当前位置:首页 » 石油矿藏 » 石油测深是什么意思

石油测深是什么意思

发布时间: 2023-06-09 19:55:36

1. 比如 关于个人知识石油专业方面的术语 概括下石油知识什么的 最好是成品 给点硬磕!

石油知识———石油地质名词解释
油田------由单一构造控制下的同一面积范围内的一组油藏的组合。
气田------单一构造控制几个或十几个汽藏的总和。
石油------具有不同结构的碳氢化合物的混和物为主要成份的一种褐色。暗绿色或黑色液体。
天燃气----以碳氢化合物为主的各种汽体组成的可燃混和气体。
生油层----在古代曾经生成过石油的岩层。
油气运移--在压力差和浓度差存在的条件下,石油和天然气在地壳内任意移动的过程。
垂直运移--即油气运移的方向与地层层面近于垂直的上下移动。
测向运移---即油气运移的方向与地层层面近于平行的横向移动。
储集层-----能使石油和天然气在其孔隙和裂缝中流动,聚集和储存的岩层。
含油层-----含有油气的储集层。
圈闭----凡是能够阻止石油和天然气在储集层中流动并将其聚集起来的场所。
盖层----紧邻储集层上下阻止油气扩散的不渗透岩层。
隔层----夹在两个相邻储集层之间阻隔二者串通的不渗透岩层。
遮挡----阻止油气运移的条件或物体。
含油面积----由含油内边界所圈闭的面积。
油水边界----石油和水的接触边界。
储油面积-----储油构造中,含油边界以内的平面面积。
工业油气藏-----在目前枝术条件下,有开采价值的油气藏。
构造油气藏-----由与构造运动使岩层发生变形和移位而形成的圈闭。
地层油气藏-----由地层因素造成的遮挡条件的圈闭。
岩性油气藏-----由于储集层岩性改变而造成圈闭。
储油构造-----凡是能够聚集油,气的地质构造。
地质构造-----地壳中的岩层地壳运动的作用发生变形与变位而遗留下来的形态。
沉积相----指在一定的沉积环境中形成的沉积特征的总和。
沉积环境-----指岩石在沉积和成岩过程中所处的自然地理条件、气候状况、生物发育状况、沉积介质的
物理的化学性质和地球化学要条件。
单纯介质-----只存在一种孔隙结构的介质称为单纯介质。如孔隙介质、裂缝介质等。
多重介质----同时存在两种或两种以上孔隙结构的介质称为多重介质。
均质油藏-----整个油藏具有相同的性质。
非均质油藏-----具有不同性质的油藏,包括双重介质油藏;裂缝西个油藏;多层油藏
弹性趋动-----油井开井后压力下降,油层中液体会发生弹性膨账,体积增大,而把原油推向井底。
水压趋动----靠油藏边水。底水或注入水的压力作用把原油推向井底。
地质储量----在地层原始条件下,具有产油气能力的储层中所储原油总量。
可采储量----在目前工艺和经济条件下,能从储油层中采出的油量。
剩余可采储量----油田投入开发后,可采储量与累计采出量之差。
采收率-----油田采出的油量与地质储量的百分比。
最终采收率----油田开发解束累计采油量与地质储量的百分比。
采出程度---油田在某时间的累计采油量与地质储量的比值。
采油速度----年采出油量与地质储量之比。
原油密度----指在标准条件下(20度,0.1MPa)每立方米原油质量。
原油相对密度----指在地面标准条件(20度,0.1MPa)下原油密度与4度纯水密度的比值。
原油凝固点----在一定条件下失去了流动的最高温度。
原油粘度----原油流动时,分子间相互产生的摩檫阻力。
原油体积系数----地层条件下单位体积原油与地面标准条件下脱汽体积比值。
原油压缩系数----单位体积地层原油在压力改变0。1兆帕时的体积的变化率。
溶解系数----在一定温度下压力每争加0。1兆帕时单位体积原油中溶解天燃汽的多少。
孔隙度----岩石中孔隙的体积与岩石总体积之比。
绝对孔隙度----岩石中全部孔隙的体积与岩石总体积之比。
有效孔隙度-----岩石中互相连通的孔隙的体积与岩石总体积之比。
含油饱和度-----在油层中,原油所占的孔隙的体积与岩石总孔隙体积之比。
含水饱和度-----在油层中,水所占的孔隙的体积与岩石孔隙体积之比。
稳定渗流-----在渗流过程中,如果各运动要素与(如压力及流速)时间无关,称为稳定。
不稳定渗流-----在渗流过程中,若各运动要素与时间有关,则为不稳定渗流。
等压线----地层中压力相等的各个点的连接线称为等压线。
流线-----与等压线正交的线称为流线。
流场图----由一组等压线和一组流线构成的图形为流场图。
单相流动-----只有一种流体的流动叫单相流动。
多相流动------两种或两种以上的流体同时流动叫两相或多相流动。
渗透率----在一定压差下,岩石允许液体通过的能力称渗透性,渗透率的大小用渗透率表示。
绝对渗透率----用空汽测定的油层渗透率。
有效渗透率----用二种以上流体通过岩石时,所测出的某一相流体的渗透率。
相对渗透率----有效渗透率与绝对渗透率的比值。
水包油----细小的油滴在水介质中存在的形式。
油包水----细小的油滴在水介质中存在的形式。
供油半径-----把油井供油面积转换成圆形面积后的圆形半径。
地层系数----地层有效厚度与有效渗透率的乘积。
流动系数----地层系数与地下原油粘度的比值,表示流体在岩层中流动的难易程度。
导压系数-----表示油层传递压力性能好坏的参数。
续流-----油井地面关井后,井下仍有油流从地层中继续流入井眼,这种现象称为续流。
井筒储存效应-----油井刚关井时所出现的现象。
折算半径----把实际井的各个因素(不完善或超完善)对压力的影响,变成一个由于某井径引起对压力
的等效作用,这个等效半径称为折算半径。
完善程度-----指理想完善井的工作压差与实际井工作压差之比。
完善指数-----油井实际工作压差与压力恢复取限制线段斜率之比。
表皮效应-----实际井的各个非完善因素造成的附加压力同油层渗透阻力之比。它是当原油从油层流入井
筒时,产生一个压力降的现象。
井间干扰-----井与井之间产生的动态影响现象。
