A. 三维地震技术在韩城地区的应用
李雪峰 温声明 文桂华 李树新
( 中石油煤层气有限责任公司,北京 100028)
摘 要: 煤层气开发需要走低成本的道路,为了规模高效的进行井网部署,在鄂尔多斯盆地探索“黄土塬山地地区复杂地表煤层气”三维地震勘探方法非常有必要。针对韩城地区地震地质条件,围绕经济技术一体化,文章指出了三维地震需着重解决的五个问题,从观测系统设计到资料采集、处理、解释、储层预测等方面采用了八项针对性技术。然后讨论了面元对地震资料的影响,进行了三维地震资料应用效果的分析。最后总结了此次三维地震应用的经验。
关键词: 煤层气 三维地震 韩城 应用
The application of three-dimensional seismic technologies in Hancheng district
LI Xuefeng WEN Shengming WEN Guihua LI Shuxin
( Petrochina Coalbed Methane Company Limited,Beijing 100028,China)
Abstract: As development of CBM needs to be low-cost oriented,it is quite necessary to conct exploration on " ,Loess tableland Mountain region's complex surface CBM" in Ordos Basin via three-dimensional seismic ex- ploration method,to efficiently facilitate scale well network deployment. With regard to Hancheng seismic geolog- ical conditions,the article firstly points out five key issues that needs to be resolved via three-dimensional seis- mic,focusing on the theme of economic and technological integration. Eight specific technologies were applied in terms of observe system designing, data collection, processing and interpretation, reservoir prediction, etc. Secondly,the impact of surface element on seismic data was discussed and application analysis performed on three-dimensional seismic data. Lastly,the article concludes with a summary of experience for three-dimensional seismic application.
Keywords: CBM; three-dimensional seismic; Hancheng; apply
基金项目: 国家科技重大专项项目 33 课题 001 ( 2011ZX05033 -001) 资助。
作者简介: 李雪峰,男,硕士,从事石油及煤层气地震地质综合研究。通讯地址: 中石油煤层气有限责任公司。Email: lixf2010@ petrochina. com. cn
1 概况
1.1 煤层气三维地震实施必要性
韩城地区是煤层气公司勘探开发的主战场之一。从构造区划上讲,韩城位于鄂尔多斯地块东南缘渭北隆起东部。主要含煤地层为二叠系太原组(11#煤)和山西组(5#煤)。煤层气公司在韩城地区累计完成二维地震超过1000km,为煤层气商业开发做出贡献。但是由于二维地震测网控制密度有限,加上煤层非均质性强,纵横向变化快,导致二维地震不能高效准确的部署井网、选择井型,从而规模高效开发煤层气(常锁亮,2008)。而三维地震则是解决该难题的有效手段。三维体数据可提供更丰富的叠前信息;三维可采用更多的解释手段(例如三维可视化、层切片、相干体、属性分析、分频、地质统计学反演、烃类检测等),解决更多的地质问题。
三维地震技术在石油系统已经十分成熟,主要用于解决非均质性强的地质体刻画及预测问题(赵政璋,2005;李明,2005;A.R.布朗,1998;钱荣钧,2006;程建远,2001;陈军,2001;熊冉,2008;陈启元,2001),而且石油系统当前的主流软件系统和先进的解释手段也多是针对三维开展的。国内的煤炭行业也进行了三维勘探的尝试,某煤矿近几年实施了多块小面积的小面元三维地震,取得了成功,但是其成本极高,不具有借鉴意义。
与页岩气类似,煤层气也是一种大面积、低丰度、连续型气藏。煤层为低孔低渗储层,且易受伤害,通常需要经过后期改造才能产气。这些决定了煤层气开发需要走“多井、低产、长期、缓慢”的低成本道路。
因此,为了高效规模开发,实现低成本的三维地震技术系列,进行煤层气三维地震试验很有必要。煤层气公司2010年在韩城地区部署了国内首个三维地震项目,面积为100km2。从实际应用来看,三维地震效果明显,顺利实现了部署目的。
1.2 韩城地区地震地质条件
韩城地区属典型黄土山地地貌,海拔总体在500~1300m之间。地表结构复杂,经长期的侵蚀切割成塬、梁、峁,沟壑纵横,起伏剧烈;地下低降速带厚度、速度变化大,这导致该区地震施工困难,同时静校正问题突出。
作为主要目的层的煤层,埋藏较浅,厚度薄且横向变化大,煤层分叉及尖灭情况突出。因此煤层与上下围岩的地震反射界面清晰,易分辨,但是地震识别多套煤层,尤其是煤层展布有困难;同时针对较浅目的层的观测系统,需要足够的覆盖次数。
2 韩城三维地震采用的技术
围绕经济技术一体化,作为国内第一块煤层气三维,韩城三维地震项目需要重点解决五个问题:
(1)科学设计经济技术一体化的观测系统;
(2)采集技术优化,提高资料品质;
(3)资料精细处理,解决静校正问题;
(4)地震资料解释,查明构造形态及断裂展布;
(5)储层预测,刻画煤层展布,指导开发井位部署。
针对以上问题,采用了一系列针对性技术。限于篇幅,在此列出部分有特色、对韩城项目意义重大的技术。
2.1 观测系统优化设计技术
设计观测系统时,考虑了以下因素:
(1)针对地质任务要求:以解决煤层气构造,纵横向储层、厚度变化为主,兼顾裂缝预测和含气性预测。
(2)针对主要目的层埋深:采用炮检距分布均匀,利于精确速度分析及准确成像;考虑AVO分析及应用。
(3)考虑表层结构和激发因素,资料信噪比与有效覆盖次数关系:采用较宽方位和适中覆盖次数,确保剖面信噪比;
