当前位置:首页 » 石油矿藏 » 石油仪器新技术都有什么
扩展阅读
贴现模式成本怎么算 2025-06-30 11:37:38
lis数据采集工具哪个好 2025-06-30 11:27:04
欧盟市场有多少中国产品 2025-06-30 11:23:17

石油仪器新技术都有什么

发布时间: 2023-05-07 08:25:19

① 石油勘探有哪些新技术

根据勘探技术手段的不同,石油勘探主要分为物理勘探和化学勘探两大类。其中以物理勘探为主要手段。目前各油气田勘探经常使用的主要是物理勘探中的地震勘探。 (1)地震勘探:是根据地质学和物理学的原理,利用电子学和信息论等领域的新技术

② 石油勘探用哪些设备和仪器

包括测量、钻井、和采集设备,测量用GPS或全站仪,钻井用各种型号的钻机,采集设备现在基本都是用的法国鬼子的sercel系列的配套设备。

③ 十大石油科学技术有哪些

1.塔里木盆地山地超高压气藏勘探技术和克拉2大气田的发现
综合石油地质、地球物理勘探、钻井、测井与测试技术等多学科、多专业联合攻关的成果,解决了塔里木盆地库车地区因地形起伏剧烈、表层岩性多变、地下逆冲断层发育而引起的一系列复杂的山地油气勘探技术难题,形成了一套比较成熟的适用于库车前陆盆地的勘探技术。在地震信息采集、资料综合解释的各个环节,都有技术创新,提高了构造成图的精度;攻克了超高压层和膏盐层的钻井技术;研究了高陡复杂构造的地质建模和圈闭描述技术、前陆盆地的高压油气藏描述技术和石油地质综合评价技术等。进而,总结了库车前陆盆地逆冲带油气田(藏)特征及其分布规律,指导了该区的油气勘探实践。共发现和落实各类圈闭46个,提供钻探井位26口,探井成功率达到50%。发现了克拉2大气田(探明天然气储量2506.1亿立方米),以及依南 2、吐孜1、大北1、克拉3等一批天然气田,为"西气东输"工程提供了资源基础。

2.鄂尔多斯盆地上古生界天然气富集规律及勘探技术研究和苏里格庙大气田的发现

通过盆地沉积史、构造发展史和古地温演化史分析,总结了鄂尔多斯盆地具有大面积广覆式生气、水喉封隔等致密砂岩气田和深盆气田特征。深入研究鄂尔多斯盆地上古生界大气田形成地质条件、岩性气藏深盆气藏成藏过程、分布规律及中高渗透层的高产条件,;通过攻关,形成了以盆地分析模拟、储层横向预测、气藏综合描述等技术为主的九套综合配套技术系列,重新评价了上古生界天然气总资源量为6.76- 10.3万亿立方米,超过原评价数的三倍以上,为进一步勘探提供了科学依据。

科技攻关与勘探实践紧密结合,通过对评价出的五个有利的详探区与预探区的钻探,在苏里格庙、榆林、乌审旗地区均发现了大气田。在榆树区6000平方公里勘探范围与乌审旗7200km2勘探范围内,均已探明天然气储量超过1000亿立方米的大气田;特别是探明了苏里格庙大气田,在2万km2的勘探范围内,已探明天然气储量2204亿立方米,控制储量1000亿立方米,预测储量2013亿立方米。

3.大庆油田年产5300万吨至2000年稳产技术

形成了大庆油田高含水后期薄差油层精细描述和识别技术,建立了大庆油田各类储层的三维定量地质模型,并运用多学科技术研究剩余油形成机理,建立了各类剩余油气综合定量描述方法。进一步提高了储层井间参数预测符合率,剩余油预测符合率,水淹层测井分辨率和解释符合率。在此基础上,形成了一套行之有效的剩余油挖潜技术。三次加密单井增加可采储量5000吨,预计可钻7000口井。经测算已增加可采储量2487万吨。

形成了大庆外围低渗透油藏油气富集区筛选、经济可采储量评价技术和方法,提供了较多开发的区块。低渗透油田试验区块采油速度达1.2%。大大降低了百万吨产能建设投资。形成了大庆油田注聚合物采出液高效处理及动态监测技术;聚合物配注系 统国产化及聚合物管道熟化技术;深度调剖技术,增加百万吨采油量的投资成本比" 八•五"下降15%以上。到2000年底,低渗透油田年采油量达400万吨,注聚合物年产油 800万吨以上,实现了大庆油田年稳产5300万吨的目标。

4、 GRISYS/WS-V5.0地震数据处理系统及KL Seis 1.0地震采集工程软件系统

GRISYS地震数据处理系统 GRISYS/WS-V5.0在GRISYS/WS-V4.0的基础上,创新发展了高分辨率处理软件包、交互折射波静校正软件包、交互精细速度分析软件包、 VSP处理软件包、交互储层综合分析软件包等新技术,使其更加适应于我国陆相盆地沉积的薄互层油气藏勘探和西部复杂地表区的油气勘探.经过对大庆、辽河、胜利、新疆、华北、二连、中原、河南、滇黔桂等地区的资料处理,均取得良好效果,对克拉2 大气田的发现提供了主要的技术支持。目前已安装此系统60套,创直接经济效益2400 多万元,节约了大量引进国外软件的费用。

KLSeis 1.0是国内第一套涵盖了地震野外数据采集全过程,方法先进、功能齐全,适用性广的采集系统软件。经专家鉴定认为,从整体上处于国际领先水平。目前,已有中油集团公司、中石化集团公司、海洋石油总公司下属的16家物探专业公司配备了该系统软件,推广应用近百套,技术经济效益十分显着。

