当前位置:首页 » 石油矿藏 » 页岩石油怎么开采
扩展阅读
转换工具怎么下载 2025-06-23 04:11:05
蟹煲饭成本多少 2025-06-23 04:04:32

页岩石油怎么开采

发布时间: 2022-05-01 07:13:11

⑴ 油页岩油原位开采技术

油页岩原位开采技术就是通过直接给地下油页岩加温,使其在地下进行裂解,生成油气通过生产井采出。该工艺对于中深层油页岩(300m以深)开发具有优势,不需要露天和矿井开采,没有大量的油页岩废料堆积,副产物非常少,水资源的用量也非常少,是目前国际上各大石油公司重点研发与攻关的技术。

目前,油页岩原位开采技术达10余种,按照油页岩层加热方式可分为电加热、流体加热、辐射加热3类工艺。电加热技术:技术成熟,容易控制,但加热速度较慢,容易造成热量大量损失,成本较高,产生的油气压力较低,难开采等。流体加热技术:加热速度较快,由于流体压力的作用,产生的裂缝一般不会闭合,产出的油气易于开采;加热过程中流体流速过快,易形成流体短路,仅与油页岩进行少量热交换就流出地层。射频加热技术:产生的热量穿透力强,加热速度较快;但技术难度较大,成本较高。

在原位开采技术上,壳牌、埃克森-美孚和ECL公司走在了世界前列。其中壳牌公司ICP技术相对成熟,已经进行了现场试验,2004年初,在35ft长、20ft宽的试验区内进行电加热试验,2005年8月产出轻质油1500bbl,还有伴生气产出。壳牌公司ICP技术已经研发到了第二代E-ICP技术,2006年编制了E-ICP 试验计划,并申请获得科罗拉多州3个油页岩开发、试验和示范区块,目前试验正在进行加热阶段。

中国油页岩原位开采研究刚刚起步,基础理论研究和工艺技术研究缺乏,在理论技术工艺研究上,基本属于起步阶段。

在当前的油页岩原位开采加热技术中,以电加热技术较为成熟。

(1)电加热关键技术

油页岩原位开采电加热技术流程,是先将电能传输给加热井中的电加热器,转化为热能,产生的热量通过传导的方式传递给油页岩矿层,达到油页岩油气生成的温度。在工艺中,电加热器的选择或设计、加热井的设计、加热井的布置与操作是电加热技术研发的关键。

1)电加热器的选择或设计。电加热器是产生热量的根源,如何高效、有控制地产生热量是电加热器所要解决的问题。目前原位开采加热的电加热器有3类:恒定瓦特加热器、环形加热器和绝缘限温加热器,而绝缘限温加热器又分为Y形加热器、U形加热器和LU形加热器。

2)电加热井的设计。电加热井的功能是将电加热器产生的热量传递给页岩层,它是连接电加热器和页岩层间的纽带。根据加热井的形状分为直井加热器和水平井加热器。直井加热器长度包括多个具有不同能量输出的部分,每个部分包括限温部分,用于限制热量输出。同时根据功能不同分为上覆段、中间过渡段、加热段。可提供输出不同能量的热,以一种或多种加热速率来加热岩层。

3)电加热井的布置。加热井含有电荷,与周围矿层之间具有电势差,电加热井的布置不同于常规采油井和蒸汽加热井的布置。如果不能合适、有效地布置加热井,将会造成加热井内电量流失。生产井应位于具有较小或零电位的位置处,减小或防止在生产井中流动电流引起的不加热。

(2)蒸汽加热关键技术

蒸汽热技术流程,是先在地面上将蒸汽加热到一定温度,通过注入井,注入到油页岩矿层中,通过对流传导的方式将热能传递给油页岩;加热蒸汽性质与井筒隔热、蒸汽注气是关键技术。

1)加热蒸汽的性质与选择。蒸汽是热量的载体,决定着向地下油页岩矿层传输热量的多少,蒸汽的热容和比热是判定蒸汽性质的重要依据。

2)井筒隔热与注汽技术。高温高压带来的问题是应选择何种材质的套管和固井水泥。井筒热损失较大,必须设计更有效的注汽隔热管柱,降低注汽摩阻热损失,最大限度地降低井筒热损失。

蒸汽加热井的关键技术是井筒隔热与密封技术,井筒隔热系统包括隔热油管、耐高温封隔器、补偿器、伸缩管等。蒸汽通过注汽阀(分层注汽阀)进入地层。采用包括减小接头处热损失在内的高效隔热管柱,采用密封可靠的抗高温封隔器,环空排出水,或注入氮气,或注入隔热液。

⑵ 油页岩开采利用工艺进展

雷光伦 李文忠 姚传进 孙文凯

(中国石油大学石油工程学院,山东 青岛 266555)

作者简介:雷光伦,男,教授,博士生导师,主要从事油气田开发方面的教学和科研工作。Email:leiglun@163.com。

摘 要:常规油气产量远远不能满足国内对石油的需求,在诸多非常规油气资源中,油页岩以其巨大的 储量和开发优势越来越受到重视。生产页岩油是油页岩的主要用途之一。通过对油页岩开采利用技术的研究,指出了生产页岩油的两条途径,沿着这两条途径,介绍了油页岩的开采工艺,地面干馏方法和原位开采技术。描述了油页岩的露天开采和地下开采法。利用实验模拟的方法,研究了影响页岩油干馏产率的加热温度、加 热时间和加热速度等因素,实验结果表明:加热温度为500℃左右为宜;加热时间达到1h即可;加热速度对 油产率影响较小。比较了抚顺发生式炉、基维特炉、佩特洛瑟克斯炉、葛洛特炉和塔瑟克炉等地面干馏设备 的处理量、运转率和油产率等指标,分析了各干馏设备的特点和适用性。阐述了壳牌ICP技术、埃克森-美 孚ElectrofracTM技术、IEP燃料电池技术、PetroProbe空气加热技术和Raytheon的RF/CF技术等油页岩原位开 采技术的原理和工艺特点,指出了原位开采技术的发展趋势是以各种技术相互渗透、综合、集成和应用为基 础,实现油页岩开采的大规模化、低成本和高效益的重要发展方向为大规模、低成本、高效益。

关键词:油页岩;页岩油;开采工艺;地面干馏;原位开采

Technological Advances In Oil Shale Proction

Lei Guangln,Li Wenzhong,Yao Chuanjin,Sun Wenkai

(School of Petroleum Engineering,China University of Petroleum,Qing 266555,China)

Abstract:Conventional oil and gas proction can not meet the domestic demand,among many of the unconventional resources,oil shale has gained more and more attention because of its huge reserves and advantages in development.Shale oil proction is one of the main uses of oil shale.Based on the study of oil shale mining and usage,two ways of shale oil proction were put forward,along with which,oil shale mining,retorting and in-situ mining technologies were introced in the paper.The open-pit mining and underground mining method were described.The influencing factors of shale oil recovery were studied through experimental simulation,including heating temperature,heating time and heating rate.The results shows that the best heating temperature and heating time were 500℃and 1h,while the heating rate has little influence.The treatment capacity,activity rate and shale oil recovery of oil shale retorting equipments were compared,which consist of Fushun retorts,Kiviter retorts,Petrosix retorts,Galoter and ATP retorts.The mechanism and characteristics of in-situ oil shale mining technologies were described,including ICP,ElectrofracTM,IEP fuel-cell technology,PetroProbe's air heating and Raytheon's RF/CF technology.Based on the permeation,combination and application of high technology,the development trends of oil shale in-situ mining were Large-scale,low-cost,high efficiency.