(4)采用价值工程理念:综合分析不同地震采集观测系统的采集成本构成及变动。
综合比较多个观测系统,最终选定的观测系统覆盖次数适中,面元30m×60m满足技术要求,方位角和炮检距分布合理,炮道密度处于合理区间,项目成本符合煤层气勘探特点。同时,结合科研需要,部署15km2的30m×30m面元的试验,以比较不同面元对资料品质的影响。
2.2 多信息高精度选线选点技术
通过该技术,可以在野外施工前,在室内选好炮点及检波点,更合理地安排施工进度,提高效率;同时加大激发点选取力度,尽可能在岩石区激发,获取高信噪比单炮;提前避开施工难点及危险区,最大程度的优化激发和接收条件。
2.3 表层结构反演调查技术
对三维区内原有的18条二维测线进行近地表结构反演,结合反演结果及地表高程、障碍物分布情况进行表层调查点位布设及优化,也为做好静校正提供基础资料。
2.4 野外层析静校正技术
由于野外表层地质条件复杂,高程和低降速带校正量横向变化大引起的长波长问题,其在地震剖面上的反映是地层从上到下呈同一趋势变化,形成构造假象。针对此问题,充分利用表层调查结果、大炮初至信息、VSP测井数据,选准替换速度,应用层析静校正技术,解决静校正问题[9]。
2.5 高精度成像处理技术
保证小断层、低幅度构造及薄目的层的高精度成像,是处理工作成败的关键。主要措施为:做好精细切除;建立高精度的偏移速度场;运用叠前时间偏移技术提高成像精度。
2.6 三维可视化解释技术
三维可视化解释是通过对来自于地下界面的地震反射率数据体,采用不同的透明度参数,在三维空间内直接解释地层的构造、岩性及沉积特征。这种三维立体扫描和追踪技术可以自动追踪,快速高效准确解释,能多角度、直观展示地质现象,为定向井、水平井部署提供可靠资料。
2.7 曲率体技术
根据曲率属性连续性的展布来客观的解释地质体的空间展布规律,在曲率体时间切片上,可清楚地识别断裂的平面展布形态和延伸方向,验证断层平面组合是否合理,提高断层解释的准确度。
2.8 地质统计学反演技术
地质统计学反演以地震反演为初始模型,从井点出发,井间遵从原始地震数据即以地震数据为硬数据(hard data),建立定量的波阻抗三维地质模型,进行储层横向预测。其综合了地震反演与储层随机建模的优势,储层空间展布预测准确率高。
3 三维地震应用效果分析
3.1 面元对地震资料品质的影响
煤层气开发能接受30m×60m的面元,而30m×30m的面元比30m×60m的面元在成本上要翻一番。此次三维进行了两种面元的比较试验。经比较认为,二者在主测线的CDP间距均为30m,相比之下小面元剖面信噪比稍高一些,连续性强一些,但差异不大;联络线的CDP间距不同,相比之下小面元剖面信噪比高一些,连续性强一些,差异较为明显(图1)。但经过偏移插值后的时间切片构造形态基本一致,细节上稍有差异。因此,从经济技术一体化和最优性价比方面综合考虑,30m×60m面元的处理成果能够解决问题。
图1 不同面元的资料对比(左为30m×30m,右为30m×60m)
3.2 静校正处理效果
由于三维区地表条件复杂,微测井的数量不足以控制全区,因此,更多的应用了大炮初至信息。在处理过程中,利用层析静校正方法,通过野外初至波层析静校正和室内反射波剩余静校正的多次迭代处理,由地表高程及低降速带变化所产生的长、中、短波长问题均得到较好的解决,构造假象消失(图2),为后续处理打下了坚实基础。
图2 长波长静校正处理效果对比
3.3 地震资料品质分析
三维地震比二维地震有着更高的品质。从主要目的层段的频谱图上可以看到(图3),二维地震剖面主频为25Hz,有效频带宽度达到55Hz;而三维地震剖面主频为40Hz,有效频带宽度达到75Hz。
图3 二维(左)与三维(右)地震资料频谱对比
与二维资料相比,三维资料信噪比明显提高,消除了长波长的静校正问题,波组特征清楚,断点易于识别,反射内幕清晰,地质现象更丰富,奥陶系顶界反射不整合特征更明显(图4),为地震资料解释及储层研究提供了良好的资料基础,有助于了解主要目的层的地质结构、断裂展布和精细构造形态。叠前时间偏移剖面与叠后相比,波组特征更明显,断层更清晰。
图4 二维测线(上)与三维测线(下)资料处理效果对比
3.4 精细解释与储层预测
进行了精细的构造解释,解释结果经变速成图后得到的构造图件,与二维相比有明显的优点:断层组合更合理,断点位置更可靠,细节刻画更清楚,解释精度更高。三维资料数据量大,将解释结果立体成图,可以更清晰的反映地下特征(图5、图6)。为了检验最终构造成图的精度,针对各目的层的构造图做了成图误差分析。将井的地质分层与解释的构造深度做比较,从统计结果上看大部分井构造成图深度与测井地质分层的绝对误差在03m之间,大部分井小于构造成图误差标准(3‰),说明成图的方法是可行的,成图的精度符合标准的要求,成图的结果是可信的。
图5 韩城三维5#煤层顶面构造图
图6 韩城三维5#煤层顶面埋深图
图7 韩城三维11#煤层厚度分布图
运用稀疏脉冲反演和地质统计学反演,对煤层厚度及空间分布进行了刻画。从反演结果看,3#煤层仅在局部区域发育,东部WLC03井和WLC04井附近最厚,分别是3.4m和2.1m,3#煤层向西至WLC06井逐渐变薄,向南至WLC05井煤层消失。5#煤层全区比较发育,仅在北部的WLC01井、WLC02井和南部的WLC07井附近较薄,向西逐渐加厚,韩试3井和韩试4井之间最厚。11#煤层东厚西薄,在东部WLC01井、WLC03井、WLC05井和WLC06井附近最厚,向西至韩试3井逐渐尖灭,韩试4井附近较发育(图7)。
运用多种地震属性,对开发井的部署进行了优化。经研究认为,振幅属性与煤层厚度具有一定的联系,泊松比属性则与裂缝密度呈正相关。最后综合利用三维地震成果,调整了离断层较近的28口低效井,提高了经济效益。
4 结论
通过韩城三维项目的开展,得出以下结论:
(1)通过韩城三维实践,找到了适合“黄土塬山地地区复杂地表煤层气”特征的低成本三维勘探方法。
(2)用三维地震来解决煤层气的构造、储层预测及井位部署等地质问题是可行的,高效的。
(3)三维地震在煤层气勘探开发领域应用前景广阔,可在开发区大面积实施,以指导定向井、水平井井位部署。
参考文献
布朗AR着,张孚善译.1998.三维地震资料解释[M].北京:石油工业出版社
常锁亮,刘大锰,王明寿.2008.煤层气勘探开发中地震勘探技术的作用及应用方法探讨[J].中国煤层气,52):23~27
陈军,陈岩.2001.地震属性分析在储层预测中的应用[J].石油物探,40(3)
陈启元,王彦春,段云卿等.2001.复杂地区的静校正方法探讨[J].石油物探,40(11):73~81
程建远,何文欣等.2001.三维地震资料的精细解释技术[J].煤田地质与勘探,29(6)
李明,侯连华等.2005.岩性地层油气藏地球物理勘探技术与应用[M].北京:石油工业出版社
钱荣钧,王尚旭主编.2006.石油地球物理勘探技术进展[M].北京:石油工业出版社