5、侧钻水平井钻采配套技术

建立了针对砾岩油藏、稠油、高凝油油藏侧钻水平井设计的油藏工程方法,包括对开发区块剩余油定量描述、侧钻水平井开采机理和应用数值模拟技术研究,以及侧钻水平井开采效果评价方法等;在钻井技术上,通过建立钻井轨迹模型,总结了侧钻开窗原则、方式,井眼轨迹控制技术、井下钻柱磨阻、稳定性、相容性、钻具及其造斜能力等,开发了应用软件,用以指导钻井施工;针对不同地层条件在完井和采油工艺技术上有所创新。应用以上技术,先后在新疆砾岩区块完成侧钻水平井8口,初期日产油相当原井日产量的2.5倍,为该区块平均日产的2.4~3.9倍。在辽河油田共完成稠油开采的侧钻水平井11口,平均日产为原井产量的2~4倍,取得明显经济效益。

6、微电阻率扫描成像测井系统

微电阻率扫描成像测井仪器可测量井下地层非均质特征(裂缝、溶洞和层理等)、结构特征和构造特征,是沉积相分析、裂缝定量评价、岩心对比、薄层划分、非均质油气藏勘探等方面的重要手段。过去一直是引进国外的设备和服务。该系统研制成功,先后在大庆现场试验测井4口,在大港测井4口,裂缝识别和地质特征划分的符合率达95%。

该成果是国内独立研制的第一支成像测井仪器,仪器(系统)设计中采用了自适应高温承压密封极板、电扣信号分时多波形波采样、采集软件平台和共享存储器技术的地面接口等多项先进技术

7、裂解汽油加氢催化剂

开发了系列裂解汽油加氢一、二段催化剂,目前有多种牌号实现了工业应用,替代了进口,取得了良好的经济效益和社会效益。

高负荷裂解汽油一段加氢催化剂LY9801,具有运转空速高,加氢活性好,选择性好,积炭量低,再生性能好等特点,能够满足各乙烯生产厂家在不改变或较少改变现有设备条件下即可达到扩产增效的目的。先后在吉化、中原、燕化、大庆、上海金山、兰州石化等厂家实现了工业应用,该催化剂还能适应于C5~204℃裂解汽油,全馏份一段加氢及高胶质裂解汽油(原料胶质30~60mg)的加氢。该催化剂自实现工业化以来,累计创效近4000万元,产生了重大经济效益。

高负荷裂解汽油二段加氢催化剂LY9802,运转空速可由2.8h-1提高到4.5h-1。该催化剂于2000年7月在上海金山实现工业试验,成功后可向其它厂家推广应用,其社会效益和经济效益十分可观。

适应于硫含量多变的裂解二段加氢复合床用催化剂LY9702,可用在总硫为30~ 1100ppm的裂解汽油的加氢,已先后在扬子、盘锦、吉化、茂名等厂家使用。

8、一交一焙超稳分子筛及LANK-98催化剂的开发生产

该分子筛的制备工艺具有生产工艺简单、产量高、成本低等特点,同时用一交一焙分子筛制备的催化剂,具有活性高、选择性好、重油转化能力好、抗污染能力强等特点。

一交一焙超稳分子筛与新型高活性单体配合生产出了LANK-98催化剂,该剂活性高、堆比可在大范围内调整,并具有非常好的孔分布梯度,对裂化大分子具有很好的作用,不仅适应于重油催化装置,也适应于掺炼渣油的蜡油催化装置。该剂在大连炼化公司二催化装置应用结果表明,综合性能优于进口催化剂。目前该剂已销往全国19 家炼厂,销量达5500吨,为炼厂创造了3000万元以上的经济效益。

9、ZJ70D直流电驱动钻机

ZJ70D钻机是我国石油系统研制的第一台7000m超深井钻机.该钻机按SY/T 5609《石油钻机型式与基本参数》标准和有关技术要求设计制造,主要机件符合美国API规范 .其主要技术参数为:名义钻井深度7000m(41/2in钻杆)~6000m(5in钻杆);最大钩载4500KN;最大钻柱重量220t;绞车最大输入功率1470kW(2000hP),4档无级变速; 提升系统绳系6×7,钢绳直径φ38mm:泥浆泵功率2×1180kW:转盘开口直径925.5mm (371/2in),2档无级变速;井架为前开口型,高45m;钻台为双升式,高9m.该钻机在国内首次采用了国产液压盘式刹车,司钻控制信号采用双线传输形式,提高了控制系统的可靠性。

新疆钻井公司塔里木油田FK430-H井,使用ZJ70D钻机用5im钻杆,安全完钻达 6090m,达到该钻机设计的钻井深度。

该钻机已累计订货11台,交付生产使用9台,其中,新疆、长庆、青海、吐哈、华北、大港、中原等油田已先后投入使用.交付新疆的2台分别于1999年和2000年赴阿尔及利亚、伊朗钻井,长庆、青海的ZJ70D钻机也均为外国石油公司承包钻井,增强了我国钻井队在国际市场的竞争力。该钻机投入生产制造后,已实现产值14500万元。