Key words:Oil shale;Shale Oil;mining and usage;open-pit mining in-situ mining

引言

早在1830年,人类就已经开始了对油页岩的开发和利用。1890年以后,由于石油工业的迅速发 展,油页岩工业迅速萎缩。我国对油页岩的利用始于1928年。20世纪50~60年代,页岩油曾是我国 合成液体燃料的三大支柱之一。1960年以后,大庆油田、胜利油田的发现和开采使我国的油页岩工业 的进入停滞阶段。

进入21世纪后,国际油价不断攀升,2008年7月国际油价曾达到149美元/桶的历史最高位。另一 方面,国内石油供应不足的矛盾也越来越突出,已成为我国经济发展的 “瓶颈”,按国内油气资源和生 产能力,未来供需缺口将会越来越大,石油进口量将不断增多,对外依存度提高带来的风险也将日益加 重。在保证液体燃料供应的诸多办法中,页岩油是一种较现实的石油替代能源。据国土资源部统计,我 国油页岩预测资源7200亿吨,折算为页岩油的预测资源476亿吨[1]。因此,大规模的油页岩勘探开发 对于缓解国内油气供需压力具有重要的意义。

目前,油页岩的开采工艺主要包括:露天开采、地下开采、原位开采等方法。其中页岩油的制取主 要有两条途径:(1)把油页岩矿开采到地上,然后进行地面干馏;(2)采用地下加热技术使油页岩在地下 干馏,然后采出页岩油[1,2]。本文沿着这两条途径,介绍了油页岩开采工艺的现状,并指出了今后的发 展趋势。

1 油页岩开采工艺

1.1 露天开采工艺

露天开采是指先将覆盖在矿体上面的土石剥离,自上而下把矿体分为若干梯段,直接在露天进行采 矿的方法。露天开采必须考虑的首要条件是油页岩的埋深,一般不超过500m。另外还必须考虑剥采比,即覆盖于页岩层上就剥离的岩土量与可以采出的页岩量之比,是露天开采经济性的重要因素,如果油页 岩层较薄,而覆盖于其上的岩土又较厚,即剥离比很大,即使油页岩埋深较浅,油页岩开采费用也会 很高。

露天矿开采的主要工序有:岩层穿孔、爆破、岩土和油页岩的采装、岩土和油页岩的运输。对坚硬 岩石、中硬油页岩用钻机钻孔进行爆破,以利于挖掘。如没有坚硬的地层,可能不需要对其穿孔和爆 破。岩土和油页岩的采装可以用单斗挖掘机、轮斗挖掘机、吊斗挖掘机等采剥设备。当前露天开采油页 岩,对于覆盖层薄、油页岩层厚、剥采比不大的矿区,在中国不同情况下,每吨油页岩约需开采费用 40~80元。

图1 长壁开采法示意图

1.2 地下开采工艺

油页岩的地下开采是指通过井巷进入地下工作面进行采掘,并将油页岩输送至地面。地下工作面是开采油页岩的工作场 地,在工作面内进行油页岩的采掘、装运,以及支护、采空 区处理等工序。主要包括壁式开采法和房柱式开采法[1]

1.2.1 壁式开采法

壁式开采法分短壁工作面和长壁工作面开采。短壁工作 面长度一般在50m以下,多在小矿井采用。长壁工作面较 长,一般为100m以上。图为长壁式开采法的示意图。工作面 的上方和下方沿走向分别布置回风平巷和运输平巷,构成回 采工作面和采区之间的通风、运输和行人通道。

1.2.2 房柱开采法

房柱开采法是指从采区区段平巷每隔一定距离掘出矿房,进行油页岩矿开采,并留下油页岩岩柱,以支撑顶板。矿柱为圆形、矩形或条带形,排列规则。通常矿房宽6~12m,矿柱宽3~6m。顶板稳固 性稍差,矿石价值低或开采结束后采空区作地下建筑物用时,采用条带形连续矿柱。矿柱一般不再回 采,占总矿量的15%~40%。由于房柱式开采法不够安全,应用越来越少。

2 油页岩干馏工艺

2.1 油页岩干馏影响因素

目前,页岩油的生产主要通过油页岩干馏实现。油页岩干馏是在隔绝空气的条件下,加热至温度为 450~550℃左右,使其热解,生成页岩油、页岩半焦和热解气的方法。影响页岩油产率的因素主要有加 热温度、加热时间、加热速度等。本文使用葛金氏干馏试验装置,以抚顺典型油页岩为例,对干馏的影 响因素进行实验研究。

2.1.1 加热温度的影响

粒度为1~2mm的抚顺油页岩,以5℃/min的加热速度加热到不同的温度,并恒温加热5h,然后测 定在该恒温温度下的页岩油产率。试验结果如图2所示:

从图2中可以看出:随着恒温加热温度的升高,分解所得的页岩油产率不断增加。但当温度升高到 500℃以后,再进一步提高温度时,页岩油产率的增加就不显着了。这表明显当温度达到500℃并恒温 5h后,热解反应基本完成,生产页岩油所要求的温度并不高,约在500℃。温度过高会导致矿物质所含 的结晶水分解,从而消耗大量能量。故以获得页岩油为目的时,抚顺油页岩干馏的最终加热温度以 500℃为宜。

2.1.2 加热时间的影响

粒度为1~2mm的抚顺油页岩,以2℃/min的加热速度升温,在不同的温度下,加热时间对页岩油 产率的关系如图3所示:

图2 加热温度对页岩油产率的影响

图3 加热时间对页岩油产率的影响

从图3中可以看出,当加热温度在375℃以前,页岩油放出量始终随着加热时间的延长而增加。但 在450℃温度下,加热时间超过1h后,页岩油就不再释放出了。这表明有机质热解反应已经完毕。因 此,加热温度愈高,油页岩有机质分解速度愈快,达到最大页岩油产率所需的时间愈短。如果热解温度 在500℃以上时,则在很短时间内有机质热分解反应就能完全,而加热时间对页岩油产率没有明显影 响。所以最终加热温度是影响热分解反应的主要因素。