熊冉等.2008.地震属性分析在轮南地区储层预测中的应用[J].特种油气藏,15(2)
赵政璋等着.2005.储层地震预测理论与实践[M].北京:科学出版社
B. 目前石油行业海底勘探手段有哪些
根据勘探技术手段的不同,石油勘探主要分为物理勘探和化学勘探两大类。其中以物理勘探为主要手段。目前各油气田勘探经常使用的主要是物理勘探中的地震勘探。
(1)地震勘探:是根据地质学和物理学的原理,利用电子学和信息论等领域的新技术,采用人工方法引起地壳振动,如利用炸药爆炸产生人工地震。再用精密仪器记录下爆炸后地面上各点的震动情况,把记录下来的资料经过处理、解释。推断地下地质构造的特点,寻找可能的储油构造。目前,地震勘探是石油勘探中一种最常见和最重要的方法。
(2)重力勘探:各种岩石和矿物的密度是不同的,根据万有引力定律,其引力也不同。椐此研究出重力测量仪器,测量地面上各个部位的重力,排除区域性重力场的影响,就可得出局部的重力差值,发现异常区,称做重力勘探。它就是利用岩石和矿物的密度与重力场值之间,的内在联系来研究地下的地质构造。 (3)磁力勘探:各种岩石和矿物的磁性是不同的,测定地面各部位的磁力强弱来研究地下岩石矿物的分布和地质构造,称做磁力勘探。在油气田区。由于烃类向地面渗漏而形成还原环境,可把岩石或土壤中的氧化铁还原成磁铁矿,用磁力仪可以测出这种异常,并与其它勘探手段配合,发现油气田。 (4)电法勘探:它实质是利用岩石和矿物(包括其中的流体)的电阻率不同,在地面测量地下不同深度地层介质电性差异,以研究各层地质构造的方法,对高电阻率岩层如石灰岩等效果明显。
(5)地球化学勘探:根据大多数油气藏的上方都存在着烃类扩散的“蚀变晕”的特点,用化学的方法寻找这类异常区,就是油气地球化学勘探。
C. 地震波可以探测到石油或天然气吗
A对
莫霍面是地壳和地幔的分界面。1909年,奥地利地震学家莫霍洛维奇发现,当地震波通过地下33公里处时,纵波速度由7.6公里/秒急增到8.1公里/秒,横波由4.2公里/秒增至4.6公里/秒有一个明显的不连续面
B对
地震勘探在石油物探中是探测精度最高的一种方法,特别是地震反射法,但勘探成本高于其他石油物探方法。由于它的勘探效果较好,已成为石油物探中最有力的勘探手段,应用最广。
C对
人工地震是由人为活动引起的地震。如工业爆破、地下核爆炸造成的振动;在深井中进行高压注水以及大水库蓄水后增加了地壳的压力,有时也会诱发地震。在深井中进行高压注水以及大水库蓄水后增加了地壳的压力,有时也会诱发地震。一般来说,能量越大的活动引起人工地震的震级越大,但也受地质条件的影响,一次百万吨级的氢(qing)弹在花岗岩中爆炸所产生的地震效应约相当于一个六级地震。人工地震一般不会造成损害,但对要求高度稳定的精密设备,仍有不利的影响。
D暂时还是不能通过地震波来预报地震的简单的说可以通过地震波技术清楚的看到地下变化情况,但是根据现有的理论还不能就这些观测到的地下情况来推断地震将要发生的时间、地点、大小。技术在进步,随着技术的发展,也许以后可以把此类问题解决。
地震预报成为当代世界科学难题不是由于“入地难”所造成。现在解决地震预报难题的关键问题是,科学家无法从我们地震台网测出的大量的地震数据中找到地震的活动规律,不能根据测出的地震活动情况来预测出地震活动的未来发展趋势所致。
现在地震台网测出的地震年、月、日、时、分、震中位置纬度、震中位置经度、震级、震源深度等地震数据和整个地球的构造、地壳大板块的全球位置分布、地壳大断裂的全球位置分布、地壳低模量区的位置分布、地壳构造体系位置分布、地壳断层的位置分布等等数据,都是可以根据测出地震波的物理量来确定的。
一、地球内部的圈层
地球内部的结构,无法直接观察。到目前为止,关于地球内部的知识,主要来自对地震波的研究。当地震发生时,地下岩石受到强烈冲击,产生弹性震动,并以波的形式向四周传播。这种弹性波叫地震波。地震波有纵波(P波)和横波(S波)之分。纵波的传播速度较快,可以通过同体、液体和气体传播;横波的传播速度较慢,只能通过固体传播。纵波和横波的传播速度,都随着所通过物质的性质而变化。
从地球内部地震波曲线图上,可以看出地震波在一定深度发生突然变化。这种波速发生突然变化的面叫做不连续面。地球内部有两个明显的不连续面:一个在地面下平均33千米处(指大陆部分),在这个不连续面下,纵波和横波的传播速度都明显增加,这个不连续面叫莫霍界面;另一个在地下2900千米处,在这里纵波的传播速度突然下降,横渡完全消失,这个面叫做古登堡界面。
以莫霍界面和古登堡界面为界,可以将地球内部分为地壳、地幔和地核三个圈层。
地壳和上地幔顶部(软流层以上),由坚硬的岩石构成,合称为岩石圈。
二、各圈层的特点
1、地壳:
指地表到莫霍界面,以硅、铝成分为主,分上下两层,上层为硅铝层,下层为硅镁层,铁、镁成分相对增多。
2、地幔:
从莫霍界面到古登堡界面,随深度的增加,铁镁成分增加。根据地震波的特性,以地下1000千米为界,分为上地幔和下地幔。在上地幔上部存在一个软流层,岩石处于高温熔融状态,据推测它是岩浆可能的发源地之一。
3、地核:
在古登堡界面以下,根据地震波传播的特性,以地下5000千米为界,分为内核和外核,外核为液体,内核是固体,以铁、镍为主。
从软流层以上,全部是由岩石组成,故称岩石圈,即:地壳和软流层以上的上地幔顶部合称岩石圈。
D. 地震勘探有哪些用途
地震勘探是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法。地震勘探是钻探前勘测石油、天然气资源、固体资源地质找矿的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用。
E. 地震有什么属性其用途是什么
地震勘探为我们提供了由浅至深反映地下一层层地层的反射波,我们研究这些反射波就可以了解地下的情况。每个波都有其特点,如振动幅度大小、频率高低、传播速度快慢等三个基本属性。地下岩石性质会对这三个属性产生影响,它们的影响是:
改变了地震波的振动幅度。首先,震源爆炸以后,地震波呈球形向四周扩散,随着扩散半径的增大,振动幅度逐渐减弱,这种现象叫扩散损失。其次,当地震波传播到地下地层时,一部分能量转化为热能而消耗掉,这种现象叫吸收损失。另外,一部分能量透过该地层,透过以后的能量比原来的能量少了许多,这种损失叫透射损失。所以,地震信号在传播过程中,因扩散、吸收、透射作用能量受到了很大损失。
改变了地震波的振动频率。震源爆炸后的瞬时波形是个很瘦很瘦的尖脉冲,也就是振动频率很高。当穿过地下地层时,由于地层的滤波作用,很瘦的尖脉冲变胖了,越胖频率就越低。也就是说,地震信号穿过地下地层后高频信号变成了低频信号。尤其在地层含有油气时,这种变胖的情况更为明显。所以,利用地震波振动频率由高变低的变化程度也可以用来判断岩石性质以及是否含有油气等。