采油指数----油井生产压差每增大0.1兆帕,所增加的油量。
栅状图-------表示油层各个方向的岩性,岩相变化情况,层间;井间连通情况。
主力油层-----油层厚度大,渗透率高,的好油层。
接替层-----在油田稳产中起接替作用的油层。
见水层位-----注入水沿连通层向油井推进,使油井某一层含水。
来水方向-----采油井受某方向注水井注水效果而使动态变化叫来水方向。
扫油面积系数-----指一个开采井组,已被水淹的油层面积与所控制面积的比值。
注采平衡----注入油层水量与采出油量的地下体积相等。
注采比-----油田注入剂(水,气)地下体积与采出液量(油,气,水)的地下体积之比。
吸水指数----注水井在单位注水压差下的日注水量。
注水强度----注水井在单位有效厚度油层的日注水量。
压力平衡-----注水井所补给油层的压力与采出油。水所削耗的压力相等。
地下亏空----注入水的体积小于采出液量的地下体积。
含水率----含水油井,日产水量与日产液水量的百分比。
井别----根据钻井目的和开发的要求,把井分为不同的类别。
探井----经过地球物理堪探证实有希望的地质构造为了探明地下情况,寻找油。汽田而钻的井。
资料井-----为了编制油田开发方案所需要的资料而钻的取心井。
生产井----用来采油的井。
注水井----用来向油层内注水的井。
观察井----专门用来观察油田地下动态的井。
检查井----为了检查油层开发效果而钻的井。
更新井-----为了注采系统完善,需要打新井,这些新钻的井叫更新井。
调整井----在原有井网基础上,为改善油田开发效果,而补充钻的一些另散井或成批成排的加密井。
正注井---从油管向地层注水的井称为正注井。
反注井---从套管向地层注水的井称为反注井。
井网----油气水井在油田上的排列和分布。
精度----反映测试仪器;仪表和计量器具误差大小的程度。
误差----测量值与真实值之差。
油补距----从油管挂平面到钻盘补心的距离。
套补距----从套管最末一根节箍上平面到钻盘补心的距离。
静水柱压力-----从井口到油层中部的水柱压力。
原始地层压力-----油田还没有投入开发,在探井中测得的油层中部压力。
目前地层压力-----油田投入开发以后,某一时期测得的油层中部压力。
油压----原油从井底流到井口的剩余压力。
套压----油套环形空间内的压缩汽体压力。
流压----油井正常生产时测得的油层中部压力。
静压----油井投入生产以后,利用短期关井,待井底压力恢复稳定时,测得的油层中部压力。
饱和压力----溶解在原油中的天燃汽刚刚开始分离时的压力。
基准面压力----在油田开发过程中,为了正确地对比井与井之间的力高低,把压力折算到同一海拔深度
进行比较,相同海拔深度压力称基准面压力。
压力系数----指原始地层压力与静水柱压力的比值。
总压差-----目前地层压力与原始地层压力的差值。
采油压差------目前地层压力与流压的差值。
流饱压差----指流压与饱和压力的差值。
地饱压差----指目前地层压力与饱和压力的差值。
注水压差-----指注水井井底流压与静压的差值。
流压梯度----油井正常生产时每米液柱所产生的压力。
静压梯度-----油井关井以后,井底压力恢复稳定时,每米液柱所产生的压力。
机戒采油-----用各种机戒将油采到地面上来的方法。
抽油机----是代动井下抽油泵工作的地面机戒。
抽油杆----是抽油机井的细长杆件,它上接总杆,下接抽油泵起传递动力的作用。
光杆----是钢质圆形杆件,它上连抽油机下连抽油杆,起传递动力的作用。
悬绳器----是驴头和光杆的连接装置。
抽油泵-----由抽油机带动把井内原油举升到地面的井下装置。
套管----用水泥固定在井壁上的钢管,起封隔油汽水层。加固油层。井壁的作用。
油管----下入套管中间的无缝钢管。
静液面----抽油机关井后,环空液面缓升到一定位置稳定下来的液面。
动液面----抽油机正常生产时,井口至液面的距离。
泵效----抽油泵的实际排量与理论排量的比值。
沉没度-----泵深与动液面的差值。
冲程----驴头往复运动,带动光杆运动的高点和低点的距离。
冲数----抽油泵活塞在工作筒内每分钟往复运动的次数。
充满系数----抽油泵活塞完成一次冲程时泵内进入油的体积和活塞让出的体积的比。
气锁-----深当深井泵内进入气体后,使泵抽不出油的现象。
示功图----示功仪在抽油机一个抽吸周期内测取的封闭曲线。
压裂-----利用水力作用,使油层形成裂缝的方法。
合层压裂----指对日口井中的生产层组的各个小层同时压裂。
单层选压-----是选择一个层组中的某一小层或某一段进行压裂。
油层破裂压力-----指油层破裂时的压力或油层刚开始吸水时的压力。
污染井---污染系数大于零的油层为污染井。
完善井---污染系数等于零的油层为完善井。
超完善井---污染系数小于零的油层为超完善井。
酸化井---污染系数小于-3的油层为酸化井。
吸水启动压力----油层刚开始吸水时的压力称吸水启动压力。
驱动方式----驱使原油流向井底的动力来源方式称驱动方式。
注水强度-----单位有效厚度的日注水量称注水强度。
含水率-----日产水量与日产液量的比值称含水率。
串槽--各层段沿油井套管与水泥环或水泥环与井壁之间的串通。
完钻井深----完钻井底至方补心顶面的距离。
水泥返高----套管和井壁之间水泥上升的高度。
人工井底----固井完成留在套管最下部的一段水泥的顶面。
水泥塞----从完钻井底至人工井底的水泥柱。
流度-----地层隙数与地下原油粘度的比值叫流度。
机诫采油----利用各种机诫将油采到地面上来的方法叫机诫采油。
表皮因子-----表皮效应性质的严重程度称表皮因子。
油层中部深度----油水井井口至射孔井段(顶部至底部)1/2处。
供油半径---在多井生产时,油水井在地下控制一定范围的含油面积含油面积的半经称为供油半经。
石油知识———油气勘探知识
石油成因的学说
主要有无机成因和有机成因学说。多数学者认为石油主要是有机成因的。