图4 加热速度对页岩油产率的影响

2.1.3 加热速度的影响

粒度为1~2mm的抚顺油页岩,以不同的加热速度加热至500℃,并保持1h,不同加热速度和页岩油产率的关系曲线如图4所示。

从图4中可以看出,当加热速度从2℃/min提高到20℃/min 时,其页岩油产率有微幅的提高,但幅度非常小。因此,在设计 干馏设备时,可以采用强化干馏的方法,提高加热速度,使油页 岩很快地达到指定的最终温度。这可以大大缩短干馏时间,提高 效率。

2.2 地面干馏设备

油页岩的地面干馏主要是通过干馏炉实现。干馏炉的技术指 标主要有油产率、年开工率、适应性等。目前世界上比较成熟的炉型主要有:抚顺发生式炉、基维特 炉、佩特洛瑟克斯炉、葛洛特炉、塔瑟克炉[3~6]。干馏设备参数对比见表1。

表1 油页岩干馏设备比较

中国抚顺式发生炉处理量小,相对于实验室铝甑的油收率较低,处理块页岩,工艺不太先进,但是 为成熟的炉型,能处理贫矿,操作弹性好,有长期操作经验,而且投资少,建设快,适用于小型工厂。抚顺式炉虽然单炉处理量小,但可以将20台炉合为一部,则一部炉每日油页岩处理量也可以达2000~ 4000吨。

爱沙尼亚基维特炉处理量大,处理块页岩,相对于铝甑的油收率不太高,是成熟的炉型,投资中 等,适用于中型厂。

巴西佩特洛瑟克斯炉处理量大,处理块页岩,相对于铝甑的油收率高,产高热值气,是成熟的炉 型,投资高,适用于大中型厂。

爱沙尼亚葛洛特炉处理量大,可以处理颗粒页岩,相对于铝甑的油收率高,产高热值气,但结构较 复杂,维修费用高,是基本成熟的炉型,据报道年运行7200h,可用于大中型厂。

澳大利亚塔瑟克炉处理量很大,可以处理颗粒页岩,油收率高,产高热值气。页岩油经过加氢,质 量好,投资高,但尚不太成熟,2004年停运前运转率仅为50%,大中型厂可考虑得用这种技术。

3 原位开采技术

原位开采技术是指采用地下加热干馏的方式,使油页岩在地下干馏,然后把产生的页岩油气导出到 地面的技术。按照油页岩层受热方式的不同,可将油页岩原位开采技术分为传导加热、对流加热、辐射 加热3类技术。目前比较先进的原位开采技术如表2所示[7~9]

表2 原位开采技术表

3.1 壳牌ICP技术

壳牌ICP(In-Situ Conversion Process)技术是唯一经过现场实验的原位开采技术。它的主要原理是: 通过电加热器将热量传递给地下油页岩矿层进行加热和裂解,促使油页岩中的干酪根转化为高品质的油 气,再通过生产井将油、气采出到地面(图5)。工艺流程主要包括:首先,建立冷冻墙,防止地层水 流入开采区、防止油气产品散失。其次,将电加热器装入加热井内对油页岩层加热。最后,采出干馏油 气,并监测水文、地质、温度、压力和水质等参数。

图5 ICP技术示意图

ICP技术特点:(1)ICP技术加热热均匀,加热温 度低,可开发深层、低含油率油页岩;(2)建立的冷 冻墙,可以保护地下水资源;(3)加热工艺复杂,故 障多,采收率低,成本高。

壳牌公司从1997年开始在科罗拉多州马霍甘尼 进行了多项实验。2004~2005年一个试验区的结果表 明,升温速率2℃/d,2004年5月开始出油,2004年 12月出油达到最多,然后减小,至2005年6月出油 终止。共计产油250t,为铝甑的68%。

3.2 埃克森-美孚ElectroFracTM技术

埃克森-美孚ElectrofracTM技术先利用平行水平井对页岩层进行水力压裂,向油页岩矿层的裂缝中 填充导电介质,形成加热单元。导电介质通过传导把热量传递给页岩层,使页岩层内的干酪根热解,产 生的油气通过采油井采到地面上来(图6)。

图6 ElectrofracTM技术示意图

ElectroFracTM技术特点:(1)采用了压裂技术增加了页 岩层的渗透性,可开采致密性油页岩资源;(2)生产副产品 碳酸钠,提高了经济效益;(3)采用平面热源的线性导热方 式,有效地提高了热效率;(4)没有保护地下水,容易造成 水污染。

3.3 IEP燃料电池技术

利用高温燃料电池堆的反应热直接加热油页岩层,使其 中的有机质热解产生烃气,然后导入到采油井,被抽到地 面上来。除了部分气体作为燃料被通入燃料电池堆外,其 余大部分烃气经冷凝后获得石油和天然气。另外,在启动 工艺装置预热油页岩时期,需要向燃料电池中通入天然气作为启动燃料。工艺正常运转后,能量 自给自足。

IEP燃料电池技术特点:(1)传导加热温度分布均匀。采用固体间热传导传递热量,大大提高了热 量分布均匀性和利用效率;(2)利用流体压裂制造 裂缝,提高油页岩层孔隙度和渗透率;(3)能量自 给自足。该工艺不仅能量自给自足,还可向外部 提供电能。每生产1桶油,发电174kW · h; (4)操作成本低。操作成本大约为30美元/桶。若 将副产品电能和天然气计算在内,成本可降为14 美元/桶;(5)环保。由于该工艺不是通过燃烧反 应来发电,而是通过电反应来发电,几乎不产生 NOx、SO2等有害物质(图7)。

图7 IEP燃料电池技术示意图

3.4 PetroProbe公司的空气加热技术

该工艺流程先将压缩空气与干馏气通入燃烧器进行燃烧,加热到一定温度,消耗掉部分氧气,然后 通入到油页岩地层中加热油页岩使其中的有机质生成烃气,最后把生成的烃气带到地面上来。采出的烃 气冷凝后得到轻质油品(图8)。

PetroProbe公司的空气加热技术特点:(1)通入的高温压缩空气在地层中可压裂油页岩,增加油页岩 的孔隙度,使生成的烃气很容易地从油页岩地层中导出来;(2)该工艺有4种产品:氢气、甲烷、轻油、 水。产生的部分轻质烃气通入燃烧器进行燃烧,加热即将通入地层的空气,能量自给自足。产生的CO2 等气体又被打回油页岩矿层中,污染小,可开发深层(深可达900m)的油页岩矿;(3)开采后的油页岩 仍能保持94%~99%的原始结构完整性,避免了地面塌方。