改变了地震波的传播速度。理论研究和实际资料证明,地震波在地层中的传播速度与岩石的地质年代、埋藏深度、岩石密度、孔隙中的流体性质等密切相关。比如,在沉积岩中的传播速度为1500~6000米/秒,而在花岗岩中的传播速度为4500~6500米/秒。岩石的地质年龄越老,埋藏越深,传播速度就越高。当岩石有孔隙或孔隙中含有流体或气体时,传播速度会明显变低。如致密砂岩的传播速度为5200米/秒,如果这个砂岩有10%的孔隙,而且在孔隙中含有气体时,则其传播速度一下子就降为2680米/秒。若有20%的孔隙,含的也是气,则其传播速度降得更厉害,为1800米/秒。
地震属性示意图可见,地震属性不仅与地下岩石的各种性质有关,而且与地层中是否含有油气有关。根据这种关系,人们用地震属性参数就可以研究地下岩层的各种特性及预测含油气情况。
地震属性的提取和应用是现代地震勘探技术中的一项热门技术,中外许多专家、学者都在积极研究。
F. 页岩气地震勘探技术
一、内容概述
地震勘探方法是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法。地震勘探是钻探前勘测石油、天然气资源的重要手段,在页岩气勘探中也得到广泛应用,主要用于复杂构造、页岩储层分布以及页岩储层物性、含气性等方面的研究。根据储层的各向异性特征,运用地震信息中的弹性参数以及各种波场、速度资料研究储层的裂缝或裂隙特征、应力场分布等。地震作为页岩气储层评价和增产改造的关键技术,在页岩气勘探开发中具有重要作用。
地震勘探技术是目前页岩气勘探中最重要的地球物理勘探方法。由于泥页岩地层与上下围岩的地震传播速度不同,在泥页岩的顶、底界面会产生较强的波阻抗界面,结合录井、测井等资料识别可以解释泥页岩,进行构造描述。在页岩气勘探中,可以通过测井解释等手段进行储层评价和裂缝预测。目前在页岩气藏钻探和开发中应用最多的地震技术是基于三维地震解释的水平井轨迹设计技术和微地震监测技术,它们对提高页岩气井产能和采收率起到重要作用。
页岩气地震描述及气藏评价目标主要包括以下几方面:
1)地层特征包括目标泥页岩层发育特征、埋深及横向变化及可能存在的水层、岩溶和隔挡层。
2)构造特征包括目标泥页岩层区块地层构造位置、构造演化特征、构造发育特征。
3)区域沉积特征包括目标泥页岩层区域地层沉积环境及沉积相划分。
4)页岩气层段分布特征包括页岩气层段纵、横向分布变化及埋藏深度。
5)页岩气层段储层特征包括页岩气层段孔隙、裂缝发育及展布特征。
6)岩石力学特征包括目标页岩气层段弹性参数泊松比、杨氏模量等及地层应力特征。
页岩气地震勘探技术,即二维地震勘探主要是为页岩气勘探选区工作提供方向,三维地震勘探才是页岩气勘探的有效途径,可通过页岩裂缝带图的绘制准确认识复杂构造、储层非均质性和裂缝发育带,并为水平井的部署和提高单井产量提供良好的技术支撑。由于泥页岩地层与上、下围岩的地震传播速度不同,在泥页岩的顶、底界面会产生较强的波阻抗界面,结合录井、测井等资料识别解释泥页岩,进行构造描述并不难。裂缝的存在会引起地震反射特征的改变,应用高分辨率三维地震可以依据反射特征的差异识别预测裂缝。利用三维地震绘制页岩裂缝带图主要是通过相干分析技术、地震属性分析、层时间切片等预测泥页岩裂缝。裂缝预测技术对井位优化也起到关键作用。目前,开展最多的是基于三维地震解释的水平井轨迹设计技术。为了更好地利用泥页岩储层中的天然裂缝,并且使井筒穿越更多裂缝,在页岩气藏钻探和开发中,越来越多的作业者都在应用水平钻井技术。该技术在石油工业中并不是一项新技术,但它对提高页岩气开发成功率却有着重大的意义。从水平井中获得的最终采收率是直井的3倍,而费用只相当于直井的2倍。采用三维地震解释技术进行井轨迹设计是一项成熟的技术,尤其是基于三维可视化地震解释技术可以设计和优化水平井轨迹。
而页岩气井中地震技术能有效监测压裂效果,为压裂工艺提供部署优化技术支撑,这是页岩气勘探开发的必要手段。
其中,微地震监测是一种用于油气田开发的新地震方法,它是一项通过观测、分析生产活动中所产生的微小地震事件来监测生产活动之影响、效果及地下状态的地球物理技术。在油气开发领域,该方法主要用于油田低渗透储层压裂的裂缝动态成像和油田开发过程的动态监测。该方法优于利用测井方法监测压裂裂缝效果(图1),在压裂施工中,可在邻井(或在增产压裂措施井中)布置井下地震检波器,也可在地面布设常规地震检波器,监测压裂过程中地下岩石破裂所产生的微地震事件,记录在压裂期间由岩石剪切造成的微地震或声波传播情况,通过处理微地震数据确定压裂效果,实时提供压裂施工过程中所产生的裂缝位置、裂缝方位、裂缝大小(长度、宽度和高度)、裂缝复杂程度,评价增产方案的有效性,并优化页岩气藏多级改造的方案。此外,结合录井、测井等资料可识别解释泥页岩,进行构造描述。微地震监测分为地面监测和井中监测两种方式。地面监测就是在监测目标区域(比如压裂井)周围的地面上,布置若干接收点进行微地震监测。井中监测就是在监测目标区域周围临近的一口或几口井中布置接收排列,进行微地震监测。由于地层吸收、传播路径复杂化等原因,与井中监测相比,地面监测所得到的资料存在微震事件少、信噪比低、反演可靠性差等缺点。
图1 用来验证Pinnacle 技术公司裂隙几何形状的微地震成像技术
由零偏移距VSP(垂直地震剖面法)、偏移距VSP、变偏移距VSP、环测VSP逐步发展到三维VSP技术,都是较为成熟的井中地震技术。其中,三维VSP技术和微地震采集配套施工配合监测储层改造人工裂缝发育分布状况是国外石油大公司的通常做法。三维VSP观测是一种可靠的识别裂隙方向和裂隙密度分布的方法,三维VSP P-P和P-S成像用于陆上构造解释,可大大改善纵、横向分辨率和断裂系统分辨率。三维VSP测井与地面地震结合体现了综合地震勘探能力。此外,四维地震可用于检测在生产过程中,随着温度压力变化,页岩气(游离气及吸附气)的变化情况,以助页岩气开发优化开采。井驱动地震数据处理是一种提高地震数据处理水平和质量的手段,也是发展趋势,使用这种技术配套,需要提高地震资料处理技术人员的整体水平。
二、应用范围及应用实例
1.三维地震在页岩气勘探中的应用
Paddock et al.在2008年利用一个全方位角、用单组成的垂直速度检波器去记录页岩探测中的模型转换剪切波与传统记录三维地震探测。他们的目的是:①去鉴别裂缝是含气的开放性裂缝还是封闭的次生裂缝;②去鉴别这些页岩区域的高SiO2集中区域,可以提供很高的页岩脆度(提高了次生裂缝的生长)和高的孔隙度区域,可以储存更多的气体量。他们认为S波分裂可以为第一个目的提供解决的办法,而泊松比可以为第二个目的提供解决的办法。他们还想整合这些资料,使它们更连贯,以提供去鉴别主要的和次要的断层。他们创造了两种全方位的三维容积:一种是前叠加容积运用于S波的分裂和反演,一种是层积容积运用于连贯的特征计算。在这个工程实例中运用了“蚂蚁踪迹”。这里存在的裂缝预测是一种封闭式的,S波分裂在一个全方位角上运行。由于页岩(致密砂岩)具有一些开放性裂缝,说明了三维数据应该运用两种正交反演集合,一种是在高速度的方向,另外一种是在低速度方向。高速的方向上,提供影响岩性、孔隙度和气体饱和度的充填物;低速方向测量了开放性裂缝充气后的影响。解释了的层位被用来确定含气页岩的顶部和基部,然后确定出vp和vs层间速度和其他反演数据。
