售额都在以两位数以上的速度增长,1996年底全世界各种光盘驱动器的销售总量达5760万台,其中CD-ROM驱动器的销售量为5450万台,CD-R驱动器销售量为150万台。全球CD-ROM驱动器的累计装机总量已超过1亿台,CD-R驱动器的销售量比1995年增长了10倍,是所有光盘产品中增长速度最快的一种。1996年全球光盘盘片的销售量达到了1亿片,其中CD-ROM盘约占90%,CD-R盘约占9%,其它可擦写光盘仅占1%。
一.只读式光盘存储器CD-ROM
自1985年Philips和Sony公布了在光盘上记录计算机数据的黄皮书以来,CD-ROM驱动器便在计算机领域得到了广泛的应用。CD-ROM光盘不仅可交叉存储大容量的文字、声音、图形和图象等多种媒体的数字化信息,而且便于快速检索,因此CD-ROM驱动器已成为多媒体计算机中的标准配置之一。MPC标准已经对CD-ROM的数据传输速率和所支持的数据格式进行了规定。MPC 3标准要求CD-ROM驱动器的数据传输率为600KB/秒(4倍速),并支持CD-ROM、CD-ROM XA、Photo CD、Video CD和CD-I等光盘格式。
MPC 3标准对CD-ROM驱动器的要求只是一种基本的要求,CD-ROM驱动器从诞生至今一直持续不断地向高倍速方向发展。1996年秋末,已有六种品牌的12倍速CD-ROM驱动器进入市场,Philips宣称在1997年第一季度将推出16倍速CD-ROM驱动器。但是专家们认为,适于高倍速CD-ROM驱动器的操作、驱动及应用软件还未出现,CD-ROM的使用性能并未随着驱动器速度的加快而加快。就多媒体计算机的性能而言,6倍速的CD-ROM驱动器已能满足要求。
CD-ROM是发行多媒体节目的优选载体。原因是它的存储容量大,制造成本低,大批量生产时每片不到5元人民币。目前,大量的文献资料、视听材料、教育节目、影视节目、游戏、图书、计算机软件等都通过CD-ROM来传播。
光盘制作、光盘印刷、光盘刻录、光盘复制、光盘打印、多媒体光盘制作等一系列服务!http://www.bjdisc.com.cn/凭着专业的设计队伍、高效的光盘复制设备、先进的丝网印刷设备,从盘面设计制作到成品,我们可以在优质、高效的前提下为您一步到位地完成!
二.一次写光盘存储器CD-R
信息时代的加速到来使得越来越多的数据需要保存,需要交换。由于CD-ROM是只读式光盘,因此用户自己无法利用CD-ROM对数据进行备份和交换。在CD-R刻录机大批量进入市场以前,用户的唯一选择就是采用可擦写光盘机。
可擦写光盘机根据其记录原理的不同,有磁光驱动器MO和相变驱动器PD。虽然这两种产品较早进入市场,但是记录在MO或PD盘片上的数据无法在广泛使用的CD-ROM驱动器上读取,因此难以实现数据交换和数据分发,更不可能制作自己的CD、VCD或CD-ROM节目。
CD-R的出现适时地解决了上述问题,使。CD-R是英文CD Recordable的简称,中文简称刻录机。CD-R标准(橙皮书)是由Philips公司于1990年制定的,目前已成为工业界广泛认可的标准。CD-R的另一英文名称是CD-WO(Write Once ),顾名思意,就是只允许写一次,写完以后,记录在CD-R盘上的信息无法被改写,但可以象CD-ROM盘片一样,在CD-ROM驱动器和CD-R驱动器上被反复地读取多次。
CD-R盘与CD-ROM盘相比有许多共同之处,它们的主要差别在于CD-R盘上增加了一层有机染料作为记录层,反射层用金,而不是CD-ROM中的铝。当写入激光束聚焦到记录层上时,染料被加热后烧溶,形成一系列代表信息的凹坑。这些凹坑与CD-ROM盘上的凹坑类似,但CD-ROM盘上的凹坑是用金属压模压出的。
CD-R驱动器中使用的光学读/写头与CD-ROM的光学读出头类似,只是其激光功率受写入信号的调制。CD-R驱动器刻录时,在要形成凹坑的地方,半导体激光器的输出功率变大;不形成凹坑的地方,输出功率变小。在读出时,与CD-ROM一样,要输出恒定的小功率。