生油岩
按照有机成因学说,大量的微体生物遗骸与泥砂或碳酸质沉淀物埋藏在地下,经过长时期的物理化学作用,形成富含有机质的岩石,其中的生物遗骸转化为石油。这种岩石称为生油岩。
储集层
是指能够储存和渗滤油气的岩层,它必须具有储存空间 (孔隙性 )和储存空间一定的连通性 (渗透性 )。储集层中可以阻止油气向前继续运移,并在其中贮存聚集起来的一种场所,称为圈闭或储油气圈闭。
油气藏
圈闭内储集了相当多的油气,就称为油气藏。
油气田
在地质意义上,油气田是一定 (连续 )的产油面积内各油气藏的总称。该产油面积是受单一的或多种的地质因素控制的地质单位。
油气聚集带
油气聚集带是油气聚集条件相似的、位置邻近的一系列油气藏或油气田的总和。它具有明确的地质边界。区,形成年产原油 430万吨和天然气 3.8亿立方米生产能力。
含油气盆地
在地质历史上某一时期的沉降区,接受同一时期的沉积物,有统一边界,其中可形成并储集油气的地质单元,称做含油气盆地。
生油门限
生油岩在地质历史中随着埋藏在地下的深度加大,受到的压力和温度增加,其中的有机质逐步转变成油或气。当生油岩的埋藏到达大量生成石油的深度 (也是与深度相应温度 )时,叫进入生油门限。
油气地质储量及其分级
油气地质储量就是油气在地下油藏或油田中的蕴藏量,油以重量 (吨 )为计量单位,气以体积 (立方米 )为计量单位。地质储量按控制程度及精确性由低到高分为预测储量、控制储量和探明储量三级。地处豫西南的南阳盆地,矿区横跨南阳、驻马店、平顶山三地市,分布在新野、唐河等 8县境内。已累计找到 14个油田,探明石油地质储量 1.7亿吨及含油面积 117.9平方公里。 1995年年产原油 192万吨。
油 (气 )按储量可分
按最终可采储量值可分成 4种:特大油 (气 )田:石油最终可采储量大于 7亿吨 (50亿桶 )的油田。天然气可按 1137米 3气 =1吨原油折算。大型油 (气 )田:石油最终可采储量 0.7~ 7亿吨 (5~ 50亿桶 )的油 (气 )田。中型油 (气 )田:石油最终可采储量 710~ 7100万吨 (0.5~ 5亿桶 )的油 (气 )田。小型油 (气 )田:石油最终可采储量小于 710万吨 (5000万桶 )的油 (气 )田。
按圈闭类型划分油气藏
有构造油气藏、地层油气藏和岩性油气藏三大类。后两类比较难于发现,勘探难度大,称为隐蔽圈闭油气藏。
岩石分类
岩石分沉积岩、火成岩及变质岩三大类。多数油、气储存于沉积岩中,火成岩及变质岩中也可以储存油、气。常见的沉积岩有砂岩、砾岩、泥岩、页岩、石灰岩及白云岩等。
地层及其单位
岩石 (特别是沉积岩 )常常是由老到新呈现为层状排列的,因而把这些排列在一起的岩石统称为地层。地层的单位有大有小,因其成因和时代及工作需要可把排列在一起的岩石划分为不同的地层单位和系统。
地层时代划分
地层形成的年代有老有新,通常把地层的时代由老至新划分为太古代、元古代、古生代、中生代、新生代等,与 “ 代 ” 相对应的地层单位则称为 “ 界 ” ,如太古界、 …… 新生界等。 “ 代 ” 可以细分为 “ 纪 ” ,如中生代分为三叠纪、侏罗纪、白垩纪,新生代分为第三纪、第四纪等,与 “ 纪 ” 相对应的地层单位称为 “ 系 ” ,如侏罗系、第三系等。 “ 纪 ” 和 “ 系 ” 还可以再详细划分,如油、气勘探开发工作中常用到的 “××× 组 ” 和 “××× 层 ” ,就是更小的地层单位。
三维地震勘探
由于地震勘探的测线只提供了二维的信息,要了解一定面积内的地下情况需要把各条测线的地震剖面进行对比,找出相关的信息推断测线之间的地下情况,才能形成整体概念,这就可能产生相当大的人为误差。三维地震是在一定的面积上采用地下地震信息的方法,它可从三维空间 (立体的 )了解地下地质构造情况。这种方法可以提供剖面的、平面的,立体的地下地质图构造图象,大大地提高了地震勘探的精确度,对地下地质构造复杂多变的地区特别有效。
高凝油
通常把凝固点在 40℃ 以上,含蜡量高的原油叫高凝油。辽宁省的沈阳油田是我国最大的高凝油田,其原油的最高凝固点达 67℃ 。
稠油
稠油是沥青质和胶质含量较高、粘度较大的原油。通常把地面密度大于 0.943、地下粘度大于 50厘泊的原油叫稠油。因为稠油的密度大,也叫做重油。我国第一个年产上百万吨的稠油油田是辽宁省高升油田。
天然气
地下采出的可燃气体称做天然气。它是石蜡族低分子饱和烃气体和少量非烃气体的混合物。天然气按成因一般分为三类:与石油共生的叫油型气 (石油伴生气 );与煤共生的叫煤成气 (煤型气 );有机质被细菌分解发酵生成的叫沼气。天然气主要成分是甲烷。
干气和湿气
油田的伴生天然气,经过脱水、净化和轻烃回收工艺,提取出液化气和轻质油以后,主要成分是甲烷的处理天然气叫干气。一般来说,天然气中甲烷含量在 90%以上的叫干气。甲烷含量低于 90%,而乙烷、丙烷等烷烃的含量在 10%以上的叫湿气。
天然气与液化石油气区别
天然气是指蕴藏在地层内的可燃性气体,主要是低分子烷烃的混合物,可分为干气天然气和湿天然气两种。干气成分主要是甲烷,湿天然气除含大量甲烷外,还含有较多的乙烷、丙烷和丁烷等。液化石油气是指在炼油厂生产,特别是催化裂化、热裂化、焦化时所产生的气体,经压缩、分离而得到的混合烃,主要成分是丙烷、丙烯、丁烷、丁烯等。
沉积相
指在一定的沉积环境下形成的岩石组合。在沉积环境中起决定作用的是自然地理条件的不同,一般把沉积相分为陆相、海相和海陆过渡相。
油气盆地数值模拟技术
油气盆地数值模拟技术主要是从盆地石油地质成因机制出发,将油气的生成、运移、聚集合为一体,充分研究各种地质参数,建立数字化动态模型,并形成一维~三维的计算机软件,全方位的描述一个盆地的油气资源形成及地质演化过程。
石油勘探
所谓石油勘探,就是为了寻找和查明油气资源,而利用各种勘探手段了解地下的地质状况,认识生油、储油、油气运移、聚集、保存等条件,综合评价含油气远景,确定油气聚集的有利地区,找到储油气的圈闭,并探明油气田面积,搞清油气层情况和产出能力的过程。
地震勘探