10、管道环缝自动焊接技术及设备研究

管道全位置自动焊接技术是当今世界管道焊接(特别是长输管道)的重要技术,涉及到机械制造、焊接、计算机控制和数字信号处理等多种技术领域,要求设备先进 ,焊接效率高、质量好。PAW2000样机研制完成后,在施工现场进行了总数为3.3的公里管线焊接应用,X射线探伤合格率为96.5%; APW-1型样机完成后,在绥中36-1输油管线焊接应用,焊缝成型美观,X射线探伤合格率达98%,焊接效率是手工焊接的三倍;该两种样机,经专家评审认为,均整体达到国际同类设备的先进水平.PAW2000型焊机已生产20余台套,配备到穿越青海、宁夏、甘肃三省区的涩宁兰输气管线建设现场。

④ 石油钻井技术

《中国国土资源报》2007年1月29日3版刊登了“新型地质导向钻井系统研制成功”的消息。这套系统由3个子系统组成:新型正脉冲无线随钻测斜系统、测传马达及无线接收系统、地面信息处理与决策系统。它具有测量、传输和导向三大功能。在研制过程中连续进行了4次地质导向钻井实验和钻水平井的工业化应用,取得成功。这一成果的取得标志着我国在定向钻井技术上取得重大突破。

2.3.1.1 地质导向钻井技术

地质导向钻井技术是20世纪90年代发展起来的前沿钻井技术,其核心是用随钻定向测量数据和随钻地层评价测井数据以人机对话方式来控制井眼轨迹。与普通的定向钻井技术不同之处是,它以井下实际地质特征来确定和控制井眼轨迹,而不是按预先设计的井眼轨迹进行钻井。地质导向钻井技术能使井眼轨迹避开地层界面和地层流体界面始终位于产层内,从而可以精确地控制井下钻具命中最佳地质目标。实现地质导向钻井的几项关键技术是随钻测量、随钻测井技术,旋转导向闭环控制系统等。

随钻测量(MWD)的两项基本任务是测量井斜和钻井方位,其井下部分主要由探管、脉冲器、动力短节(或电池筒)和井底钻压短节组成,探管内包含各种传感器,如井斜、方位、温度、震动传感器等。探管内的微处理器对各种传感器传来的信号进行放大并处理,将其转换成十进制,再转换成二进制数码,并按事先设定好的编码顺序把所有数据排列好。脉冲器用来传输脉冲信号,并接受地面指令。它是实现地面与井下双向通讯并将井下资料实时传输到地面的唯一通道。井下动力部分有锂电池或涡轮发电机两种,其作用是为井下各种传感器和电子元件供电。井底钻压短节用于测定井底钻压和井底扭矩。

随钻测井系统(LWD)是当代石油钻井最新技术之一。Schlumberger公司生产的双补偿电阻率仪CDR和双补偿中子密度仪CDN两种测井系统代表了当今随钻测井系统的最高水平。CDR和CDN可以单独使用也可以两项一起与MWD联合使用。LWD的CDR系统用电磁波传送信息,整套系统安装在一特制的无磁钻铤或短节内。该系统主要包括电池筒、伽马传感器、电导率测量总成和探管。它主要测量并实时传输地层的伽马曲线和深、浅电阻率曲线。对这些曲线进行分析,可以马上判断出地层的岩性并在一定程度上判断地层流体的类型。LWD的CDN系统用来测量地层密度曲线和中子孔隙度曲线。利用这两种曲线可以进一步鉴定地层岩性,判断地层的孔隙度、地层流体的性质和地层的渗透率。

旋转导向钻井系统(Steerable Rotary Drilling System)或旋转闭环系统(Rotary Closed Loop System,RCLS)。常规定向钻井技术使用导向弯外壳马达控制钻井方向施工定向井。钻进时,导向马达以“滑行”和“旋转”两种模式运转。滑行模式用来改变井的方位和井斜,旋转模式用来沿固定方向钻进。其缺点是用滑行模式钻进时,机械钻速只有旋转模式钻进时的50%,不仅钻进效率低,而且钻头选择受到限制,井眼净化效果及井眼质量也差。旋转导向闭环钻井系统完全避免了上述缺点。旋转导向钻井系统的研制成功使定向井钻井轨迹的控制从借助起下钻时人工更换钻具弯接头和工具面向角来改变方位角和顶角的阶段,进入到利用电、液或泥浆脉冲信号从地面随时改变方位角和顶角的阶段。从而使定向井钻井进入了真正的导向钻井方式。在定向井钻井技术发展过程中,如果说井下钻井马达的问世和应用使定向钻井成为现实的话,那么可转向井下钻井马达的问世和应用则大大提高了井眼的控制能力和自动化水平并减少了提下钻次数。旋转导向钻井系统钻井轨迹控制机理和闭环系统如图2.5所示。

目前从事旋转导向钻井系统研制的公司有:Amoco、Camco、Baker Hughes Inteq、Cambridge Drilling Automation以及DDD Stabilizers等。这些公司的旋转导向闭环钻井系统按定向方法又可分为自动动力定向和人工定向。自动动力定向一般由确定钻具前进方向的测量仪表、动力源和调节钻具方向的执行机构组成。人工定向系统定向类似于导向马达定向方法,需要在每次连接钻杆时进行定向。两种定向系统的定向控制原理都是通过给钻头施加直接或间接侧向力使钻头倾斜来实现的(图2.6)。按具体的导向方式又可划分为推靠式和指向式两种。地质导向钻井技术使水平钻井、大位移钻井、分支井钻井得到广泛应用。大位移井钻井技术和多分支井钻井技术代表了水平钻井技术的最新成果水平。