2.微地震在页岩气勘探中的应用
目前CGGVeritas(图2)、斯伦贝谢、贝克休斯、道达尔、哈里伯顿等多家公司推出微地震技术服务。道达尔公司在中东和南美分别进行了注蒸汽微地震监测研究。一些专门从事微地震技术服务的公司在该领域取得重大进展,在优化开发方案、提高采收率等方面起到关键作用。微地震技术服务公司研发出一套基于地表的微震数据采集观测系统,其专有的FracStar技术在非常规资源开采中发挥重要作用。微地震技术在页岩气储集层中进行实时压裂监测效果显着,贝克休斯公司采用IntelliFrac服务解决了页岩气储层水力压裂实时监测难题。
对地下裂缝不发育的气井进行二次压裂可以提高产气量。在得克萨斯的福特沃斯北部气田的Barnett页岩地层进行了二次压裂的现场试验。使用一系列的地面测斜仪监测压裂过程。结果显示,二次压裂中井A和井B的裂缝方位都发生较大的转向。通过生产数据可以看出,两口井二次压裂后产量都大幅度增加。这一地区其他井二次压裂后情况类似,产量都有不同程度增加。对井A的原始生产数据进行历史拟合,利用拟合结果进行预测,预计二次压裂诱发裂缝的长度约为一次压裂缝长的40% ~80%。压裂之后井A的产气量由501Mscf/d增加到750Mscf/d,6个月后产量稳定在300Mscf/d。压裂6 个月后的稳定产量进一步证实了二次压裂裂缝长度为一次压裂裂缝长度的40%是比较准确的。二次压裂的成本已从增加的产量中收回。
图2 CGGVeritas地球物理勘探公司所开发的先进地震加工和分析工具在确定页岩气“甜点”中的应用
(资料来源:http://www.engineerlive.com)
三、资料来源
Daniel J K R,Bustin R M.2008.Characterizing the shale gas resource potential of Devonian⁃Mississippian strata in the Western Canada sedimentary basin:Application of an integrated formation evaluation.AAPG Bulletin,92:87~125
Julia F W G,Robert M R,Jon H.2007.Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments.AAPG Bulletin,91(4):603~622
Maxwell S et al.2012.Enhancing shale gas reservoir characterization using hydraulic fracture microseismic data.First Break,30:95~101
Michael Binnion.2012.How the technical differences between shale gas and conventional gas projects lead to a new business model being required to be successful.Marine and Petroleum Geology,31:3~7
Paddock,David,Christian Stolte et al.2008.Seismic Reservoir Characterization of a Gas Shale Utilizing Azimuthal Data Processing,Pre⁃Stack Seismic Inversion and Ant Tracking.AAPG Annual Convention,San Antonio,Texas
G. 学习石油地质学对石油勘探的意义
随着世界油气勘探的深入发展,在“背斜理论”指导下,容易寻找的背斜油气田多已被
发现,用新理论、新技术指导的现代油气勘探已经成为世界各国油气勘探人员面临的重大挑
战。地壳上油气分布的不均衡性,受地层、岩性因素控制的大量非构造油气藏形成、分布的
隐蔽性,天然气气藏在形成机理上与油藏的差异性,海上及边远地区油气勘探、开发技术的
复杂性等等,都迫使我们发展新的石油地质学及油气勘探理论、油气勘探技术,以适应现代
油气勘探形势的需要与发展。
上述世界油气勘探的趋势及特点,决定了石油地质学必须向若干边缘学科方向发展,并
在基本原理方面有所进展,才能满足勘探的需要,促进生产的发展。近余年来,石油地
质学在如下方面获得了显着进展。
一、边缘学科
板块构造学说的应用——板块构造学说的诞生被誉为“地质学上的革命”。它给石油地质学也带来了新的活力,
表现在:
含油气盆地分类方案繁多。过去的含油气盆地分类多限于陆地和大陆边缘,板块构
造学说诞生后,含油气盆地分类方案如雨后春笋,异常活跃,不再限于陆壳型和过渡壳型的
盆地,而是眼光更为开阔,注意到洋壳型盆地;对盆地类型及其形成机制的认识也更为深刻,
油气勘探的预见性增强,领域更广。
油气无机成因说重新活跃。板块构造学说的出现,以及在巨大转换断层带和环太平
洋俯冲带发现了大量烃类显示,说明其生成与上地幔的物质活动有关。因此,国内外不少学
者重新提倡油气生成的无机来源,在地盾、俯冲带及转换断层带的油气勘探与科学研究显着
加强了。
逆掩推覆体找油引起重视。以往地质家们认为逆掩断层带构造复杂,保存条件差,
很少列为油气勘探对象。由于板块构造学说将烃类生成及显示与上地幔活动联系起来,大型
逆掩断层带正可成为深部油气向上移动的通道,只要遇见良好圈闭便可聚集成油气藏。美国
落基山东麓逆掩推覆体若干重要油气田的发现证实了上述观点,开拓了油气勘探领域。
有机地球化学的应用——
有机地球化学的应用,使石油地质学的基本原理发生了天翻地覆的变化,油气成因的研
究从定性向定量发展,提高了油气勘探成功率。有机地球化学的现代技术和先进设备,使有
机质类型、丰度及成熟度研究愈益深入,地球化学指标大量涌现,烃源岩及生气区、生油区
的评价均可达到定量水平。生物标志化合物及同位素地球化学近年来发展尤快,甾、萜、
异戊间二烯型烷烃等生物标志物的研究,有助于探讨油源对比、母质类型及成熟度;同位素
地球化学研究对解释气源对比、油源对比、有机质成熟度、天然气成因类型及地层绝对年龄
等,均具有重要意义。现在有机地球化学技术正被推广用来探讨油气运移、聚集和保存问题,
用来发展地面地球化学勘探技术,探索直接找油气的途径和方法。
地震地层学层序地层学的应用——
地震地层学是现代数字地震勘探技术与地层学、沉积学、石油地质学相结合衍生的一门