通常,CD-ROM除了要符合黄皮书以外,还要遵照一个附加的国际标准:ISO9660。这是因为当初Philips和Sony没有定义CD-ROM的文件结构,而且各种计算机操作系统也只规定了该操作系统下的硬盘和软盘文件结构,使得不同厂家生产的CD-ROM具有不同的文件结构,曾经一度引起了混乱。后来,ISO 9660规定了CD-ROM的文件结构,Microsoft公司很快就为CD-ROM开发了设备驱动软件MSCDEX,使得不同生产厂家的CD-ROM在不同的操作系统环境下都能彼此兼容,就象该操作系统下的另外一个逻辑驱动器--目录或磁盘。
CD-R的发展已有5年的历史,但是也还存在上述类似的问题。我们无法在DOS或Windows环境下对CD-R驱动器直接进行读写,而是要依赖于CD-R生产厂家提供的刻录软件。大多数刻录软件的用户界面并不直观,而且系统安装设置也比较繁琐,给用户的使用带来很多麻烦和障碍。
为了改变这一状况,国际标准化组织下的OSTA(光学存储技术协会)最近制定了CD-UDF通用磁盘格式,只要对每一种操作系统开发相应的设备驱动软件或扩展软件,就可使操作系统将CD-R驱动器看作为一个逻辑驱动器。采用CD-UDF的CD-R刻录机会使用户感到,使用CD-R备份文件就如同使用软盘或硬盘一样方便。用户可以直接使用DOS命令对CD-R进行读写操作,如果用户使用如Windows Explorer这样的图形文件管理软件,可将文件拖曳或投入(drag and drop)到CD-R刻录机中,就可将文件课录到CD-R盘上。
CD-UDF也是沟通ISO9660与DVD-UDF文件结构的桥梁,采用CD-UDF文件结构的CD-R盘可在DVD-ROM驱动器上读出。
Philips公司最近推出的第四代CDD2600刻录机首先采用了CD-UDF文件格式,并可在Windows 95和Windows NT环境下即插即用,使CD-R技术的发展步入了一个新的里程。
CD-R的最大特点是与CD-ROM完全兼容,CD-R盘上的信息可在广泛使用的CD-ROM驱动器上读取,而且其成本在各种光盘记录介质中最低,每兆字节所需化费的代价约为人民币0.1元。CD-R光盘适于存储数据、文字、图形、图象、声音和电影等多种媒体,并且具有存储可靠性高、寿命长(100年)和检索方便等突出优点,目前已取代数据流磁带(DDS)而成为数据备份、档案保存、数据交换、及数据库分发的理想记录媒体,在企业、银行证券、保险公司、档案馆、图书馆、博物馆、医院、出版社、新闻机关、政府机关及军事部门的信息存储、管理及传递中获得了极为广泛的应用。特别是为那些需要永久性存储信息而不准擦除或更改的用户提供了一种最佳方案。
三.可擦写光盘存储器
1.MO可擦写光盘存储器
MO是英文Magnet-Optical的缩写,是指利用激光与磁性共同作用的结果记录信息的光磁盘。MO盘用来存储信息的媒体与软磁盘相似,但其信息记录密度和容量却比软磁盘高的多。这是由于记录时在盘的上面施加磁场,而在盘下面用激光照射。磁场作用于盘面上的区域比较大,而激光通过光学系统聚焦于盘面的光点直径只有1~2微米。在受光区域,激光的光能转化为热能,并使磁性层受热而变的不稳定,即变的易受磁场影响。这样,在直径只有1~2微米的极小区域内就可记录下一个单位的信息。通常的磁性记录方式存储一个单位的信息时,要占用相当大的区域,因而磁道也相应变宽,盘上记录信息的总量也就很小。
MO盘片虽然比硬盘和软盘便宜和耐用,但是与CD-R盘片相比就显得比较昂贵了。MO的致命缺点是不能用普通CD-ROM驱动器读出,因而不能满足信息社会对计算机数据进行交换和数据分发的要求,在网络技术和网络建设不发达的国内,这一问题日驱突出和严重。
2.PCD可擦写光盘存储器
相变光盘(Phase Change Disk)与MO不同,MO光盘的记录和读出原理是利用磁技术和光技术相结合来记录和读出信息,而相变光盘的记录和读出原理只是用光技术来记录和读出信息。相变光盘利用激光使记录介质在结晶态和非结晶态之间的可逆相变结构来实现信息的记录和擦除。在写操作时,聚焦激光束加热记录介质的目的是改变相变记录介质晶体状态,用结晶状态和非结晶状态来区分0和1;读操作时,利用结晶状态和非结晶状态具有不同反射率这个特性来检测0和1信号。