3.5 Raytheon公司的RF/CF技术

Raytheon公司的RF/CF(Radio-Frequency/Critical Fluids)技术是将一项利用射频加热和超临界流 体做载体的专利转化技术(图9)。其工艺流程为:先将射频发射装置置于地下油页岩层中,进行加热,然后把向页岩层中通入超临界CO2把热解生成的烃气载到采油井,被抽到地面上冷凝,回收。冷凝后 的CO2又打回地层中循环利用。

图8 空气加热技术示意图

图9 RF/CF技术示意图

RF/CF技术特点:(1)采油率高。每消耗一个单位的能量有4~5个单位的能量被生产出来,相对 于ICP技术的3.5个单位,更具有经济效益;(2)传热快,加热周期短,只有几个月;(3)用于油页岩 开采时,生产的石油含硫低,还可通过调节装置来生产不同的产品;(4)可用于开采油页岩、油砂、 重油等资源,环保,无残留物质渗透地下水层;(5)选择性加热,可使指定加热目标区域快速达到目 标温度。

4 结论

(1)目前页岩油的制取途径主要有开采-地面干馏工艺和原位开采技术。前者技术比较成熟,后者 还处于实验验证阶段。

(2)实验研究表明:油页岩干馏温度约为500℃为宜,干馏时间为1h即可,加热速度对页岩油产 率影响不大,工业生产中可以采用强化干馏的方法,提高加热速度,使油页岩快速达到指定的最终温 度,提高效率。

(3)目前地面干馏设备都存在着一些问题比如处理量小,运转率低,油产率低等问题需要进行进一 步优化。

(4)以大规模化、低成本、高效益为目标,各种技术相互渗透、综合、集成和应用是当今原位开采 技术发展的主要方向。

参考文献

[1]钱家麟,尹亮.油页岩——石油的补充能源[M].北京:中国石化出版社,2008.

[2]陈晨,孙友宏.油页岩开采模式[J].探矿工程,2010,37(10):26~29.

[3]钱家麟,王剑秋,李术元.世界油页岩开发利用动态[J].中外能源,2008,13(1):11~15.

[4]韩晓辉,卢桂萍,孙朝辉,等.国外油页岩干馏工艺研究开发进展[J].中外能源,2011,16(4):69~74.

[5]Bumharm A K,Mcconaghy J R.Comparison of the acceptability of various oil shale processes[R].26th Oil Shale Symposium,Colorado School of Mines,2006.

[6]刘志逊,高健,赵寒冬,等.国内油页岩干馏技术现状与发展趋势[J].煤炭加工与综合利用,2007,(1):45~49.

[7]方朝合,郑德温,刘德勋,等.油页岩原位开采技术发展方向及趋势[J].能源技术与管理.2009,(2):78~80.

[8]刘德勋,王红岩,郑德温,等.世界油页岩原位开采技术进展[J].天然气工业.2009,29(5):128~132.

[9]James W Bunger,Peter M Crawford,Harry R Johnson..Is oil shale America's answerto peak-oil challenge[J].Oil&Gas Journal,2004,8:16-24.

⑶ 如何开采页岩油

水力压裂法(Fracking)
在加州,没有几种技术比水力压裂法(hydraulic fracturing,也称fracking)受到的审查更多了。这种技术是将水(经常混合有化学物质)注入 井,使岩石层断裂,把被圈闭的油和天然气释放出来。水力压裂法在北达科他州和及其它大油田广泛使用,但是在加州并不太常用。根据美国西部州石油协会(the Western States Petroleum Association)的数据,2012年加州50,000个产油井中,只有560个使用了水力压裂法进行生产。
加利福尼亚大学戴维斯分校
(the University of California, Davis)负责能源和可持续发展的执行董事埃米?迈尔斯?贾菲(Amy Myers Jaffe)说,在蒙特雷实施水力压裂法难度更大,因为岩层构造太复杂。行业官员说,这就使人很难找到可以用水力压裂的大量页岩。
“技术上的挑战性实在太大,导致在加州使用水力压裂法成本更高,”贾菲说。 尽管水力压裂法在加州的使用有限,它还是引起了环保主义者和其他批评人士的声讨,因为它可能会造成诸如降低水质这样的危害。周五的时候,加州州长杰瑞?布朗签署了一项法案,要求对水力压裂法公开更多的信息(生产商一直都在自愿的基础上向州里报告这些信息)。该法案2014年年初开始生效。
在蒙特雷使用水力压裂法的事一直“有点像拓荒时代的西部,因为没有人在看或者在关注,”塞拉俱乐部(Sierra Club,美国环保组织—译者注)在萨克拉门托(Sacramento)的游
说机构负责人凯瑟琳?菲利普斯(Kathryn Phillips)说。
行业官员说现有的规章已经足够了,批评者主要是想限制或终止石油产量的增长。“他们认为这项技术很危险,”总部设在萨克拉门托的西部州石油协会的发言人塔珀?
赫尔(Tupper Hull)说,“我们当然不相信科学或经验会表明确实这样。” 蒸汽注入法(Steam Injection)
企业正在使用的帮助被圈闭油升到表面的主要蒸汽注入手段有两种:蒸汽驱技术(steam drive)和周期注蒸汽技术(cyclic steaming)。
使用蒸汽驱的时候,大量的水被加热,产生的蒸汽被分别注入到
孔下,使大面积的石油矿床受热升温。西雅图的地质学家顾问斯科特?L?蒙哥马利(Scott L. Montgomery)说,热量会降低石油的黏稠度,使其流向 探好的产油井。 蒙哥马利说,蒸汽驱技术的一个缺点是整个工序需要大量的水。 而在另一方面,周期注蒸汽技术的用水量要少得多,因为蒸汽只注入到一个井下。通
过这种技术(也称为“蒸汽吞吐”
法),蒸汽被存留在地下好几天时间以浸泡页岩,从而将石油释放出来,随后石油就可以从同一口井中抽吸出来。 但是这种技术同样也遭致了批评。
在 巴巴拉县(Santa Barbara County),
玛利亚能源有限责任公司(Santa Maria Energy
LLC)计划建造总共136口使用周期注蒸汽技术的油井,其中包括26
口已经试点 探的油井。但是该县的计划委员会在今年早些时候拒绝了其成员批准此项计划的建议,要求对环保人士所担忧的温室气体排放问题进行更多的研究。 玛利亚公司的官员拒绝对此予以置评。但是在该公司的网站上,他们说温室气体排放可以减少,其中的办法之一就是建设运输石油的管线,而不是用卡车来运送。 巴巴拉县计划委员会拟在10月再次着手处理此事。 二氧化碳注入法(Carbon-Dioxide Injection)
这种回收方法需要将液态二氧化碳注入岩石,这样可以把被圈闭的油排挤出来,让其更顺畅地流入油井。这是一种较新的技术,近年来在德克萨斯州和新墨西哥州得到了广泛的应用。 不过在蒙特雷进行的试验——包括雪佛龙公司(Chevron Corp.)与美国能源部在2000年前后开展的联合研究
——结果是喜忧参半,蒙哥马利说。他说主要的问题是二氧化碳并没有如人所愿地那样大量增加产量。 可能的原因是岩石的构造太复杂,很难找对注入二氧化碳的地方,他说:“找到最佳位置非常困难。” 雪佛龙公司(总部位于加利福尼亚州 拉蒙(San Ramon, Calif.))的官员证实曾做过该项研究,但是拒绝对研究细节予以置评。
不过在5月的一次股东会议上,公司首席执行长
(Chief Executive Officer)约翰?沃森(John Watson)说蒙特雷的开发前景尚在讨论之中。“我认为在蒙特雷页岩问题上还没有定论,”沃森当时对记者说,“我认为我们还没有完成——这个行业还没有完成——足以得出结论的评估工作。”