新兴边缘学科,对油气勘探与开发均具有重要意义。目前可将地震地层学明确地划分为区域
地震地层学(含层序地层学)与储层地震地层学(含开发地震学)两个范畴。前者主要是利用地震反射剖面结合少量岩心及测井资料,研究盆地内各层序的沉积环境,分析体系域的类
型、特点及分布,重塑沉积史及构造史,对生、储、盖、圈等条件作出评价,寻找非构造圈
闭,为预探井提供钻探对象;后者是近几年萌芽的一个新研究动向,在一个局部构造或沉积
单元内对地震资料进行特殊处理,综合测井及岩心资料,定量研究薄砂层或薄石灰岩,确定
薄砂层厚度或薄石灰岩溶蚀带厚度,计算孔隙度、渗透率、泥质含量等物性参数与含气饱和
度、含油饱和度、气水界面、油水界面、剩余孔隙流体压力等含烃性参数,甚至探索直接寻
找气藏或油藏的方法,为详探井、生产井、调整井等提供钻探对象。
储层评价技术——
随着油气勘探的深入发展,尤其是在深部油气勘探和天然气勘探中,对储集层的研究和
评价技术愈益显得重要,在盆地、区带及油田的勘探、开发全过程中,如何对储集体、储集
层、储集性质及储集效率逐级进行定性和定量评价,日益成为勘探或开发成败的关键,所以
国内外学者正在加强储层评价技术的系统研究,基本包括区域储层评价技术、单井储层评价
技术、开发储层评价技术、动态储层评价技术和敏感储层评价技术等套技术。这些成套储
层评价技术的研究,必将显着提高油气勘探与开发的成功率。
数学地质和计算机的应用——
数学地质和计算机技术的引入,正在促使石油地质学及油气勘探技术发生更加深刻的革
命。各种数理统计方法在沉积学、古生物学、构造地质学、石油地质学中早已得到广泛的应
用。特别是近几年来,应用计算机技术,编制各种地质图件,建立各种数据库,开展盆地分
析与模拟,进行不同勘探阶段的油气资源评价和储量计算,并进一步探索建立各地质学科的
综合专家系统。
综合石油地质学的上述边缘学科的新进展,它们可以为油气勘探工作中的盆地分析、区
带评价、圈闭(油藏)描述提供新技术,显着提高油气勘探成功率,促进油气地质勘探及开
发事业的蓬勃发展。
二、石油地质学原理
在上述边缘学科迅速发展的同时,石油地质学原理也获得了重要进展,显着特征在于从
静态向动态、从单学科向多学科综合发展,所谓“成藏动力学”的呼声日益高涨。表现在下
列诸方面:
地温场、地压场、地应力场(三场)与油气藏形成的关系;
流体压力封存箱;
油气系统。
上述三方面是本世纪年代以来在石油地质学原理领域的重要进展,尽管它们尚处于
发展过程中,有待完善,但它们已显示出对指导油气勘探开发的巨大作用。
H. 地震勘探及其发展趋势
1.地震勘探简介
地震勘探是利用地震学的方法研究人工激发的弹性波在不同地层中的传播规律,包括波速、波的衰减、波形以及在界面的反射和折射等来研究地层埋深、构造形态以及岩性组成等的一种地球物理方法。根据接收波不同可以分为反射波法和折射波法。
地震勘探的优点在于能对地质构造作出定量解释,有较高的精度,控制深度较大,是当前物探中较精确的一种。缺点是较其他物探手段成本高,效率低。
2.地震勘探技术发展趋势
近年来,随着电子技术、计算机技术的高速发展。地震勘探的仪器设备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。
(1)地震采集技术的新进展
一般来讲,地震野外采集成本占勘探成本的80%左右,因此,世界各国为了降低勘探成本、提高勘探效果,不断研发、更新地震勘探的仪器设备。
地震仪作为地震勘探的核心设备,从20世纪30年代至今,先后经历了光点记录、模拟磁带记录、数字地震仪、遥测数字地震仪、基于Δ∑技术的24位A/D型遥测数字地震仪和全数字地震仪等6个标志性时代。纵观近5年来地震勘探仪器的技术进展,可以看出:以24位A/D技术(Δ∑技术)、数字传感技术(MEMS技术)、网络遥测技术、光纤通讯技术、数字存储技术、超大规模硬件技术、硬件功能软件实现技术和超万道大容量采集技术为代表,地震仪器的研发广泛融合了地震勘探技术、电子技术、计算机技术、通讯技术、数字信号处理技术、数据传输技术的新成就以及新工艺、新材料等方面不断涌现的新发明,向着技术指标越来越高、工作速度越来越快、采集和预处理能力越来越强、可靠性和稳定性越来越好、自动化和智能化程度越来越高、单道成本越来越低的方向迅猛发展(周明非,2006)。
伴随着地震仪器的技术进步,地震数据采集方法在继续扩大原有的高分辨率三维地震成果应用范畴的基础上,从采集思路上越来越多地体现出地震采集、处理与解释一体化的总体思路,从采集技术上更多的强调单点(震源)、单道(检波器)、高密度(小道距、小线距)、高保真的采集模式,在采集方法上从最初的小道数二维地震逐渐发展到大道数三维地震、时延地震(四维地震)、矢量地震(三维多波)等;另外,在野外数据采集时,加强了采集方案优化论证、地震资料品质分析和定向照明设计、现场监控处理等基础环节的工作。总之,地震野外数据采集的装备与技术能力,目前已经完全能够满足全球范围内的沙漠、平原、山地、丛林、湖泊、海洋等作业环境的需要,在国内外能源地震勘探领域(油气、煤炭等)已经得到广泛应用,并成为能源地球物理勘探的核心技术(熊翥,2006)。
(2)地震处理技术的新进展
目前,无论是石油还是煤炭地震勘探的技术难度越来越大,可以用低(低信噪比)、深(埋藏较深)、难(条件困难)、隐(隐蔽性强)几个特点来概括(中国石油天然气集团公司油气勘探部,1999),这几个特点反应到地震资料处理上,其特点表现为以水平、均匀、层状介质为假设的地震资料常规处理方法和软件,已经越来越不适应复杂介质条件下的地震勘探资料处理,以往地震资料处理的一些关键模块遇到了难题和挑战,如复杂地表条件下的静校正、陡倾角条件下的叠加与偏移、非均匀介质条件下的动校正等。为了适应这些挑战,地震数据处理的硬件设备中,开始采用以pc-cluster集群为特征的并行处理机,以加快处理速度;地震资料处理方法中,常规的叠后偏移向叠前偏移发展,地震叠前偏移(时间域或深度域)处理已于2006年成为石油地震资料处理的必然要求,且已经开始在煤炭地震资料处理中得到应用(邹才能等,2002)。
另外,多次波压制技术、低信噪比资料处理技术、地表层析静校正技术等应对复杂条件下地震资料处理的关键模块不断发展,服务于处理解释一体化的地震叠前AVO技术、叠后约束反演处理技术等也取得了明显效果。
(3)地震解释技术的新进展
经过二十多年的发展,地震资料解释的计算机系统,已经从工作站单机版模式、服务器-用户终端模式、服务器-客户端网络模式,发展到多服务器的服务器-客户端网络模式;随着微机性价比的迅速提升,基于Linux系统的高配置微机工作站已经能够完全胜任地震解释的要求,从而实现了微机解释平台的Linux风暴。