图2.5 旋转导向闭环系统

(1)水平井钻井技术

目前,国外水平钻井技术已发展成为一项常规技术。美国的水平井技术成功率已达90%~95%。用于水平井钻进的井下动力钻具近年来取得了长足进步,大功率串联马达及加长马达、转弯灵活的铰接式马达以及用于地质导向钻井的仪表化马达相继研制成功并投入使用。为满足所有导向钻具和中曲率半径造斜钻具的要求,使用调角度的马达弯外壳取代了原来的固定弯外壳;为获得更好的定向测量,用非磁性马达取代了磁性马达。研制了耐磨损、抗冲击的新型水平井钻头。

图2.6 旋转导向钻井系统定向轨迹控制原理

(2)大位移井钻井技术

大位移井通常是指水平位移与井的垂深之比(HD/TVD)≥2的井。大位移井顶角≥86°时称为大位移水平井。HD/TVD≥3的井称为高水垂比大位移井。大位移井钻井技术是定向井、水平井、深井、超深井钻井技术的综合集成应用。现代高新钻井技术,随钻测井技术(LWD)、旋转导向钻井系统(SRD)、随钻环空压力测量(PWD)等在大位移井钻井过程中的集成应用,代表了当今世界钻井技术的一个高峰。目前世界上钻成水平位移最大的大位移井,水平位移达到10728m,斜深达11287m,该记录是BP阿莫科公司于1999年在英国Wytch Farm油田M-16井中创造的(图2.7所示)。三维多目标大位移井也有成功的例子。如挪威Gullfalks油田B29大位移井,就是将原计划用2口井开发该油田西部和北部油藏的方案改为一口井开采方案后钻成的。为了钻成这口井,制定了一套能够钻达所有目标并最大限度地减少摩阻和扭矩的钻井设计方案。根据该方案,把2630m长的水平井段钻到7500m深度,穿过6个目标区,总的方位角变化量达160°。

图2.7 M-16井井身轨迹

我国从1996年12月开始,先后在南海东部海域油田进行了大位移井开发试验,截至2005年底,已成功钻成21口大位移井,其中高水垂比大位移井5口。为开发西江24-1含油构造实施的8口大位移井,其井深均超过8600m,水平位移都超过了7300m,水垂比均大于2.6,其中西江24-3-A4井水平位移达到了8063m,创造了当时(1997年)的大位移井世界纪录。大位移井钻井涉及的关键技术有很多,国内外目前研究的热点问题包括:钻井设备的适应性和综合运用能力、大斜度(大于80°)长裸眼钻进过程中井眼稳定和水平段延伸极限的理论分析与计算、大位移井钻井钻具摩擦阻力/扭矩的计算和减阻、成井过程中套管下入难度大及套管磨损严重等。此外大位移井钻井过程中的测量和定向控制、最优的井身剖面(结构)设计、钻柱设计、钻井液性能选择及井眼净化、泥浆固控、定向钻井优化、测量、钻柱振动等问题也处在不断探索研究之中。

(3)分支井钻井技术

多分支井钻井技术产生于20世纪70年代,并于90年代随着中、小曲率半径水平定向井钻进技术的发展逐渐成熟起来。多分支井钻井是水平井技术的集成发展。多分支井是指在一个主井眼(直井、定向井、水平井)中钻出若干进入油(气)藏的分支井眼。其主要优点是能够进一步扩大井眼同油气层的接触面积、减小各向异性的影响、降低水锥水串、降低钻井成本,而且可以分层开采。目前,全世界已钻成上千口分支井,最多的有10个分支。多分支井可以从一个井眼中获得最大的总水平位移,在相同或不同方向上钻穿不同深度的多层油气层。多分支井井眼较短,大部分是尾管和裸眼完井,而且一般为砂岩油藏。

多分支井最早是从简单的套管段铣开窗侧钻、裸眼完井开始的。因其存在无法重入各个分支井和无法解决井壁坍塌等问题,后经不断研究探索,1993年以来预开窗侧钻分支井、固井回接至主井筒套管技术得到推广应用。该技术具有主井筒与分支井筒间的机械连接性、水力完整性和选择重入性,能够满足钻井、固井、测井、试油、注水、油层改造、修井和分层开采的要求。目前,国外常用的多分支系统主要有:非重入多分支系统(NAMLS),双管柱多分支系统(DSMLS),分支重入系统(LRS),分支回接系统(LTBS)。目前国外主要采用4种方式钻多分支井:①开窗侧钻;②预设窗口;③裸眼侧钻;④井下分支系统(Down Hole Splitter System)。

2.3.1.2 连续管钻井(CTD)技术

连续管钻井技术又叫柔性钻杆钻井技术。开始于20世纪60年代,最早研制和试用这一技术钻井的有法国、美国和匈牙利。早期法国连续管钻进技术最先进,1966年投入工业性试验,70年代就研制出各种连续管钻机,重点用于海洋钻进。当时法国制造的连续管单根长度达到550m。美国、匈牙利制造的连续管和法国的类型基本相同,单根长度只有20~30m。