早在1968年,美国的ECD(Energy Conversion Device)公司就开始研究晶态和非晶态之间的转换。1971年ECD和IBM公司合作研制成功了世界上第一片只读相变光盘存储器,随后相继开发成功了利用相变原理制造的一次写WO盘。1983年,日本松下公司推出了世界上第一台可擦写相变型光盘驱动器。1994年,松下公司又将相变型可擦写光盘驱动器与四倍速CD-ROM相结合,推出了PD光盘驱动器,在一台光盘驱动器上同时具有相变型可擦写与四倍速CD-ROM功能。松下公司一在声称PD并不是英文缩写,但是人们通常将其理解为英文Phase-change Disk或Power Drive的缩写。
与MO技术相比,由于相变光盘仅用光学技术来读/写,所以读/写光学头可以做的相对比较简单,存取时间也就可以提高;由于相变光盘的读出方法与CD-ROM、CD-R光盘相同,因此兼容CD-ROM和CD-R的多功能相变光盘驱动器就变的容易实现,PD、CD-RW和可擦写DVD-RAM等新一代可擦写光盘存储器均采用了相变技术。
相变光盘存储技术经过20多年的不断研究和稳步发展,具有比MO存储密度高、记录成本低、介质寿命长、驱动器结构简单、读出信号信噪比高和不受外界磁场环境影响等突出优点,特别是相变光盘存储器能向下兼容目前广泛使用的CD-ROM和CD-R,因此相变光盘技术已成为光存储技术中的主流技术,具有广阔的应用前景。
J. DVD的历史
这是我找的 不是很好当时我学DVD这门课程时书上介绍的很好不过现在没书了 呵呵
不过DVD是几种技术的结合 我不能一一给你详细的资料
网易 > 数码频道 > 家电首页 > 正文 新闻新闻网页 从老式录像带到高清 家庭播放机发展史
2011-08-09 05:31:30来源: 中关村在线网站(北京)有1人参与 手机看新闻 转发到微博(0)
第4页:用来K歌的VCD与DVD
如果说真正将播放机送进千家万户的,还是在VCD以及DVD时代,当时几乎在每家都能看到VCD或者DVD影碟机的存在。VCD时代以及DVD将家庭用播放机推向了一个顶峰。
老式夏新VCD1995年,VCD开始普及进入中国家庭
1992年,在美国举办的国际广播电视技术展览会上,美国C-CUBE公司展出的一项不起眼的MPEG技术引发了广泛关注。1993年9月,国内的万燕公司在北京国际广播电视展览会上展示了世界上第一台名为CDK330的活动图像光盘播放机的样机,被广电专家委员会命名为“小型光盘放像机”(简称小影碟机,也就是现在的VCD),在现场引起轰动。10月份,万燕在新建的厂房里开始组装第一批2000台播放机,一上市便被抢购一空。
VCD影碟
万燕成功之后,吸引了多家外国企业和几百家国内的企业相继进入中国VCD市场,广泛的宣传使消费者很快了解和认识了VCD,同时,市场需求也十分巨大。到1995年底,有100多家VCD生产企业,国外企业有三星、索尼、松下、飞利浦、迪维斯等,国内的深圳的先科、无锡的梅花组合、常州的新科、四川的鼎天、上海的海月,共有20余种产品上市,使VCD在中国家庭影音市场上产生了空前的繁荣。
VCD取得成功的原因
VCD取得成功,价格自然是最主要的因素。虽然VCD的分辨率只有352*288,远远不能和LD480I的分辨率相比,但是由于价格低廉,迅速占领了市场,并取代了LD碟机。1997年,VCD产销量急剧膨胀到1997年的1096万台,自诞生以来以几何级速度增长。由于大量企业的进入以及激烈的市场竞争,使得VCD播放机的价格迅速下降,由最初的上市四五千元降到1996年平均价格的1400元左右。1999年,VCD价格开始大规模降价,单机价格纷纷跌破800元,VCD在国内开始迅速普及。尤其是起可以K歌的功能满足了多少狼哭鬼嚎的孩子的梦想。
片源方面,由于当时盗版商的大量加入,VCD盘片的价格也急剧降低,满足了大众娱乐消费的需要,也导致很多地方市场上的VCD卖断了货。这也使得我们在短短几年内就实现了发达国家通过十几年普及录像机而经历的家庭影音消费革命。