地震勘探是地球物理勘探中一种最重要的的方法。它的原理是由人工制造强烈的震动 (一般是在地下不深处的爆炸 )所引起的弹性波在岩石中传播时,当遇着岩层的分界面,便产生反射波或折射波,在它返回地面时用高度灵敏的仪器记录下来,根据波的传播路线和时间,确定发生反射波或折射波的岩层界面的埋藏深度和形状,认识地下地质构造,以寻找油气圈闭。
多次覆盖
多次覆盖是指采用一定的观测系统获得对地下每个反射点多次重复观测的采集地震波讯号的方法。它可以消除一些局部的干扰,有利于求得较准确的讯号。
地震剖面
地震勘探方法是在地面上布置一条条的测线,沿各条测线进行地震施工采集地震信息,然后经过电子计算机处理就得出一张张地震剖面图。经过地质解释的地震剖面图就象从地面向下切了一刀,在二维空间 (长度和深度方向 )上显示了地下的地质构造情况。
地震勘探的数据处理
把记录采集到地震信息的磁带上的大量数据输入到专用的电子计算机中,按照不同的要求用一系列功能不同的程序进行处理运算,把数据进行归类编排,突出有效的,除去无效和错误的,最后把经过各种处理的数据以波形、线形的形式绘制在胶片上或静电纸上,形成一张张地震剖面。这个过程就称做数据处理。
地震勘探中所说的速度
地震勘探所说的速度即是地震波的传播速度。常用的是平均速度,它是地震波垂直穿过某一岩层界面以上各地层的总厚度与各层传播时间总和之比,可以用来把地震记录的时间转换为深度 (距离 )。此外,还有层速度、均方根速度、叠加速度等。
水平叠加剖面
在用多次覆盖方法采集的地震资料处理过程中,把共同反射点的许多道的记录经动校正以后叠加起来,以提高讯噪比 (高讯号与噪声的比例 ),压制干扰,用这种方法处理所得到的地震剖面叫水平叠加剖面。
叠加偏移剖面
在地震资料处理中,在水平叠加的基础上,实现反射层的空间自动归位,用这种方法处理得到的地震剖面,就是叠加偏移剖面。
垂直地震剖面
地震源放置于地面,接收的检波器置于深井中,地面激发震动后由不同深度的检波器接收地震波讯号,这种方法获得的地震波讯号是单程的,而不是反射或折射回来的,对分析和认识地下地质构造情况更为准确。
地震资料解释
地震资料解释是把经过处理的地震信息变成地质成果的过程,包括运用波动理论和地质知识,综合地质、钻井、测井等各项资料,做出构造解释、地层解释,岩性和烃类检测解释及综合解释,绘出有关的成果图件,对测区作出含油气评价,提出钻井位置等。
地震地层学
地震地层学是把地层学和沉积学特别是岩性、岩相的研究成果,运用到地震解释工作中,把地震资料中蕴藏的地层和沉积特征的信息充分利用起来,做出系统解释的方法。
地震层序
地震层序是沉积层序在地震剖面图上的反映。在地震剖面图上找出两个相邻的反映地层不整合接触的界面,则两个界面之间的地层叫做一个地震层序。但因为受不整合面影响,其间的地层即地震层序是不完整的,沿不整合面追踪到地层变成整合的之后,这个地震层序才是完整的。
层序地层学
层序地层学是在地震地层学基础上进一步发展的新学科,是综合地质、地震资料,详细划分并确立地下地层的层序,从而研究其构造活动、沉积环境的变化、岩相分布等。
地震相
地震相是指沉积物 (岩层 )在地震剖面图上所反映的主要特征的总和。地震相标志分为:内部反射结构;反射连续性;反射振幅;反射频率;外部几何形态及其伴生关系。
合成地震记录
合成地震记录是用声波测井或垂直地震剖面资料经过人工合成转换成的地震记录 (地震道 )。它是地震模型技术中应用非常广泛的一种,也是层位标定、油藏描述等工作的基础,是把地质模型转化为地震信息的中间媒介。
油气检测技术
油气检测技术是一种综合利用烃类存在的多种地震特性参数 (速度、频率、振幅、相位等 )来确定油气富集带的方法。这类技术有许多种,目前常用的有亮点技术和 AVO技术等。
储集层预测技术
储集层预测技术是综合应用地震、地质、钻井、测井等各项资料对地下储集层的分布、厚度及岩性和物理性质变化进行追踪和预测的一项先进技术。
地震横波勘探
地震波 (弹性波 )的传播有纵波与横波两种,纵波质点位移的方向与波的传播方向平行,横波的质点位移方向与波的传播方向垂直。现在通用的地震勘探方法采集的是纵波的讯号,采集横波讯号的称做地震横波勘探。横波在判断岩性、裂缝和含油气性方面有其固有的优点。此种勘探方法在我国正处于研究和实验阶段。
重力勘探
各种岩石和矿物的密度 (质量 )是不同,根据万有引力定律,其引力也不相同。椐此研究出重力测量仪器,测量地面上各个部位的地球引力 (即重力 ),排除区域性引力 (重力场 )的影响,就可得出局部的重力差值,发现异常区,这一方法称做重力勘探。它就是利用岩石和矿物的密度与重力场值之间的内在联系来研究地下的地质构造。
磁力勘探
各种岩石和矿物的磁性是不同的,测定地面上各部位的磁力强弱以研究地下岩石矿物的分布和地质构造,称做磁力勘探。由于地球本身就是个大磁体,所以对磁力的预测值应进行校正,求出只与岩石矿物磁性有关的磁力异常。一般铁磁性矿物含量愈高,磁性愈强。在油气田区,由于烃类向地面渗漏而形成还原环境,可把岩石或土壤中的氧化铁还原成磁铁矿,用高精度的磁力仪可以测出这种磁异常,从而与其它勘探手段配合,发现油气田。 ?
电法勘探
电法勘探的实质是利用岩石和矿物 (包括其中的流体 )的电阻率不同,在地面测量地下不同深度地层介质电性差异,用以研究各层地质构造的方法,对高电阻率岩层如石灰岩等效果明显。电法勘探种类较多,我国目前石油电法勘探一般用直流电测深、大地电磁测深、可控源声频大地电磁测深等方法,近期又发展了差分标定电法、大地电场岩性探测法等新方法。
地球化学勘探
根据大多数油气藏的上方都存在着烃类扩散的 “ 蚀变晕 ” 的特点,用化学的方法寻找这类异常区,从而发现油气田,就是油气地球化学勘探。油气地球化学勘探方法的种类比较多,常用的是土壤烃气体测量、土壤硫酸盐法、稳定碳同位素法、汞和碘测量法等,还有地下水化学法及井下地球化学勘探法。
地球物理测井
地球物理测井简称测井,是在钻孔中使用测量电、声、热、放射性等物理性质的仪器,以辨别地下岩石和流体性质的方法,是勘探和开发油气田的重要手段。