早期研制的连续管有两种形式。一种是供孔底电钻使用,由4层组成,最内层为橡胶或橡胶金属软管的心管,孔底电机动力线就埋设在心管内;心管外是用2层钢丝和橡胶贴合而成的防爆层;再外层是钢丝骨架层,用于承受拉力和扭矩;最外层是防护胶层,其作用是防水并保护钢丝。另一种是供孔底涡轮钻具使用的,因不需要埋设动力电缆,其结构要比第一种简单得多。第四届国际石油会议之后,美国等西方国家把注意力集中在发展小井眼井上,限制了无杆电钻的发展。连续管钻井技术的研究也放慢了脚步。我国于20世纪70年代曾开展无杆电钻和连续管钻井技术的研究。勘探所与青岛橡胶六厂合作研制的多种规格的柔性钻杆,经过单项性能试验后,于1975年初步用于涡轮钻。1978年12月成功用于海上柔性钻杆孔底电钻,并建造了我国第一台柔杆钻机钻探船。1979~1984年勘探所联合清华大学电力工程系、青岛橡胶六厂研究所和北京地质局修配厂共同研制了DRD-65型柔管钻机和柔性钻杆。DRD-65型柔管钻机主要有柔性钻杆、Φ146mm潜孔电钻、钻塔、柔杆绞车及波浪补偿器、泥浆泵、电控系统和液控系统等部分组成。研制的柔性钻杆主要由橡胶、橡胶布层、钢丝绳及动力线组成。拉力由柔杆中的钢丝骨架层承担,钢丝绳为0.7mm×7股,直径2.1mm,每根拉力不小于4350N,总数为134根,计算拉力为500kN,试验拉力为360kN。钻进过程中,柔性钻杆起的作用为:起下钻具、承受反扭矩、引导冲洗液进入孔底、通过设于柔性钻杆壁内的电缆向孔底电钻输送电力驱动潜孔电钻运转、向地表传送井底钻井参数等。

柔性钻杆性能参数为:内径32mm;抗扭矩不小于1030N·m;外径85~90mm;单位质量13kg/m;抗内压(工作压力)40kg/cm2,曲率半径不大于0.75m,抗外压不小于10kg/cm2;弯曲度:两弯曲形成的夹角不大于120°;额定拉力1000kN;柔杆内埋设动力导线3组,每组15mm2,信号线二根;柔杆单根长度为40、80m两种规格。

Φ146mm型柔杆钻机由Φ127mm电动机、减速器、液压平衡器和减震器组成。动力是潜孔电钻,它直接带动钻头潜入孔底钻井。Φ146mm孔底电钻是外通水式,通水间隙宽5mm,通水横断面积为2055mm2

与常规钻井技术相比,连续管钻井应用于石油钻探具有以下优点:欠平衡钻井时比常规钻井更安全;因省去了提下钻作业程序,可大大节省钻井辅助时间,缩短作业周期;连续管钻井技术为孔底动力电钻的发展及孔底钻进参数的测量提供了方便条件;在制作连续管时,电缆及测井信号线就事先埋设在连续管壁内,因此也可以说连续管本身就是以钢丝为骨架的电缆,通过它可以很方便地向孔底动力电钻输送电力,也可以很方便地实现地面与孔底的信息传递;因不需拧卸钻杆,因此在钻进及提下钻过程中可以始终保持冲洗液循环,对保持井壁稳定、减少孔内事故意义重大;海上钻探时,可以补偿海浪对钻井船的漂移影响;避免了回转钻杆柱的功率损失,可以提高能量利用率,深孔钻进时效果更明显。正是由于连续管钻井技术有上述优点,加之油田勘探需要以及相关基础工业技术的发展为连续管技术提供了进一步发展的条件,在经过了一段时间的沉寂之后,20世纪80年代末90年代初,连续管钻井技术又呈现出飞速发展之势。其油田勘探工作量年增长量达到20%。连续管钻井技术研究应用进展情况简述如下。

1)数据和动力传输热塑复合连续管研制成功。这种连续管是由壳牌国际勘探公司与航空开发公司于1999年在热塑复合连续管基础上开始研制的。它由热塑衬管和缠绕在外面的碳或玻璃热塑复合层组成。中层含有3根铜质导线、导线被玻璃复合层隔开。碳复合层的作用是提供强度、刚度和电屏蔽。玻璃复合层的作用是保证强度和电隔离。最外层是保护层。这种连续管可载荷1.5kV电压,输出功率20kW,传输距离可达7km,耐温150℃。每根连续管之间用一种特制接头进行连接。接头由一个钢制的内金属部件和管子端部的金属环组成。这种连续管主要用于潜孔电钻钻井。新研制的数据和动力传输连续管改变了过去用潜孔电钻钻井时,电缆在连续管内孔输送电力影响冲洗液循环的缺点。

2)井下钻具和钻具组合取得新进展。XL技术公司研制成功一种连续管钻井的电动井下钻具组合。该钻具组合主要由电动马达、压力传感器、温度传感器和震动传感器组成。适用于3.75in井眼的电动井下马达已交付使用。下一步设想是把这种新型电动马达用于一种新的闭环钻井系统。这种电动井下钻具组合具有许多优点:不用钻井液作为动力介质,对钻井液性能没有特殊要求,因而是欠平衡钻井和海上钻井的理想工具;可在高温下作业,振动小,马达寿命长;闭环钻井时借助连续管内设电缆可把测量数据实时传送到井口操纵台,便于对井底电动马达进行灵活控制,因而可使钻井效率达到最佳;Sperry sun钻井服务公司研制了一种连续管钻井用的新的导向钻具组合。这种钻具组合由专门设计的下部阳螺纹泥浆马达和长保径的PDC钻头组成。长保径钻头起一个近钻头稳定器的作用,可以大幅度降低振动,提高井眼质量和机械钻速。泥浆马达有一个特制的轴承组和轴,与长保径钻头匹配时能降低马达的弯曲角而不影响定向性能。在大尺寸井眼(>6in)中进行的现场试验证明,导向钻具组合具有机械钻速高、井眼质量好、井下振动小、钻头寿命长、设备可靠性较高等优点。另外还研制成功了一种连续软管欠平衡钻井用的绳索式井底钻具组合。该钻具组合外径为in上部与外径2in或in的连续管配用,下部接钻铤和in钻头。该钻具组合由电缆式遥控器、稳定的MWD仪器、有效的电子定向器及其他参数测量和传输器件组成。电缆通过连续管内孔下入孔底,能实时监测并处理工具面向角、钻井顶角、方位角、自然伽马、温度、径向振动频率、套管接箍定位、程序状态指令、管内与环空压差等参数。钻具的电子方位器能在钻井时在导向泥浆马达连续旋转的情况下测量并提供井斜和方位两种参数。