⑷ 地下石油如何抽取

石油开采分为两种,一种是陆地开采,而另一种则是海洋开采。

我们先来说比较简单的陆地开采,由于石油资源都是储存在1000米以下的岩层当中,所以说抽取石油就需要先探明石油的储存位置,再探明之后就可以从地上打入管道,而管道在下探的过程当中也会有另外的一些管道进行一些水泥的储存,就是为了防止山体的塌陷。

因此在海上抽取石油的过程是更为复杂的,现在最常用的方式就是修建一些人造的或者是海上的钻井平台。在开采的过程当中,还非常的要关注这片海域的一些环境问题,毕竟是有污染也是非常不容易解决的一个。

⑸ 页岩气主要是什么成分如何开采等

页岩气的主要成分:甲烷

页岩气的主要开采技术:水力压裂技术。水力压裂技术原理是通过大量掺入化学物质的水灌入页岩层进行液压碎裂以释放天然气,该种技术不仅浪费大量的水资源,还可能导致气井附近出现地下水污染,面临着较大的环保风险。

页岩气是指赋存于以富有机质页岩为主的储集岩系中的非常规天然气,是连续生成的生物化学成因气、热成因气或二者的混合,可以游离态存在于天然裂缝和孔隙中,以吸附态存在于干酪根、黏土颗粒表面,还有极少量以溶解状态储存于干酪根和沥青质中,游离气比例一般在20%~85%。

(5)页岩石油怎么开采扩展阅读:

页岩气分布

页岩气分布北美克拉通盆地、前陆盆地侏罗系、泥盆系,密西西比系富集多种成因、多种成熟度页岩气资源。中国许多盆地发育有多套煤系及暗色泥、页岩地层,互层分布大套的致密砂岩存在根缘气、页岩气发育有利条件,不同规模的天然气发现,尚未在大面积区域内实现天然气勘探的进一步突破。

资料显示,中国南方海相页岩地层可能是页岩气的主要富集地区。除此之外,松辽、鄂尔多斯、吐哈、准噶尔等陆相沉积盆地的页岩地层也有页岩气富集的基础和条件。重庆綦江、万盛、南川、武隆、彭水、酉阳、秀山和巫溪等区县是页岩气资源最有利的成矿区带,因此被确定为首批实地勘查工作目标区。

⑹ 油页岩原位开采关键技术研究

薛华庆 王红岩 郑德温 方朝合 闫 刚

(中国石油勘探开发研究廊坊分院新能源研究所,河北廊坊 065007)

摘 要:我国油页岩资源量为11602×108t,其中埋藏深度在500~1500m的油页岩资源量为6813×108t,原位开采技术是开发该部分资源的有效手段。我国油页岩原位开采技术处于起步阶段,已经完成了不同温度 下油页岩微观孔隙和渗透变化规律研究,电加热和蒸汽加热原位开采室内模拟实验和数值模拟研究等。研究 表明,电加热和蒸汽加热开采方式都具有可行性。设计了电加热器、注蒸汽井、生产井,为油页岩原位开采 现场试验提供技术支撑。

关键词:油页岩;原位开采;电加热;蒸汽加热

The Key Technique of Oil Shale In-situ Conversion Process

Xue Huaqing,Wang Hongyan,Zhen Dewen,Fang Chaohe,Yan Gang

(New Energy Department,Petrochina Research Institute of Petroleum Exploration & Development-Langng,Langfang 065007,Hebei,China)

Abstract:The oil shale resources,bury in 500-1000m,are about 0.7 trillion tones in China,which count for 59% of total resources and only are developed by in-situ conversion process.The in-situ conversion process are still in infancy in China.The regularity of oil shale micropores and permeability were studied in different temperature,the simulated experiment and numerical simulation were also respectively investigated in electrical heating and steam heating method of in-situ conversion process.As a result,both methods are available.The electrical heating well,injection steam well and procer well were designed,which provide the technique support for field test.

Key words:oil shale,in-situ conversion process,electrical heating,steam heating

引言

油页岩(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩,其有机物主要为干酪根。在隔 绝空气或氧气的情况下,被加热至400~500℃,油页岩中的干酪根可热解,产生页岩油、干馏气、固 体含碳残渣及少量的热解水。目前油页岩开发的主要有两种方式:原位开采和地面干馏。原位开采是指 埋藏于地下的油页岩不经开采,直接在地下设法加热干馏,地下页岩分解,生产页岩油气被导至地面。地面干馏则是指油页岩经露天开采或井下开采,送至地面,经破碎筛分至所需粒度或块度,进入干馏炉 内加热干馏,生成页岩油气及页岩半焦或页岩灰渣。与地面干馏相比,原位开采具有节省露天开采费用 和降低地面植被破坏程度,占地面积少等优点[1]

中国油页岩资源储量非常丰富。2004~2006年新一轮全国油气资源评估结果显示[2,3],全国油页 岩资源为7199.4×108t,折算成页岩油资源476.4×108t,其中埋深500~1000m的油页岩资源量占全国 的36%。该部分资源无法用成熟的地面干馏工艺进行开发,只有通过原位开采工艺才能得到有效的开 发和利用。目前,国际上油页岩原位开采技术研究大部分都处于实验研究阶段,只有壳牌公司开展了现 场试验[4]。我国油页岩原位开采还处于起步阶段。在国家重大专项“大型油气田及煤层气开发”项目 18“页岩油有效开采关键技术” 的支撑下,研发了多台(套)油页岩原位开采模拟实验装备,开展了 油页岩微观孔隙变化、物理模拟实验和开采数值模拟研究等,沉淀了一批科研成果,为我国油页岩原位 开采技术研究奠定了基础。