2. 什么是石油物探

石油物探
根据地下岩层物理性质的差异,通过物理量测量,对地质构造或岩层性质进行研究,以寻找石油和天然气的地球物理勘探,简称石油物探。
在石油勘探中,对于被表土、沙漠和海水覆盖没有岩层直接出露的地区,主要依靠物探方法间接了解地质构造和岩层性质,以寻找油气藏。目前,石油物探已成为覆盖区勘探石油的一种不可缺少的手段。
简史:石油物探是在20世纪初发展起来的。最早使用的物探方法是重力勘探。1922年,首次成功地应用扭秤在墨西哥湾沿岸探测到和盐丘构造有关的油藏。1935年,重力仪开始用于石油物探。
1919年,德国人明特罗普 (L.Mintrop)提出了地震折射法。用此法在墨西哥湾沿岸寻找盐丘构造,并获得了成功。1927年,在美国俄克拉何马州使用地震反射法也成功地发现了毛德油田。
中国的石油物探工作,从1949年中华人民共和国成立后,才得到发展,并取得很大成绩。1959年,应用物探方法与石油地质、石油钻探相结合,找到了大庆油田,以后又陆续发现了胜利油田、大港油田、华北油田等油田。
勘探阶段:
石油物探工作大致可划分为区域普查和构造带勘探两大阶段。
区域普查阶段
这个阶段在有含油气远景的沉积盆地进行重力法和磁法普查,其成果图比例尺为1:500000~1:1000000,在油气勘探有利的地区进一步进行重力法和磁法详查,其成果图的比例尺为1:100000~1:200000。配合电测深、大地电流法和少量地震法普查工作,划分盆地内的区域构造单元,确定沉积凹陷,并进一步评价沉积凹陷和圈定二级构造带,为进一步开展石油物探工作提供有利的地区和构造带。
构造带勘探阶段 :
在区域普查阶段提供的有利地区和构造带上,开展地震法普查和详查工作,确定可能的含油气构造和油气圈闭,为石油钻探工作提供井位。中国已发现的油气田中,多数是根据地震勘探资料进一步进行钻探发现的。
勘探方法:
石油物探有重力勘探、磁法勘探、电法勘探、地震反射法和地震折射法等,也可包括地球物理测井。
重力勘探
用于了解地壳深部结构和基底表面起伏,划分区域构造单元;在有利条件下,也可用来了解沉积岩层内部构造,寻找可能的含油气构造。重力勘探是根据地下岩层密度的差异,测量地球重力场的相对变化,了解地下地质构造的。重力勘探比较简便、成本较低,但勘探精度较差并具有多解性,一般用于区域普查阶段。
磁法勘探
用于了解基底表面起伏,估计沉积岩层的厚度,划分区域构造单元。磁法勘探是根据地下岩石磁性的差异测量地磁场的相对变化,了解地质构造的。根据磁异常所计算出来的磁性体埋藏深度,可以了解基底表面起伏和基底内部结构,也可反映沉积岩中的火成岩侵入或喷发的情况。磁法勘探与重力勘探相似,它的勘探操作简便,成本较低,但勘探精度较差,一般只适用于区域普查阶段。
电法勘探
用于了解基底表面起伏,划分区域构造单元;在条件有利的地区,还可了解沉积岩层内部构造;在适当条件下,也可利用它寻找石油和天然气。电法勘探是根据地下岩层的电阻率等电学性质及电化学性质的差异,了解地质构造和寻找油气藏。在石油勘探中,电测深法、大地电流法和大地电磁法以及激发极化法应用较多,其设备比重力法和磁法复杂,成本也较高,但探测精度优于重力法和磁法,一般也适用于区域普查阶段。
地震勘探
在石油物探中是探测精度最高的一种方法,特别是地震反射法,但勘探成本高于其他石油物探方法。由于它的勘探效果较好,已成为石油物探中最有力的勘探手段,应用最广。地震勘探方法主要分为反射法和折射法两大类。
1 地震反射法 用此法可以了解地壳深部结构和基底表面起伏,研究地壳内部结构和划分区域构造单元;寻找和勘探各种可能的含油气构造,通过钻探寻找构造,圈闭油气藏;还可以了解沉积岩层的岩性和岩相变化,与地质和钻探相结合,寻找岩性圈闭或岩性与构造复合圈闭油气藏;在条件有利的地区,还可能直接找矿。
地震反射法的基础是地下岩层的波阻抗的差异。沉积岩层的岩相变化及岩石孔隙中所含流体(油、气、水)性质的不同,使岩层的波阻抗发生变化,影响地震反射波的振幅。根据地震反射法所记录的反射波走时,可以计算出波的速度和反射界面的埋藏深度,从而了解基底表面起伏和沉积岩内部构造。根据记录的地震反射波振幅等特点,以及所计算出来的地震波速度等资料,可以了解地下岩层的岩性、岩相变化和岩石孔隙中所含流体的性质。
用地震反射法通常可以观测到界面深度达6000米左右或更深的反射。因而,使用地震反射法可在几公里深的整个沉积剖面中,了解各种不同深度的地质构造,寻找与背斜、断层、断块和盐丘构造等有关的构造圈闭油气藏。地震反射法提供的地下地质构造精度很高,在理想条件下,得到的地质构造起伏的误差在3~6米范围内,确定断层落差的精度可达10米左右。地震反射法虽然能作出具有明显波阻抗差异的任何反射层的构造图,但没有钻井资料和地质资料,是不能确定各反射层的地质层位的。因此在对地震反射法资料进行解释时,必须同地质资料和钻井资料紧密结合起来,避免出现差错。
地震反射法还用来研究地下岩层的岩性和岩相变化情况,试验寻找与地层遮挡、岩性尖灭、礁块和古潜山等有关的岩性圈闭油气藏,或构造与岩性复合圈闭油气藏。从地震反射法资料可以得到沉积岩层变薄的趋势,或岩性变化的显示。但是,单纯利用地震反射法资料,目前还不能解决与岩相变化有关的地层圈闭油气藏的勘探问题,必须将地震反射法资料同测井资料、物性资料、地质资料和钻探资料密切结合进行综合解释。利用地震反射波的振幅增强及其他和油气有关的地震波标志,可以直接寻找石油和天然气。在新生代沉积盆地中寻找较浅的砂岩贮气层,这种勘探方法取得了较好的效果;但在古老的沉积盆地中寻找较深的含油层,则受到较大的限制。
2地震折射法 此法可以用来了解基底表面起伏,划分区域构造单元,了解沉积岩层内部构造,寻找可能的含油气构造;利用所求出的界面速度研究地层的岩性。根据所记录下来的地震折射波走时,可以求出地下高速界面如基底、盐丘、炭酸盐岩的埋藏深度和起伏形态,并且可以计算出地震波沿高速岩层传播的界面速度,了解地下高速岩层的地质构造和岩性。在有利条件下,还可用来确定高速岩层断层的落差。但它不如反射法能同时了解地下多个岩层界面的详细构造情况,而且勘探精度也低于反射法。