其他方面的新进展包括:连续管钻井技术成功用于超高压层侧钻;增加连续管钻井位移的新工具研制成功;连续管钻井与欠平衡钻井技术结合打水平井取得好效果;适于连续管钻井的混合钻机研制成功;连续管钻井理论取得新突破。

2.3.1.3 石油勘探小井眼钻井技术

石油部门通常把70%的井段直径小于177.8mm的井称为小井眼井。由于小井眼比传统的石油钻井所需钻井设备小且少、钻探耗材少、井场占地面积小,从而可以节约大量勘探开发成本,实践证明可节约成本30%左右,一些边远地区探井可节约50%~75%。因此小井眼井应用领域和应用面越来越大。目前小井眼井主要用于:①以获取地质资料为主要目的的环境比较恶劣的新探区或边际探区探井;②600~1000m浅油气藏开发;③低压、低渗、低产油气藏开发;④老油气田挖潜改造等。

2.3.1.4 套管钻井技术

套管钻井就是以套管柱取代钻杆柱实施钻井作业的钻井技术。不言而喻套管钻井的实质是不提钻换钻头及钻具的钻进技术。套管钻井思想的由来是受早期(18世纪中期钢丝绳冲击钻进方法用于石油勘探,19世纪末期转盘回转钻井方法开始出现并用于石油钻井)钢丝绳冲击钻进(顿钻时代)提下钻速度快,转盘回转钻进井眼清洁且钻进速度快的启发而产生的。1950年在这一思想的启发下,人们开始在陆上钻石油井时,用套管带钻头钻穿油层到设计孔深,然后将管子固定在井中成井,钻头也不回收。后来,Sperry-sun钻井服务公司和Tesco公司根据这一钻井原理各自开发出套管钻井技术并制定了各自的套管钻井技术发展战略。2000年,Tesco公司将4.5~13.375in的套管钻井技术推向市场,为世界各地的油田勘探服务。真正意义的套管钻井技术从投放市场至今还不到10年时间。

套管钻井技术的特点和优势可归纳如下。

1)钻进过程中不用起下钻,只利用绞车系统起下钻头和孔内钻具组合,因而可节省钻井时间和钻井费用。钻进完成后即等于下套管作业完成,可节省完井时间和完井费用。

2)可减少常规钻井工艺存在的诸如井壁坍塌、井壁冲刷、井壁键槽和台阶等事故隐患。

3)钻进全过程及起下井底钻具时都能保持泥浆连续循环,有利于防止钻屑聚集,减少井涌发生。套管与井壁之间环状间隙小,可改善水力参数,提高泥浆上返速度,改善井眼清洗效果。

套管钻井分为3种类型:普通套管钻井技术、阶段套管或尾管钻井技术和全程套管钻井技术。普通套管钻井是指在对钻机和钻具做少许改造的基础上,用套管作为钻柱接上方钻杆和钻头进行钻井。这种方式主要用于钻小井眼井。尾管钻井技术是指在钻井过程中,当钻入破碎带或涌水层段而无法正常钻进时,在钻柱下端连接一段套管和一种特制工具,打完这一段起出钻头把套管留在井内并固井的钻井技术。其目的是为了封隔破碎带和水层,保证孔内安全并维持正常钻进。通常所说的套管钻井技术是指全程套管钻井技术。全程套管钻井技术使用特制的套管钻机、钻具和钻头,利用套管作为水利通道,采用绳索式钻井马达作业的一种钻井工艺。目前,研究和开发这种钻井技术的主要是加拿大的Tesco公司,并在海上进行过钻井,达到了降低成本的目的。但是这种钻井技术目前仍处于研究完善阶段,还存在许多问题有待研究解决。这些问题主要包括:①不能进行常规的电缆测井;②钻头泥包问题严重,至今没有可靠的解决办法;③加压钻进时,底部套管会产生横向振动,致使套管和套管接头损坏,目前还没有找到解决消除或减轻套管横向振动的可靠方法;④由于套管钻进不使用钻铤,加压困难,所以机械钻速低于常规钻杆钻井;部分抵消了套管钻进提下钻节省的时间;⑤套管钻井主要用于钻进破碎带和涌水地层,其应用范围还不大。

我国中石油系统的研究机构也在探索研究套管钻井技术,但至今还没有见到公开报道的成果。目前,套管钻井技术的研究内容,除了研制专用套管钻机和钻具外,重点针对上述问题开展。一是进行钻头的研究以解决钻头泥包问题;二是研究防止套管横向振动的措施;三是研究提高套管钻井机械钻速的有效办法;四是研究套管钻井固井办法。