1 国内外原位开采技术

国内外油页岩原位开采技术种类较多,根据传热方式不同可分为三种类型:直接传导加热、对流加 热和辐射加热[5],详见表1。

表1 国内外油页岩原位开采技术

开展油页岩原位开采直接传导加热研究的单位主要有4家,加热载体包括电加热棒、导电介质、 燃料电池等。壳牌公司的ICP技术(In-situ Conversion Process)是直接将电加热棒插入井内,对地下 油页岩矿层进行加热,目前正在进行第二代电热棒(三元复合电加热棒)的现场试验研究[4,6]。埃 克森美孚公司的ElectrofracTM技术是指对地下页岩层进行水力压裂造缝,将导电介质(如煅烧后的 石油焦炭)注入裂缝中,通电后导电介质成为加热体,该公司正在考虑进行现场试验[7]。美国独立 能源公司(Independent Energy Partners)的GFC技术(Geothermic Fuel Cell)是利用地热能持续为燃 料电池反应堆提供能量,反应堆放热来加热页岩层,油页岩热解生产的液态烃类和气体从生产井排 出,部分气体和其它剩余的烃类物质返回燃料电池反应堆[7]。EGL能源公司(EGL Resources)是将 高温空气注入到封闭循环管道中,通过被加热的管道对地下页岩层加热,因此也归属于直接传导 加热[8]

开展油页岩原位开采对流加热研究的单位主要有4家,加热载体主要为高温水蒸气、二氧化碳、空 气、烃类气体等。太原理工大学的水蒸气加热技术是通过常规油气开采中的水力压裂对页岩层造缝后,将高温水蒸气注入页岩层中加热,同时高温流体将热解产生的页岩油和烃类气体携带至生产井[9]。雪 弗龙公司的CRUSH技术[7,10]也是利用压裂技术对页岩层进行改造,提高裂缝发育程度,其中压裂液为 二氧化碳,然后将压缩后的高温空气注入加热井中对页岩层加热。美国地球科学探索公司(Earth Search Sciences)方法是将空气在地表的锅炉中预热后注入井下,对油页岩中干酪根进行气化[7]。美国 西山能源公司(Mountain West Energy)的IGE技术(In-Situ Gas Extraction)是将高温天然气注入目标 页岩层中,通过对流方式来加热页岩层[7]

开展油页岩原位开采辐射加热研究的单位主要有3家,加热载体主要为无线射频和微波等。20世 纪70年代后,美国伊利诺理工大学利用无线电波加热油页岩,随后劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)对该技术进行改进,通过将射频传送至直井中直接对地下页岩 层进行加热[11,12]。雷神公司(Raython)与海德公园公司(Hyde Park)联合研发了RF/CF(Radio Frequency/Critical Fluids)技术,目前已经被斯伦贝谢公司收购[7]。该技术利用射频加热页岩层,通过 注入二氧化碳来实现超临界流体提高页岩油的采收率的效果。怀俄明凤凰公司(Phoenix Wyoming)是 将微波传送至地下,对页岩层加热,研究发现微波加热的速度是电加热棒的50倍以上,但对微波源的 要求很高[7]

2 中深层油页岩勘探现状

我国埋深0~1500m的油页岩资源为11602×108t,折算成页岩油626×108t,其中,埋藏深度在 500~1000m油页岩资源量为3489×108t,页岩油资源量为185×108t,1000~1500m资源量为3324× 108t,页岩油资源量为155×108t。比2005年全国新一轮油气资源评价结果显示的油页岩资源量7200× 108t多了4402×108t,主要增加了埋深1000~1500m资源量。

我国油页岩资源分布与常规油气资源相似,主要分布于北方,均表现为北富南贫。东部地区油页岩 资源主要集中于松辽盆地,占全国总资源的47%;中部地区油页岩资源集中于鄂尔多斯盆地,占全国 总资源的37%;西部地区油页岩资源主要集中于准噶尔盆地,占全国总资源的9%;南方地区主要集中 分布于茂名盆地,占全国总资源的2%;西藏地区主要集中分布于伦坡拉盆地,占全国总资源的5%。我国埋深500~1500m油页岩资源十分丰富,占总资源量的59%,该部分资源只能通过原位开采技术才 能得到有效的开发和利用。

3 油页岩原位开采开发技术现状

3.1 油页岩原位开采物理模拟实验研究

3.1.1 热破裂规律研究

油页岩在热解过程中形成大量的孔隙、裂隙,不仅提高了油页岩的渗透性,而且也为页岩油排采提 供了渗流的通道,使得原位开采技术开发中深层油页岩资源成为可能。

一般认为,当加热到105℃左右时,油页岩的主要变化时干燥脱水,待油页岩水分脱出后,温度 逐渐升高,在180℃左右,放出油页岩中包藏的少量气体。在这两个阶段油页岩内部的裂隙多发育于 层理面及矿物颗粒的周围,形成的破裂面基本上都与层理面互相平行,且数量不多,宽度较小。随 着温度进一步升高至300℃以上时,油页岩内的有机质开始发生热解生产页岩油蒸气和热解气体。油页岩内部的裂隙数量、长度和宽度有了剧烈增加,裂隙面仍具有与层理面平行,同时也形成了 一些垂直于层理方向的微小裂隙。小裂隙与大裂隙相互连通,根本上提高了油页岩的渗透 性[13~15](图1)。

3.1.2 热解后渗透规律实验研究

干馏前后的油页岩样品进行不同体积应力和孔隙压力条件下的渗透系数的变化规律研究发 现[15,16]:当体积应力不变时,渗透系数随孔隙压力的增大而增大。主要原因是孔隙压力的增高,页岩 内部的孔隙数量增加、裂隙更加发育,使得单位时间内通过的流体流量增大,即渗透系数增大。当孔隙 压力不变时,渗透系数随体积应力的增大而减小。主要原因为体积应力的增大,岩体发生收缩变形,页 岩内部的孔隙数量减少、有些发生裂隙会闭合,使油页岩的微观结构发生了变化,导致流体的渗流通道 减少,即渗透系数减小(图2,图3)。因此,在进行地下原位开采油页岩时,对油页岩地层渗透特性 的评价,必须考虑流体压力和地应力的影响。

图1 不同温度下油页岩裂缝发育情况

图2 渗透系数随孔隙压力的变化曲线

图3 渗透系数随体积应力的变化曲线

3.1.3 油页岩电加热原位开采模拟实验研究

电热原位开采与常规地面干馏工艺原理类似,都是通过直接传导方式将油页岩加热至热解温度。其 不同之处在于,原位开采工艺热解过程有地下水介质参与,反应系统存在一定压力,压力大小与页岩层 的埋藏深度有关。

马跃、李术元等[17]将油页岩与蒸馏水置于密闭的压力容器中,模拟油页岩原位开采热解反应。研 究表明,随着反应温度的增加,页岩油和气体的产率随温度的升高不断增加,中间产物沥青的产率随温 度的升高先升高后减小。由于水介质的存在,降低了化学键断裂所需要的能量,促进了热解生烃过程,使油页岩的热解温度比无水条件时降低了约120℃。