1998年,国产DVD进入中国家庭
VCD产品刚刚进入市场不久,索尼和东芝公司就在1995年9月公布了统一DVD标准。1996年11月松下DVD率先在日本上市,同年进入中国市场。随后,索尼、飞利浦、三星等各大公司都推出自己的DVD产品。
与此同时,国内的浙江慧强电子集团于1996年研制成功DVD-9601型DVD放像机,海信数字音像公司1996年开始DVD的技术研究,1997年在国内率先推出DVD视盘机。1997年8月,实达第一台DVD上市。1998年,新科公司已将16条生产线全部改造成DVD,DVD向下兼容SVCD方案,并不单独生产SVCD机。TCL王牌电子公司在1998年10月推出DVD2000型DVD播放机,能播放VCD、CVD、DVD三种盘片。实达、江奎、熊猫等公司也已经小批量生产DVD投放市场,年生产能力在10万台左右。
1998年,松下、飞利浦等外资品牌的DVD开始走进了中国一些经济条件好的高端家庭,当时的售价高达6000元。这是个DVD与VCD并存的时代,DVD如此高的价格还并不能取代VCD。同时,国产DVD也开始走入少数高端消费家庭。
到了2001年,中外企业的DVD产量急剧上升到1994.5万台,2006年上半年已达到7891.43万台。国内的DVD产量增长势头迅猛,价格也低,性价比优势非常明显,但由于缺乏在较高技术层次上的知识产权,在世界市场上崭露头角的中国DVD企业遭到外国企业征收高额专利费的压制。最后谈判后达成和解,中国企业出口的每台DVD要缴纳9美元的专利费,高昂的专利费对中国DVD行业的成长产生了明显的遏制作用。
2001年,国产DVD开始大批量上市,步步高、先科、爱多、万利达DVD价格降至1700元左右,盗版DVD光盘也开始登场,由原来100元价格直降到30元左右,最后更是降到了5元一张或者十块钱三张,这些都强烈的刺激了DVD的发展,而目前虽然DVD也已经是惨遭淘汰的技术,但是其影响以及消费者消费观念依然深入人心。不少老牌公司如杰科公司甚至依然靠DVD占领市场,尽管他也知道高清才是趋势。
DVD
便携式DVD
在发展的后期,甚至出现了不少类似于笔记本外观的DVD产品,也就是我们俗称的便携式DVD。甚至不用借助遥控器,我们就可以在DVD上进行操作,而且大多都自带显示屏,而且价格都普遍在千元以下,也曾风靡过一段时间,但是后来也处在淘汰的边缘,就是由于笔记本价格的下降以及MID产品以及平板电脑的兴起。
DVD盘片
小知识:怎么分清DVD盘片与VCD盘片
除了从标识上区别外,还可从光盘颜色来区别。一般CD光盘的颜色是铝白色,或稍带一点盘基材料的淡 VCD播放机蓝色、淡绿色等。而DVD盘就是非常明显的深紫色。另外,从容量是也有区别,通用的CD盘的容量是700M,DVD盘的容量是4.7G两种盘是否刻录过(或有数据),可看光盘刻录面是否有颜色的差别。如果是刻录过的光盘,会有两种颜色,有数据的地方(内圈)要深一些。CD光盘不大明显,要斜对着光线仔细反复看,特别是刻得较满的光盘。DVD光盘是否有数据就很容易看出来的。
要明确DVD盘片和VCD盘片的区别。它们的盘片结构差异很大,导致容量有很大区别(CD:600~700MB;DVD:4.3GB左右),存储的数据量也不同.VCD是Video CD盘片,属于CD。所以如果是Video盘,DVD与CD的时间长度或者画面质量是不一样的。DVD优于CD盘片。
DVD是一种光盘格式,而VCD是Video CD,表示存储视频内容,但依旧是套用CD白皮书范畴。工业标准中有DVD和CD两种存贮介质。实际上规定盘片的数据密度,激光波长,轨道间距,转速,盘体材质厚度等物理标准。
而VCD只是说明这个CD盘中存放的是视频,就类似MP3 CD一样。再要明确一下,DVD播放机和VCD播放机的概念。顾名思义,DVD播放机是播放DVD盘片的设备;VCD是播放VCD盘片的设备。它们设备的硬件上的主要区别应该是激光发光管所发射的激光波长不同。但是正如蓝光向下兼容DVD一样,DVD也向下兼容VCD.
(本文来源:中关村在线网站 )