套管钻井应用实例:2001年,美国谢夫隆生产公司利用加拿大Tesco公司的套管钻井技术在墨西哥湾打了2口定向井(A-12和A-13井)。两井成井深度分别为3222×30.48cm和3728×30.48cm。为了进行对比分析,又用常规方法打了一口A-14井,结果显示,同样深度A-14井用时75.5h,A-13井用时59.5h。表层井段钻速比较,A-12 井的平均机械钻速为141ft/h,A-13井为187ft/h,A-14井为159ft/h。这说明套管钻井的机械钻速与常规方法机械钻速基本相同。但钻遇硬地层后套管钻井,钻压增加到6.75t,致使扩眼器切削齿损坏,钻速降低很多。BP公司用套管钻井技术在怀俄明州钻了5口井。井深为8200~9500ft,且都是从井口钻到油层井段。钻进过程中遇到了钻头泥包和套管振动问题。

此外,膨胀套管技术也是近年来发展起来的一种新技术,主要用于钻井过程中隔离漏失、涌水、遇水膨胀缩经、破碎掉块易坍塌等地层以及石油开采时油管的修复。勘探所与中国地质大学合作已立项开展这方面的研究工作。

2.3.1.5 石油钻机的新发展

国外20世纪60年代末研制成功了AC-SCR-DC电驱动钻机,并首先应用于海洋钻井。由于电驱动钻机在传动、控制、安装、运移等方面明显优于机械传动钻机,因而获得很快的发展,目前已经普遍应用于各型钻机。90年代以来,由于电子器件的迅速发展,直流电驱动钻机可控硅整流系统由模拟控制发展为全数字控制,进一步提高了工作可靠性。同时随着交流变频技术的发展,交流变频首先于90年代初成功应用于顶部驱动装置,90年代中期开始应用于深井石油钻机。目前,交流变频电驱动已被公认为电驱动钻机的发展方向。

国内开展电驱动钻机的研究起步较晚。兰州石油化工机器厂于20世纪80年代先后研制并生产了ZJ60D型和ZJ45D型直流电驱动钻机,1995年成功研制了ZJ60DS型沙漠钻机,经应用均获得较好的评价。90年代末期以来,我国石油系统加大钻机的更新改造力度,电驱动钻机取得了较快发展,宝鸡石油机械厂和兰州石油化工机器厂等先后研制成功ZJ20D、ZJ50D、ZJ70D型直流电驱动钻机和ZJ20DB、ZJ40DB型交流变频电驱动钻机,四川油田也研制出了ZJ40DB交流变频电驱动钻机,明显提高了我国钻机的设计和制造水平。进入21世纪,辽河油田勘探装备工程公司自主研制成功了钻深能力为7000m的ZJ70D型直流电驱动钻机。该钻机具有自动送钻系统,代表了目前我国直流电驱动石油钻机的最高水平,整体配置是目前国内同类型钻机中最好的。2007年5月已出口阿塞拜疆,另两部4000m钻机则出口运往巴基斯坦和美国。由宝鸡石油机械有限责任公司于2003年研制成功并投放市场的ZJ70/4500DB型7000m交流变频电驱动钻机,是集机、电、数字为一体的现代化钻机,采用了交流变频单齿轮绞车和主轴自动送钻技术和“一对一”控制的AC-DC-AC全数字变频技术。该型钻机代表了我国石油钻机的最新水平。凭借其优良的性能价格比,2003年投放市场至今,订货已达83台套。其中美国、阿曼、委内瑞拉等国石油勘探公司订货达42台套。在国内则占领了近2~3年来同级别电驱动钻机50%的市场份额。ZJ70/4500DB型钻机主要性能参数:名义钻井深度7000m,最大钩载4500kN,绞车额定功率1470kW,绞车和转盘挡数I+IR交流变频驱动、无级调速,泥浆泵型号及台数F-1600三台,井架型式及有效高度K型45.5m,底座型式及台面高度:双升式/旋升式10.5m,动力传动方式AC-DC-AC全数字变频。