近几年来,地震解释技术发展迅速,地震数据采集、处理、解释一体化的步伐明显加快。所有从事地质科学的人员———不仅仅是地震资料解释专家,也包括地质专家、岩石物理专家、矿藏工程师等,联合组成协同工作组(Lawrence M et al.,2003),可以将地震资料、地质模式、钻井资料和油藏开发史等有机结合起来。地震资料的处理不再是独立的处理步骤,而是整个解释过程中的一部分,其目标就是建立一个非常详细的地质模型,而各种软件的普及使得解释处理过程中的部分工作,可以由越来越新的智能型软件自动完成;三维地震可视化解释技术、虚拟现实解释技术的出现,在物探人员和地质人员之间架起了一座“桥梁”。如今的地震勘探的瓶颈问题不再是数据处理所需要的时间,而是物探解释人员和地质工程师利用这些信息作出综合判定的速度(Satinder C et al.,2003)。
在地震解释的新方法、新技术中,地震属性分析技术、相干体解释技术、方差体解释技术等发展迅速,地震资料除了能够完成常规的构造解释任务外,综合利用地震资料和沉积学知识开展的地震地层学解释、层序地层学解释、地震资料岩性解释和储层精细描述技术等也取得了积极的进展(张永刚,2007)。
总之,地震勘探技术经过近80年的快速发展,经历了从模拟阶段进入数字时代、从一维勘探发展到三维地震乃至四维地震、从单分量接收到多分量接收、从地面勘探到立体勘探、从构造勘探到岩性勘探、从均匀层状介质到各向异性介质理论等技术进步,取得了一系列技术创新成果。近年来,应用于煤炭石油工业的地震勘探技术逐步形成了高精度地震、三维地震连片处理、重磁电震联合反演、精细储层描述等综合勘探技术系列,在交互三维地震构造解释、断层分析、地震反演、属性分析、三维可视化、地质建模与地质统计技术等方面取得了重大的研究进展,促进了复杂油气藏的勘探,并逐步推广到煤炭地质勘探领域。据专家预测,在今后一段时间内,石油地球物理勘探技术的发展方向将从目前的勘探地球物理为主,逐步转向开发地球物理为主。为了满足复杂勘探对象的地下成像,高密度地震(万道地震采集)、高精度地震(精细解释)、三维可视化与虚拟现实技术以及地震勘探新技术(三维三分量地震———3D3C、全方位纵波地震———AVA、延时地震———4D、三维VSP———3DVSP、井间地震等)等地震勘探新方法、新技术正在发展、完善和成熟,代表着今后一段时期内地震勘探技术的发展趋势。
I. 油气田地震勘探资料存储的实践与应用
李红霞1 符京生1 张永胜2 惠玉凤2
(1.中石油长庆油田公司档案馆;2.中石油东方公司研究院长庆分院)
摘要 为抢救和保护地震勘探数据磁带档案,改变长期以来地震磁带容量利用率低,保管成本高的现状,长庆油田应用地震资料全容量存储技术,完成了地震勘探数据载体的转换,实现了地震磁带全容量存储,有效解决地震勘探数据保存和再组织问题,效果显着。本文介绍了长庆油田地震资料全容量存储技术开发的背景、研究成果及应用实施情况。
关键词 地震勘探数据 磁带存储 容量利用率 测线标签 磁带操作程序
地震勘探数据磁带是油气勘探的重要资料,是地震勘探工程施工成果的载体,是物探科技工作者智慧的结晶,是企业的宝贵财富。石油天然气行业标准亦规定磁带为地震勘探数据成果长期和永久保存介质,这一管理形式在油田企业一直沿用至今。近年来,随着地震勘探技术水平的发展,施工设备的更新换代,存储技术的不断发展,传统的保管利用模式已无法适应现代化办公条件下生产科研工作的需求,加之所保存的地震勘探资料时空跨度大,严重制约着磁带档案的规范化、标准化、现代化管理水平的发展,潜藏着因历史资料载体到期老化等因素致使数据无法正常读取和使用的巨大风险。基于此,长庆油田开展了将库存地震勘探数据由低密度磁带向新型高密度磁带的数据转储工作,探索出地震勘探数据磁带全容量存储技术,从根本上解决了地震勘探数据磁带档案管理中的诸多问题。
1 长庆油田地震勘探数据磁带管理现状
长庆油田档案馆保存着迄今为止30多年来在鄂尔多斯盆地及其周边地区采集的全部地震勘探原始及成果数据磁带,是长庆油田唯一的地震勘探档案集中保管地,库存各类地震磁带9万多盘。近年来,随着档案管理系统的推广应用,狠抓了地震勘探数据磁带档案基础业务,实现了磁带档案目录的电子化,其中成果磁带采取了案卷级和文件级相结合的编目规则,利用效率得以有效提升。然而磁带这一载体的特殊性,影响着磁带的安全管理,制约着磁带管理水平的进一步提高,主要表现在以下几个方面:
一是磁带数量大、型号繁杂,部分已到保管期限。现库存磁带包括3480、3490、3590、3592及九轨半英寸磁带共5种,其中3480、3490、九轨半英寸磁带占库存总量的97.45%,库存一半的磁带已到规定的保管期限,加之磁带机对不同型号磁带的互不兼容性,导致部分陈旧磁带数据随着相应磁带机生产下线而无法正常读取使用。
二是数据格式多样,不便利用和管理。其中大部分为SEG-D格式,部分是TIPEX、TAR格式,现阶段已无与之匹配的操作系统,数据无法读取,这种多格式共存给地震勘探数据的标准化、规范化管理也带来不便。
三是磁带容量利用率低,增加了保管成本。传统磁带管理因受磁带物理标签及现场施工方式的影响,通常磁带容量利用率仅有21%,容量空置率高,造成磁带数量的无谓增加和成本的极大浪费。
四是利用效率低。一直以来,长庆油田采用磁带对磁带一对一拷贝,通过复制归档磁带数据开展对外提供利用工作,这一管理方式在确保管理安全方面效果显着,但利用效率却大受影响,在面对利用量小且任务较分散的利用工作时,这一方式基本能够满足,也未突显明显矛盾,然而面对近几年油田勘探生产任务的大量攀升,经常面临集中大量的数据利用工作,即使工作人员24小时不停歇加班加点,但因这种传统数据拷贝速度受限于设备数量、设备运转情况的影响,常常很难满足实际工作的需要。所以对地震勘探数据开展抢救式介质转换、升级,探索改进地震勘探数据磁带档案管理已迫在眉睫。
2 地震资料全容量存储的目的
1)抢救和保护油田勘探资料,确保资料信息随时代发展、软硬件条件进步,能得到完整保护。
2)采用国际国内通用格式形式加以转录、存储,使不同设备不同时期地震勘探资料得以通用性识别。
3)大容量存储的应用,保证地震资料信息完整,今后复制、抢救数据更加高效,便于长期安全性保存。
4)便于高效服务油田勘探开发,由于油田勘探程度愈来愈高,隐蔽性、小型性、复杂性油气藏也成为勘探的主要目标,对地震资料的进一步应用也愈来愈多。
3 地震资料全容量存储技术
3.1 地震资料全容量存储技术概述
地震资料全容量存储是采取标准的SEGY磁带格式,将包含地震测线的关键标识性信息(包括测线名称、地区等)和档案管理重要元素(包括全宗、目录号、保管号等)组成的具有重要识别性质的简单的测线编码电子标签,记录在SEGY卷头未定义区域,通过地震数据磁带操作程序,独立完成地震测线数据的卸带和磁带检索。将测线数据及相应的电子标签一同写入直至记满一盘3592磁带为止。
地震资料全容量存储理论上是对历史地震勘探数据载体的升级转换,是对数据格式和载体型号的统一规范;这一技术的核心是使得地震勘探数据存储不再受限于磁带物理标签限制,而是取决于磁带本身的存储量,可将传统磁带容量提高至98%左右,这对于磁带档案保管的集中地——档案部门来说,将有效减少磁带数量,降低管理成本,缓解库存压力;同时这一技术符合地震磁带标准格式,形成的存储磁带能够在GeoEAST、CGG等处理系统中直接读出,便于利用和管理。