3. 石油的钻井通常都有上千米深,大概的工作原理是怎样的

通俗简单的说吧:

能源是电力,

机械传动,通过方钻杆,转动的力在地面传给方钻杆,方钻杆下面是钻杆,钻杆下面是钻头,跟我们在地面上用电钻钻一个孔原理差不多

不同的是钻杆之间用螺纹连接,钻到一定深度,就得拧开中间再加一节钻杆,这样一节一节钻下去,就可以达到几千米深了。

每钻一定深度,还得测量,有专门的测井公司,如发生偏差及时修正,

现在的钻井水平,十分厉害,可以在直着钻上千米深后再拐弯90度,钻孔能拐弯这种情况,在其它行业,是完全不可能的,

4. 国外深层油气勘探方法

贺晓飞周德勇蒋红红王艳红程敏宁宪燕

摘要由于盆地深部的地质、构造条件极为复杂,深层勘探仍是一个世界性的难题。为了尽快突破胜利油区深层勘探局面,进行了国外深层油气勘探方法调研,提供和引进了国外新的理论和技术。特别是根据胜利油区深层勘探实际,介绍了前苏联CDA技术、综合勘探技术及重磁相结合勘探方法,对今后深层勘探具有较大的、较现实的参考意义。

关键词深层勘探方法重磁勘探综合勘探CDA技术勘探实例

一、引言

近十几年来,深部油气勘探越来越引起世界各国的重视,由于深层勘探是一个复杂、庞大的系统工程,涉及到地质研究、勘探技术、钻井及钻后的各项工程的方方面面的工作。对深层勘探技术,地震勘探仍是主要的勘探方法,但由于深层勘探的地质条件比中、浅层复杂得多,世界上深部勘探效果较好的国家都是充分利用各种勘探方法进行综合勘探,因此如何利用重、磁、电及化探等各种有效手段与地震勘探相结合,是一个需要深入研究和试验探索的问题。本文主要介绍世界上主要深层勘探国家目前使用的深层勘探技术方法及一些较成功的勘探实例,针对这方面进行国外深层勘探的情报调研,为胜利油区尽快突破深层勘探关,提供可借鉴和有价值的资料。

二、地震勘探技术

1.深部综合地震勘探

影响一个地区地震资料品质的主要因素有:地下主要目的层波阻抗分析、地震下传能量问题、静校正问题、全程和层间多次波问题、反射信噪比及分辨率问题等等。在此基础上,通过提高野外采集精度、改进室内资料处理方法,可有效的改善深层地震资料的品质。

在深部地震资料采集、处理中,前苏联的“时间场共深度面元叠加技术(Common Depth Area Stack)”(简称CDA),对提高地震资料的分辨率具有明显的效果。这种技术可将野外24次覆盖的记录,在室内模拟处理高达360次覆盖的剖面。其基本思路是将反映地下一定范围的一个面元内共深度点的所有信息作“同相叠加”,提高信噪比,展宽频带,以提高分辨率。图1是西乌斯特—巴勒尔斯克油田的例子。该剖面纵向上也只有100ms。图1a是24次水平叠加剖面,频带宽度为12~65Hz,泥岩盖层在白色波谷中,其下的油层未反映出来。图1b为同一剖面采用CDA技术模拟180次覆盖的结果,泥岩盖层下出现了油层的反射(油层厚度为5ms),下方的剖面的频带已经展宽到 15~125Hz,主频为100Hz[1]

图1俄罗斯 CDA技术在油田的应用实例图

以北美路易斯安那州Cibicides jeffersonensis(简称Cib jeff)砂层为例。勘探目的层是Cib jeff砂层,厚约15m,自然电位和视电阻率曲线表明该砂层是夹在厚层页岩之间,深度为4069~4084m。该区用可控震源成功地进行了三维采集、处理和解释。应用这些资料,对深部薄层地压型砂层进行成像和成图,并应用垂直和水平分辨率较高的资料,对常规资料无法解释的储集层结构进行了解释,最终取得了比较令人满意的结果[2]

2.折射波多次覆盖地震勘探方法

折射波法是将折射波与反射波同时记录,除了拾取折射波初至外,也利用续至波并追踪回折波,并利用折射界面鉴别产生反射多次波的层位。这种方法常用于目的层埋藏深、结构复杂、地表条件不利、观测面积较小的研究地区。

三维深层折射波资料的解释除了有GRM方法和延迟时间法(或称时间项)外,第三种方法包括射线追踪和递归速度模型,该方法用于二维复杂数据体确实有效,可将其进一步应用到三维深层折射波数据体。三维射线追踪是对观测到的时间剖面进行折射体深度和速度成像的最佳方法;也可以将GRM法和延迟时间法结合起来对地层进行成像。最新推出的反射参数处理系统能同时利用反射和散射能量,因而有助于深层及基底反射的成像[3]

3.三维勘探法——时间梯度法

在前苏联,用于沉积盆地深部构造的快速三维勘探法——时间梯度法得到了广泛的发展。这种方法比较灵活,可以任意布置记录仪和震源,使勘探工作既方便又经济。

时间梯度法勘探是利用便携式的“龟型”地震仪完成的,能自动进行磁带记录。整个“龟型”地震仪的频率特征(在振幅频率为0.9时)是2.5~14Hz,同时在12个点上进行地震记录,并在平均6km的点距观测条件下,两次挪动仪器就可以覆盖1000km2的研究区[4]

图2显示的是在滨黑海地区依据地震标准层作出的构造图。标准层对应于基底顶面(Vr=6.2~6.5km/s)。构造图上划分出了面积不大、但幅度较大、具有明显近南北走向的凸起和凹陷,并划分了一条近东西走向、切割基底和整个沉积盖层的断裂,这条断裂将果尔黑茨基盆地的深层构造与大高加索南坡隆起状块体分开[4]

图2滨黑海时间梯度法试验区基底顶面构造图

三、电法勘探

1.差分标定法(差分归一法、差分电场法)

有源可调频率的瞬变电场差分标定法(缩写为ДНМ),在前苏联地质结构比较复杂的伊尔库茨克探区、目的层较深的滨里海盆地以及其他地区取得了一些成功的实例。

该方法的函数特征为随地下介质电性特征的不同,可以选用阶值不同的三种P(t)参数,即:P1(t)为在作为勘探目标的油气储集层处于高电阻介质之内,当介质剖面的总电导率不超过100S(西门子)时,可以利用P1(t)函数异常来寻找与圈划油气藏;P2(t)为当含油气层上覆层为数公里厚的低电阻率介质时,利用P2(t)函数来寻找与圈划油气藏将更为有利;P3(t)为当介质中既有高电阻率岩层屏蔽,又存在低电阻率岩层覆盖的条件下,可以利用P3(t)函数来寻找与圈划油气藏[5]