3.1.4 油页岩蒸汽加热原位开采模拟实验研究

利用过热水蒸气对油页岩进行加热,干馏后的油页岩残渣中含油率约为0.30%,页岩油的回收率 达到铝甄干馏的90%以上[15]。因此高温水蒸气加热油页岩具有一定的可行性,而且能达到较高的采收 率。研究发现油页岩热解产生的气体主要以CH4、C2H4、H2、CO、CO2气体为主。对常温至300℃、 300~500℃、500~580℃三个温度段的干馏气组成成分进行分析,发现随着温度的升高CH4和C2H4含 量具有相同的变化趋势,基本上呈现单调下降的趋势;CO2的含量呈逐渐下降,H2的含量一直上升的 趋势,CO的含量呈现先降低后增加的趋势。不同温度和压裂条件下,烃类气体、残炭、一氧化碳、二 氧化碳、水蒸气等之间发生了不同程度的化学反应,反应机理十分复杂。因此,针对实验过程中CH4、 C2H4、H2、CO、CO2的变化趋势的主要原因还有待进一步的研究。

3.2 油页岩原位开采数值研究

3.2.1 油页岩原位开采电加热数值研究[18,19]

基于油页岩原位开采电加热技术的原理上,建立了油页岩热传导方程包括续性方程,动量方程,能 量方程,结合适当的初始条件和边界条件,得到油页岩原位开采电加热数学模型。采用三维有限元法,对该模型进行研究,其中加热井距为15m,运作周期为6年。通过研究油页岩矿层温度场随时间的变化 规律,加热时间为5年时矿层温度大部分超过440℃,即几乎所有的油页岩完全发生热解。

图4 油页岩原位开采高温蒸汽加热示意图

3.2.2 油页岩原位开采蒸汽加热数值研究[15,20]

油页岩是几乎不渗透的岩层,蒸汽很难注入,因此需要 引进常规油气的压裂技术对页岩层进行改造,制造裂缝,作 为注汽的良好通道,提高传热效率。然后向地下油页岩矿层 注入高温水蒸气,使矿层温度升高至油页岩热解温度。最 后,将油页岩热解形成油气,通过低温蒸汽或水携带至生产 井进行排采(图4)。

油页岩原位开采高温蒸气加热是一个复杂的物理化学反 应过程,涉及热量的传递、固体变形、油页岩热解、油气的 产出和渗流等。赵阳升、康志勤等[12,16]考虑到诸多影响因 素的背景下,建立了油页岩原位开采高温蒸汽加热的固、 流、热、化学耦合数学模型。通过对正九点井网的加热方式 的数值模拟研究,加热井距50m,加热周期为2.5年。通过 研究油页岩矿层温度随时间分布变化规律发现,加热时间为 2.5年时,地下油页岩地层的温度大部分都达到了500℃,完成热解。

仅从数值模拟研究发现,高温水蒸气加热比电加热的效率更高,加热温度达到油页岩热解所需的时 间更短。

3.3 油页岩原位开采现场试验研究

3.3.1 油页岩原位开采电加热器与生产井设计

针对油页岩电加热原位开采技术专门设计了静态防爆电加热器,如图5。

图5 静态防爆电加热器

静态防爆电加热器的发热元件采用金属矿物绝缘加热电缆,它不同于一般管式电加热元件,其形状 属于线形,加热电缆发热芯体和金属护套之间温差很小,导热性能好。

油页岩原位开采的排采工艺与稠油开采相似,生产井结构包括隔热油管、泵、补偿器、封隔器、筛 管等(图6),将页岩油排采至地面后进行油、气、水分离。隔热油管用于防止温度下降后页岩油的流 动性降低,筛管与封隔器起到防砂的作用。该生产井同时适用于电加热和蒸汽加热原位开采技术。

3.3.2 蒸汽加热井设计

蒸汽加热井与注蒸汽开采稠油的结构相似,主要由隔热油管、补偿器、封隔器、分层注汽阀、死堵 等部分组成(图7)。蒸汽加热井的最关键技术是井筒隔热与密封技术,其中井筒隔热总系统包括隔热 油管、耐高温的封隔器、补偿器等。蒸汽通过注汽阀(分层注汽阀)进入地层,通过封隔器实现不同 层选注,有效的提高的热量利用效率。

图6 生产井

图7 蒸汽加热井

4 结束语

我国500~1500m的油页岩资源丰富,只能通过原位开采技术才能加以有效的开发和利用。该部分 资源的开发和利用对促进我国页岩油产业的发展具有重要意义,页岩油作为石油的补充能源,也大大提 高了我国石油的供给能力。通过模拟实验研究和数值模拟研究表明,油页岩电加热与蒸汽加热原位开采 技术都具有一定的可行性。电加热工艺相对简单,加热速度较慢,能耗大等特点,蒸汽加热工艺加热速 率快,高温蒸汽对设备的要求较高等。“十二五” 期间,我国应继续加大对油页岩原位开采技术研究的 投入力度,加快原位开采现场试验装备的研发,推动现场试验研究,为工业化生产提供有效的技术 支撑。

参考文献

[1]钱家麟,尹亮.油页岩——石油的补充能源[M].北京:中国石化出版社,2008:137~138.

[2]刘招君,董清水,叶松青等.中国油页岩资源现状[J].吉林大学学报(地球科学版),2006,36(6):869~876.

[3]车长波,杨虎林,刘招君等.我国油页岩资源勘探开发前景[J].中国矿业,2008,17(9):1~4.

[4]Shell Frontier Oil and Gas Inc.E-ICP Test Project Oil Shale Research and Development Project.[R].Houston:Bureau of Land Management U.S.A.2006-02-15.

[5]刘德勋,王红岩,郑德温等.世界油页岩原位开采技术进展[J].天然气工业,2009,29(5):128~132.

[6]Shell Frontier Oil and Gas Inc.For 2nd Generation ICP Project Oil Shale Research and Development Project[R].Houston: Bureau of Land Management U.S.A.2006-02-15.

[7]The US Department of Energy.Secure Fuels from Domestic Resources:The Continuing Evolution of America's Oil Shale and Tar Sands Instries[R].2007.

[8]E.G.L.Resources,Inc.Oil Shale Research,Development and Demonstration(R,D/D)Tract.[R]Houston:Bureau of Land Management U.S.A.2006.

[9]赵阳升,冯增朝,杨栋.对流加热油页岩开采油气方法:中国,200510012473[P].2005-10-01.

[10]Chevron USA Inc.Oil Shale Research,Development & Demonstration Project Plan of Operations.[R].Houston: Cordilleran Compliance Services,Inc.2006-02-15.

[11]A.K.Burnham.Slow Radio-Frequency Processing of Large Oil Shale Volumes to Proce Petroleum-like Shale Oil[R].Lawrence Livermore National Laboratory.2003-8-20:UCRL-ID-155045.