3.2 测线标签和磁带标签目录
测线标签和磁带标签目录是一行限长EBCDIC码字符串,包含卷盘号、卷内序号、测线名、成果类型、队号、数据范围、工区、生产年度、数据来源等测线标示信息(表1),与测线SEGY数据文件一一对应。将一盘地震SEGY磁带的测线标签顺序存放,形成磁带标签目录文本文件。
表1 测线数据文件与测线数据标签
3.3 地震资料全容量存储操作程序
地震数据的SEGY格式,实际上是一种特殊的加密格式,通常只能由理解SEGY格式的软件来读取,如GeoEAST、PROMAX、CGG等,且须有地震资料数据处理背景的人员操作完成。在Linux系统下,使用C语言编制一组SEGY格式磁带专用程序,根据磁带标签目录,脱离通用处理系统直接驱动磁带机,完成标准地震SEGY格式磁带的写入、读出和磁带扫描。
3.3.1 磁带机工作特点
与磁盘直接访问不同,磁带是一种流式数据设备,只能顺序访问。磁带基本读写单位为块(BLOCK),块与块间有一物理间隙(GAP),用于磁头定位。SEGY磁带数据文件有若干块组成,文件尾有一特殊数据标志EOF标示文件结束,而双EOF通常表示磁带数据结束。程序设计中,通过系统调用磁带设备数据结构,完成磁带的寻块和读写EOF等控制操作。
3.3.2 写磁带
程序功能是将磁带标签目录文件所列的测线SEGY磁盘文件及其测线标签,顺序写入一盘磁带(图1)。写带前应先用tpsize命令估算写带容量,以确保磁带全容量存储。有记带日志帮助确定写带正确。实际应用中,譬如在提供磁带拷贝记带时,测线标签可以选择空白。
3.3.3 读磁带
程序功能是从一盘磁带中顺序卸出全部或指定序号的SEGY文件到磁盘(图2)。查询标签目录获得卸带文件号。有读带日志帮助确定读带正确。
图1 写磁带流程
图2 读磁带流程
3.3.4 磁带扫描
程序功能是扫描一盘地震成果磁带,列出全部SEGY文件标签和卷头及道头信息,检查SEGY数据磁带或SEGY数据文件的合规性。
4 地震资料全容量存储的应用
4.1 应用方案
1)将多格式数据向SEGY格式转换。
2)转储数据编目规则,采用档案着录规则与物探技术规则相结合,包含卷盘号、卷内序号、测线名、成果类型、队号、数据范围、工区、生产年度、数据来源等信息内容。
3)数据采用磁带加磁盘双模式存储,其中磁带采用近年通用、普通的350 GB容量的3592磁带,这种新型的高密度磁带可大幅度减少磁带数量,便于保管和保护;磁盘采用RAID6冗余技术方式,便于日常频繁大量的数据利用。
4.2 应用实例
长庆油田利用上述技术历时两年半完成了1980~2010年共9万多盘各类地震勘探数据(包含原始与成果)的转储,共形成转储磁带90多盘,存储量40TB。特别是档案目录中的原始测线,全部得到样本保存,实现并保证了长庆油田地震历史成果的永久保存。
4.3 应用效果
4.3.1 磁带数量大幅减少,有效缓解了库存压力
转储前,9万多盘不同种类不同型号磁带共占用两个库房320平方米存放空间,转储后,同样的数据量只形成了90多盘3592磁带(350GB),仅用了一个资料柜的1/3。
4.3.2 抢救保护了地震勘探数据,保证资料持续可用
通过转储,抢救恢复了无法读取的TIPX格式和掉粉损坏磁带的地震勘探数据,保证了所有地震数据的有效性,同时也为下一步确定4万多盘已到保管期限的九轨半英寸磁带鉴定处置方案提供了可靠依据。
4.3.3 实现了标准化、规范化,便于管理和利用
通过地震资料全容量转储,长庆油田所有不同历史时期不同格式地震勘探数据全部实现了以国际通用的3592高密度数字磁带为载体,数据格式为SEG-Y的标准存储模式,便于硬件设施的配备及日常维护工作的开展,使管理更加便捷,利用更加顺畅。
4.3.4 提高检索效率,全面提升了地震勘探数据的利用服务水平
检索效率大幅提升。通过集中统一更改、补充、完善,规范和丰富了长庆油田30多年来的地震勘探数据及目录信息,提高了检索的准确性;完善了地震勘探磁带管理信息电子编码技术规则,制定了由卷盘号、卷内顺序号、测线名、队号、工区等10个信息因素组成的具有地震测线和档案目录独特识别信息的地震勘探磁带测线信息电子编码和档案编目、着录规则,用以地震勘探数据库的检索;形成了以档案目录号、保管号为内容的互见目录,可实现磁带测线信息电子编码标签与档案测线目录的双向信息查询,提高了检索效率。
利用服务方式有了突破性发展。本次转储除采用传统的磁带存储外,开创了磁盘阵列备份存储的新模式,实现了地震勘探磁带数据的数字化管理,实现了从目录检索到数据直接拷贝的系统管理操作,改变了传统通过目录检索获得实物档号,取出实体采取磁带对磁带的一对一拷贝的半信息化操作,在提高利用效率的同时,也为快速高效地开展地震勘探数据的再组织奠定了基础,开启了地震数据管理利用新篇章。
4.3.5 提高了工作效率,降低了劳动强度
以3490磁带为例,一天按8小时工作时间计算,在机器运转良好,工作人员不间断工作的情况下,每天一台3490磁带机最多能完成30多盘磁带数据的拷贝,若一条测线原始数据磁带350盘左右,存储量约150GB,采用传统地震数据磁带拷贝,用一台机器拷贝最快10天,而通过磁盘阵列数据拷贝仅用2个多小时即可完成。据初步测试,完成1TB数据量拷贝需18个小时左右。经转储整理后,在实现高效率数据拷贝和再组织的同时,大大降低了劳动强度,解放了人力。也符合大数据时代快速、高效生产科研工作的需要。
4.3.6 两种存储互为补充,提升了地震勘探数据的安全有效性
采取磁带和磁盘阵列两种方式存储,可根据实际需要相互转换,互为补充,降低了保管风险,最大限度地维护了企业的利益;降低了对磁带数据的重复利用次数,有效地保护了存储介质及地震勘探数据;历史数据载体的升级转换,是一次全面地毯式的核查,是对过去收集检验工作的又一次复核、巩固和补充,是对存放多年数据有效性的全面检验,是做好数据档案保护工作的又一举措,对于档案保管部门意义重大。
5 结束语
地震资料全容量存储成果在实际工作中的应用证明,其提高磁带容量,减少库藏量,降低管理成本效果显着,规范标准化程度高,适合地震勘探数据信息化数字化管理;磁带及磁盘阵列双模式存储在有效降低保管风险,实现方便灵活利用及数据再组织等功能方面,得到相关科研生产部门的一致认同。地震资料全容量存储技术适合地震勘探数据磁带档案管理或地震勘探数据信息的集中管理部门,且数据量越大,效果也越明显。该技术不仅解决了传统地震勘探数据磁带档案管理中的诸多问题,而且使地震勘探数据磁带档案迈上数字化管理新台阶,将更好地服务于油气田的勘探开发与科研工作。
J. 石油地震勘探与浅层地震勘探有何异同
震源不同,石油地震勘探深度较大,一般使用炸药震源。浅层地震勘探使用震源车或者锤击。
目的层深度不同,石油深度大,浅层较小。
用途不同,浅层地震用于工程或浅层地质体勘查。