差分标定法具有以下几点优越性:观测参数误差小,改善了数据的可靠性;具有较高的横向分辨率并能排除纵、横向侧面异常体的干扰;检测极化异常体的灵敏度较高并具有较好的垂向分辨能力;具有更加灵敏可靠的直接找油气功能[5]

柴金斯油藏位于滨里海盆地北部奥伦堡地区,产油层深逾4000m,上覆介质为低阻的厚层泥岩(ρ=2Ω·m,h=3000m)和厚层的岩盐(ρ>1000Ω.m,h=2000m)。该区域试用差分标定法P3(t)参数圈划油藏取得较成功实例。根据地震法资料,在4000~5000m深度范围内发现了一系列的复杂构造,按照P3(t)曲线的外形,可分为三类:①负值梯度类,是深部无油气层的特征;②正值梯度类,是油气藏上方的特征;③畸变形类,是盐下层内有垂向异常体所在地的特征,如深度在4800~5200m盐丘下断裂所致,以及4460~4480m处盐下层小幅度断裂所致,这些已被地震勘探及钻井所证实[5]

2.大地电磁测深法

作为地震勘探的重要补充手段的大地电磁测深,尤其是面积型或宽线式多次覆盖的大地电磁测深法,在解决深部和结晶基底方面,以及提高纵向和横向分辨率方面有很大的潜力。20世纪80年代,曾用此法划分出了滨里海盆地北部埋深5km、厚度仅数米的含油或含水的石炭系碳酸盐岩油气藏。

以南安大略沉积盆地的大地电磁测深勘探[6]为例。该盆地地层层序由夹少量蒸发盐岩和砂岩的碳酸盐岩和页岩层序组成,泥盆系和志留系朝东北边缘移动逐渐消失,基本由奥陶系组成单一的地层剖面。对该盆地的一套可控源大地电磁测深资料进行了解释,并将结果和已知地质剖面作了对比,表明导出的电性模型与已知地质剖面对比得较好。确定该测深地点的位置,以便能够利用倾斜沉积层的优越性。从盆地浅层到深部剖面依次解释资料获得最终的模型。按这种方式解释大大减少了单个位置测深资料多层解释中的固有的多义性。

3.瞬变电磁测深

瞬变电磁测深法(TEM)是在大地电磁测深基础上发展起来的,在勘探精度、分辨率和抗干扰、预测岩性探测深度等方面的功能显着提高。其特点在于:垂向分辨率显着优于其他电法(只要深部地层电导值跃变大于10%时就能分辨)、静态畸变小、受地表不均的影响小,因而无需进行静态校正,适合在火山岩覆盖区、碳酸盐岩出露和黄土源等表面层静校困难的地区使用;横向影响小,有利于探测断层的位置和探明与断层有关的储集层内的油水边界;适合在高阻剖面所在的储集层内探明油水边界;适合在高阻剖面内探测低阻岩系或在良导体沉积覆盖的盆地内探测深部高阻基底;因记录仪器轻便,适合在地形复杂区内灵活布置施工。此法在俄罗斯若干重要探区已被列入钻井论证的必备资料。

4.电磁排列剖面法

电磁排列剖面法(EMAP)是根据地表一条线性测线测得的电磁响应结果而绘成的电阻-深度剖面。这种方法采用空间排列数据采集和处理技术,可有效地处理复杂的三维地下构造显示。大多数EMAP信号采集和处理技术均与常规大地电磁法相同,但是,它的优越性主要在于密集数据采样和对不利的三维构造效应的有效处理,可对电阻率剖面做出可靠的估计。

由于野外采集系统的改进,即模拟地震的时间域采集、处理和解释方法,使精度大大提高。由于采集点密集,克服了表层静位移,加之电磁法本身具有穿透高阻层的能力,能够清楚地分辨出3~5km以下,厚度在100m以内的低阻电性层。由于分辨率的提高,现在已用其进行寻找灰岩内幕构造、火成岩下油气层追踪等地震方法困难地区的勘探

胡秋平等着.与我国渤海湾盆地深层类似的国外盆地石油地质特征研究.中国石油天然气集团公司信息研究所.1998.。

四、重力和磁法勘探

深大断裂通常呈现较强的磁异常带和重力高值异常带,因此,在断裂发育的探区和深中部块体结构的研究中,应充分利用航磁和重力资料。

在重力反演方面,利用重力的“特征点”法、全归一梯度法等来反演求解密度剖面。该方法已用在区分横向密度不均匀性或揭示垂直的深大断裂方面,其作法是利用重力观测资料进行反演计算,求得密度剖面,然后叠合地震和电法资料,进一步划分地层及区别可能的岩性,在此基础上建立密度地质模型。以此作为初始模型,再用正演方法计算该模型的重力值,使正演重力值与观测重力值拟合,使其误差在要求范围之内

胡秋平等着.与我国渤海湾盆地深层类似的国外盆地石油地质特征研究.中国石油天然气集团公司信息研究所.1998.。

在俄罗斯曾用此法在西西伯利亚西北部密度剖面上拟合出了一个埋深6km,厚度达2km的巨型礁体,引起了轰动

胡秋平等着.与我国渤海湾盆地深层类似的国外盆地石油地质特征研究.中国石油天然气集团公司信息研究所.1998.。

对西西伯利亚油气藏附近重磁场特征的研究表明,重磁场与油气藏存在某种空间关系。首先借助二维傅里叶频谱(DFS)分析对振幅和频率进行研究;然后进行变换、滤波和“移动窗口”分析,编制区域和局部异常图及位场导数图,研究已知油气藏区域的参数分布[7]

油气藏大部分位于区域重磁正异常的斜坡上,该异常被解释为与深部裂谷型构造相关。同时还证实了油气藏的位置通常与局部重磁极小值是一致的,而这些极小值是由于基底为低密度和低磁化强度所引起。西西伯利亚北部的所有已知油气藏均位于波长大约90~100km且梯度较大的重力异常区内。这种新揭示的油气藏与位场参数之间的关系,在勘探程度低的陆地和海洋可用于预测新的油气藏[7]

五、渗透介质地震声学法

渗透介质地震声学是一种物探新方法,其主要特征为:将烃储集层模型视作一不均匀介质;孔隙空间中的流体是一活性动力学非均质导体,能够积聚和转换(模拟)波动过程;储藏层框架则是一静态非均质导体,控制着动力学非均质导体的运动[8]

该方法可以通过内部参数关系或是流体相对其岩架的体积流量而正面求解;反向求解则是通过激发、记录和分析解释一组类似的流体波取得,其运动学和动力学参数是借助流体流量来确定的。通过综合分析声波测井流体法、垂直地震测深法、地震勘探和实验观测结果,就能确保所获解的可靠性[8]