[12]A.K.Burnham,J.R.McConaghy Comparison of the Acceptability of Various Oil Shale Processes.26th Oil Shale Symposium[C].Colorado:2006.

[13]康志勤,赵阳升,杨栋.油页岩热破裂规律分形理论研究[J].岩石力学与工程学报.2010,29(1):90~96.

[14]孟巧荣,康志勤,赵阳升等.油页岩热破裂及起裂机制试验[J].中国石油大学学报(自然科学版).2010,34(4):89~98.

[15]康志勤.油页岩热解特性及原位注热开采油气的模拟研究[D].山西:太原理工大学,2008.

[16]杨栋,茸晋霞,康志勤等.抚顺油页岩干馏渗透实验研究[J].西安石油大学学报(自然科学版).2007,22(2):22~25.

[17]马跃,李术元,王娟等.饱和水介质条件下油页岩热解动力学[J].化工学报.2010,61(9):2474~2479.

[18]薛晋霞.油页岩物理力学特性实验及其原位开采非稳态热传导数学模型研究[D].山西:太原理工大学,2007.

[19]康志勤,赵阳升,杨栋.利用原位电法加热技术开发油页岩的物理原理及数值分析[J].石油学报.2008,29(4):592~597.

[20]康志勤,吕兆兴,杨栋等.油页岩原位注蒸汽开发的固-流-热-化学耦合数学模型研究[J].西安石油大学学报(自然科学版).2008,23(4):30~36.

⑺ 石油是从哪里提取出来的

石油是从油页岩中提取出来的。油页岩又称油母页岩,是由沉积在浅海和湖沼中的腐泥转换而来的。它的原始物质除古代水生植物、孢子和花粉之外,还有若干动物质。在地壳不断下降和在深水缺氧的条件下,经嫌气细菌的作用,使腐泥中的有机物质发生还原与分解反应,形成含有丰富碳氢化合物的沥青砂和油页岩。全世界油页岩和沥青砂含油的总储量高达14160亿吨。已探明的矿藏含油4400亿吨,相当于7084亿吨标准煤。

对油砂矿的开采,浅层的可采取原地露天开采的方法,深层矿脉必须附设地下开采设备。加拿大的埃克森资源公司在冷湖矿建造一种能向地下427米深处的厚沥青砂矿床注入热蒸汽的装置,通过定向井眼,确保蒸汽在矿床中最大限度地均匀分配,以加热沥青砂并迫使油流至地面,这种方法称为“半原地”回收法。油母页岩是一种不透水的含油岩石。用上述的方法开采是行不通的。对这种油矿的开采大体步骤是:把油页岩矿石粉碎成极细的粉末,经过加热处理,或者化学处理,便可从油页岩中获得原油。但这种方法采油率低,从5000万吨矿石中仅能提取500吨石油。因此,研究和探索新的采油手段和提取石油的方法,是科学家们的努力目标。

⑻ 页岩油是国内最难开采的油之一,什么是页岩油

我们都知道,世界上几乎每一个国家都离不开石油,尤其是中东的一些石油国家,他们甚至靠开采石油维持国家经济。石油作为现代社会必不可少的资源,它可以提炼成汽油、柴油、煤油等油种,而这些油都是现代机械设备不可或缺的,可以这么说,如果我们人类没有石油,也就不可能发展到现在这样的地步。我们中国也是石油需求较多的国家,但是由于我们国家石油储备不多,所以大多依靠进口,并且我们国家还发现储量不少的页岩油,很多人可能会问,什么是页岩油?有什么用?看完长见识了。

最后就是页岩油里面含有一些有毒物质,而开采石油又必须用到淡水,如果对水资源回收利用不到位,就很有可能造成水资源的污染,到时候后果是非常严重的。也就是说开采页岩油不仅仅只是简单的技术和人力那么简单,还需要考虑水资源以及防止污染等问题。我们只能期待将来中国技术发达了能大批量开采这种石油。

⑼ 什么是页岩石油

页岩石油一般简称页岩油。
就是赋存在页岩中的石油资源。与常规石油不同,页岩是高致密、低渗透的一种岩石,在其纳米级的缝隙中蕴藏的石油,一般需要通过钻探水平井、水力压裂等手段才能开采出来的石油。成本很高。
做个比喻:常规是有就像是油库,一个钻孔下去,就能把石油采出来。页岩油就像海绵中(当然这个海绵吸水性很差)有点油,打个孔下去,油不会自己出来的,要想很多办法。

⑽ 油页岩原位开采技术

油页岩原位开采技术就是通过直接给地下油页岩加温的方式,使其在地下进行裂解,生成油气,通过生产井采出。该工艺对于中深层油页岩(300m以深)开发具有优势;另外,由于该工艺不需要露天和矿井开采,没有大量的油页岩废料堆积,副产物非常少,水资源的用量也非常少。该工艺是目前国际上各大石油公司重点研发与攻关的技术。

目前在原位开采技术研究方面,美国壳牌公司ICP冷冻墙技术、埃克森-美孚公司Electrofrac TM水平井导电介质加热技术、钻石能源公司EGL闭路循环技术处于世界领先水平;其中壳牌ICP冷冻墙技术相对成熟,是壳牌公司投入巨资研发出来的开采油页岩及其他非常规资源的专利技术,对开发深部油页岩尤其有用。ICP技术开采油页岩的基本原理是:在地下对油页岩矿层进行加热和裂解,促使其转化为高品质的油或气,再通过相关通道将油、气分别提取出来;将这些高品质的油(气)采集到地面进行加工后,可生产出石脑油、煤油等成品油。其优点是提高了资源开发利用效率,减少了开采过程中对生态环境的破坏,即少占地、无尾渣废料、无空气污染、少地下水污染及最大限度地减少了有害副产品的产生。尽管该项技术现在还未完全商业化,但关键的工艺、设备等技术问题都已解决,并在美国科罗拉多州和加拿大艾伯塔省进行了商业示范。

中国油页岩原位开采研究刚刚起步,基础理论研究和工艺技术研究缺乏,在理论技术工艺研究上,基本属于起步阶段。

在原位开采技术中,以加热技术最为关键。按照加热方式,原位开采加热技术可分为3种,即电加热技术、蒸汽加热技术和辐射加热技术,以电加热技术较为成熟。

(1)电加热技术:技术成熟,容易控制,但加热速度较慢,容易造成热量大量损失,成本较高,产生的油气压力较低,难开采等。

(2)蒸汽加热技术:加热速度较快,并且由于流体压力的作用,产生的裂缝一般不会闭合,产出的油气易于开采;加热过程中流体流速过快,易形成流体短路,仅与油页岩进行少量热交换就流出地层。

(3)辐射加热技术:产生的热量穿透力强,加热速度较快;但技术难度较大,成本较高。