利用计算和程序的综合分析可以求出有效孔隙度、孔隙直径、渗透率、产量和沿着井的生产剖面深度上的饱和率特性。此法在阿斯特拉罕穹隆和东西伯利亚已取得成功实例[8]

六、FMI测井技术

FMI是在地层倾角仪基础上发展起来的最新一代电阻率成像测井仪,全称为全井眼地层微电阻率成像仪。它利用高分辨微电阻率产生电图像,研究岩石层理、构造、孔隙变化、裂缝以及沉积相等,并为准确判断油气层提供依据。在建立适合探区岩-像关系的基础上,FMI技术的合理应用,是提高勘探效益,尤其是深层勘探效益的有效途径[9]

七、化探技术

利用浅部地球化学标志,可以预测盆地深层烃类聚集,前苏联在这方面已经取得较大进展和很好效果。

Pricaspian盆地位于俄罗斯地台东南部,储集层位于二叠系盐下层,埋藏较深(4000~5500m),油田靠近盆地的外边缘。研究表明,在盐上层中,烃类流体的地球化学特征和组成类似于盐下层中的烃类。通过对盐层和盐上陆相沉积层的地球化学特征分析,可确定盐下储集层中油藏的位置[10]

研究目标主要集中于盐下流体的最突出特征——H2S的高浓度。这一活动组分揭示了从盐下储集层到不同的上覆盐层和盐上地层的运移途径。不用钻穿盆地中央部位,沿盆地H2S痕迹的分布就能够指示深部盐下油气藏的分布[10]

利用地球化学数据可以确定该盆地的深部构造。具有异常地层压力和异常流体组分的盐下碳酸盐岩油藏是上部盐上层段地球化学标志的来源。在陆源岩中H2S不是原生的,因此陆源岩中H2S的痕迹是运移的可靠指示。这种方法也可用于预测其他盆地的盐下层中未发现的油气资源。通过对盆地上部盐上层的地层水和次生矿物的详细研究,可以区分地球化学参数的环境起源和运移起源[10]

八、综合勘探技术

对深部油气勘探而言,更趋向于向多学科结合、综合应用的方向发展。如将地震勘探与重、磁勘探结合,或地震勘探与大地电磁勘探结合,非地震三维地球物理勘探与三维地震勘探技术结合等综合地球物理勘探方法,及近地表化探与地震资料的综合应用,都会极大的推动深部油气勘探。重、磁、电、化联合解释方法原理如图3所示

胡秋平等着.与我国渤海湾盆地深层类似的国外盆地石油地质特征研究.中国石油天然气集团公司信息研究所.1998.。

目前,成果较为显着的是地震与大地电磁资料的结合,它们已成为深部油气勘探的有效方法

胡秋平等着.与我国渤海湾盆地深层类似的国外盆地石油地质特征研究.中国石油天然气集团公司信息研究所.1998.。

中新世中期,匈牙利潘农盆地构造活动强烈,并伴有火山岩喷发。岩浆覆盖了基岩,逐渐形成相当厚的火山岩地层。火山岩大都能屏蔽和散射地震信号,常常导致地震资料品质较差。在这种情况下,MT测量能比地震测量更好地获得火山岩以下的信息。通过比较MT(博斯蒂克)和测井电阻率图,在2km上下的中新统火山岩处MT与测井电阻率均对应高阻,而火山岩以上地层均为低阻。这一现象表明,两种不同方法的测量结果相近。将MT测量结果按博斯蒂克电阻率分布的垂直拟断面形式显示(图4),可以清楚地圈定出高阻火成岩以下的低阻地层。在MT测站6上(图4),深度为4~5km处低阻带的电阻率值,与离该测站约3~4km处的KH井同一深度的测井电阻率值相近,MT的低阻层为白垩纪地层

胡秋平等着.与我国渤海湾盆地深层类似的国外盆地石油地质特征研究.中国石油天然气集团公司信息研究所.1998.。

图3重、磁、电、化联合解释方法流程图

图4博斯蒂克电阻率分布横断面图

由此例可以看出,根据大地电磁测深(MT)横断面所示的地下构造形态及由此获得的地下电阻率(或电导率)的分布特性,结合地震资料,可确定地下岩性并判断其含油气性。此类研究为深部油气的勘探开辟了广阔的道路。

九、结束语

深层地质条件的复杂性,决定了勘探应避免使用单一方法和技术。充分利用各种勘探技术进行综合勘探,无疑是准确地获取深层地质信息的重要手段。

前苏联在滨里海盆地的勘探过程中,在遥感、重力、磁力、电法勘探的基础上,有计划地进行了大量的共深点法、折射波剖面对比法,并与深部参数井和普查钻探工作相结合,进行综合勘探较全面地了解深层地质结构,为目标评价和勘探决策提供了重要依据,取得了较好的效果。

胜利油区深层勘探程度较低,今后除了加强地震工作,改善和提高地震反射效果外,应该考虑对深层目标有选择地应用重力、磁力及电法等其他手段与地震相结合进行综合勘探,有望在深层获得新发现。

致谢本文在完成过程中,得到地质科学研究院宋国奇总地质师、蔡进功副总地质师的指导与帮助,在研究过程中遇到的许多难点问题得到地质科学研究院的杨品荣、赵洪波、陈杰及地球物理勘探公司的郭良川高级工程师的热情指导,在此表示深深的谢意。

主要参考文献

[1]李庆忠着.走向精确勘探的道路.北京:石油工业出版社1994.

[2]Kinsland.G L High-resolution three-dimensional seismic survey of a thin sand at depth.Geophysics,1999,56(12).

[3]Geoff Bennett.3D seismic refraction for deep exploration targets.The Leading Edge,1999,18(2).

[4]林中洋译.沉积盆地深部构造的快速三维地震勘探法.石油地质信息,1994,15(2).

[5]任俞编译.电法勘探圈划油气藏的新技术——差分标定法简介.国外油气勘探,1991,3(2).

[6]Gomez-Trevino E.Electromagnetic soundings in the sedimentary basin of southern Ontario—A case history.Geophysics, 1983, 48(3):311~330.

[7]Alexey L,Piskarev.Magnetic and gravity anomaly patterns related to hydrocarbon fields in northern West Siberia.Geophysics, 1997,62(3):831~841.

[8]任俞译.超深油气藏物探方法的发展和改进.世界石油工业,1996,3(7).

[9]布志虹等.从濮深8井看FMI技术在东濮深层的应用前景.断块油气田,1999,16(5).

[10]刘斌等译.利用浅部地球化学标志预测Pricaspian盆地二叠系盐下烃类聚集.国外油气勘探,2000,12(3).