⑤ 我国海洋油气勘探技术有哪些

一、海洋油气勘探技术形成阶段(1991—1995年)
1.含油气盆地资源评价和勘探目标评价技术
在引进和总结国内外油气资源评价方法的基础上,经过科技攻关掌握了一套具有国际先进水平的油气资源评价新方法和盆地模拟技术。首次在国内建立了一套以地震资料解释为基础、结合少量钻井资料的早期油气资源评价流程;研制了国内第一套在NOVA机上实现定位、构造、速度、数据自动分析的流程,初步实现了资料整理自动化;采用了先进的区域地震地层学分析方法和流程,研究各层岩相古地理演化过程;对生烃、排烃等资源定量评价方法有所创新;提出了TTIQ法及计算机程序,采用了圈闭体积模糊数学法、圈闭供油面积及随机运算概率统计等先进的评价方法,充分体现了国内油气资源评价的新水平。
在一维盆地模拟系统基础上,开发多功能的综合盆地模拟系统。系统耦合了断层生长作用、沉积作用、压实作用、流体流动、烃类生成运移,以及地壳均衡作用、岩石圈减薄和热对流等因素,能从动态的发展角度在二维空间上再现盆地构造演化史、沉降史、沉积史、热演化史、油气生排运聚史。主要特点是:正反演结合、与专家系统结合、与平衡剖面结合,来模拟多相运移、运距模拟三维化及三维可视化等。
此外,在国内首度研制成功了PRES油气资源评价专家系统。该系统从功能上由两部分组成:一是凹陷评价,包括地质类比评价、生油条件评价、储层条件评价和油气运聚评价;二是局部圈闭评价,包括油源评价、封闭条件评价、储集条件评价、保存条件评价及综合评价。系统的第二版本实现了运聚评价子系统与盆地模拟系统的挂接,可在三维状态下进行运聚模拟评价。其研制成功开创了专辑系统技术在石油勘探领域的应用,促进了石油地质专家系统技术的发展。
2.海上地震勘探的资料采集、处理、解释技术
海上地震技术是海上油气勘探开发的主要技术,是涉足研究深度、广度最大、最省钱、最适合海上油气勘探的技术。
在地震资料采集方面通过引进技术和装备,实现了双缆双震源地震采集,研究成功了高分辨率地震采集系统,掌握了先进的海上二维、三维数字地震资料采集及极浅海遥测地震资料采集技术,装备了包括一次采集能力可达240道的数字地震记录系统;电缆中的数字罗盘能准确指示电缆的实时位置;三维采集质量控制的计算机系统,可做5条相邻侧线的面元覆盖,并实时显示和不同偏移距的面元显示,装有可进行实时处理和预处理的解编系统;配备了卫星导航接收机和组合导航系统。
在资料处理解释方面,已掌握运用电子计算机进行常规处理和三维资料处理以及特殊处理技术,广泛应用了地震地层学、波阻抗剖面,尤其检测、垂直地震剖面和数据分析等技术;推广应用计算机绘图系统和解释工作站;掌握了地震模式识别和完善的地震储层预测软件;研制开发了面元均化、多次拟合去噪、道内插等配套处理技术。
一些成功的应用技术具体有:QHDK-48道浅水湖泊地震勘探接收系统,已用于我国浅海和湖泊的地震勘探中;三维P-R分裂偏移技术及其在油气勘探开发中的运用,获国家科技进步二等奖,是一项进行三维地震勘探资料叠后偏移处理,提高了三维波场归位精度和断层分辨能力;海洋物探微导航定位资料处理程序系统,有较强的人机对话功能,在VAX机上可读ARGO、GMS、NOR三种格式的野外带,可对高斯、VTM和兰伯特三种不同投影系统数据进行处理;DZRG处理系统实现了国产阵列机MCIAP2801与引进的VAX-11/780机的连接,从而提高了原主机的使用效率,从30%提高到68%,地震资料处理速度提高了60%~70%,为VAX类计算机配接国产AP机开创了一条新路。
这些技术在海上勘探中,得到过广泛的应用,取得了良好的成绩。在南海大气区勘探中,首次使用高分辨率地震采集技术,为东方1-1气田评价提供了可靠有力的资料依据。
3.数控测井与资料分析处理技术
数控测井是当代测井的高新技术,该系统包括地面测量仪器和相应配套井下仪器适用于裸眼井、生产井以及特殊作业井的测井作业,是一套设备齐全、技术先进、适应性广泛的测井系统。
1985年9月,中国海油与国家经济委员会签订了“数控测井系统”科技攻关项目专题合同。1986年5月提出数控测井系统开发可行性方案报告。1991年在胜利油田进行测井作业,该项目难度大、工艺复杂,各项技术指标接近并达到80年代国际先进水平,证明了HCS-87数控测井地面系统工作可靠、预测资料可信。1991年获得中国海油科技进步一等奖,获国家重大技术装备成果二等奖。
由于实行双兼容,在长达5~6年的科研过程中,可以及时把一些阶段成果用于生产,为测井仪器国产化开辟了一条新路。1991年7月,中国海油与西安石油勘探仪器总厂合作完成数控测井地面系统国产化的任务。为了满足南海大气区勘探高温高压测井的需要,中国海油研制成功了耐温230℃、耐压140兆帕的测井仪,其解释效果与斯伦贝谢公司的解释软件达到的效果相同。
4.复杂地质条件下寻找大中型构造油气田的能力
在早期主要盆地油气资源评价、“七五”富生油凹陷研究和“八五”区域地质勘探综合研究的基础上,我国具备了在复杂地质条件下寻找大中型构造油气田的能力。这些油气田的寻找主要依靠盆地地质条件类比、盆地演化史定量分析和多种地球物理资料处理、解释软件的支持,排除了各种地质因素干扰,还地下构造的真实本来面貌,提高了海上自营勘探能力和勘探成功率。
二、高速高效发展海洋石油(1996—2008年)
经过了20多年勘探开发工作,已经深谙我国自然海况条件,需要我们大力开发核心技术,才能高速高效地发展中国海洋石油业。进入“九五”期间我国海洋石油科技发展以实现公司“三个一千万吨”和降低油桶成本为具体目标,进入了高速、高效、跨越式发展的新阶段。
1.“九五”后三年科技工作的重点
1)解决三大难题
(1)海上天然气勘探。
(2)海上边际油田开发。
(3)提高海上油田采收率。
2)开展四项科技基础工作
(1)建立海上石油天然气行业与企业标准。
(2)建立中国海油信息网络上的科技信息子系统。
(3)开展海上油气田钻采工艺基本技术研究。
(4)开展海洋石油改革与高速发展战略软科学研究。
3)攻克八项高新技术
(1)海上天然气田目标勘探技术。
(2)海上地球物理高分辨率、多波技术。
(3)海洋地球物理测井成像技术等。
(其他技术与勘探无关,故此处不详细列出)
由于上述“三四八”科技规划的实施,在海上油气勘探开发生产建设的科技创新中,取得了一大批优异成绩,充分显示了科技进步产业化的巨大威力。
2.“863”海洋石油进入国家高新技术领域
在《海洋探查与资源开发技术主题》的6个课题研究工作中,中国海油技术达到了创新的纪录。分别是:(1)海上中深层高分辨率地震勘探技术;(2)海洋地球物理测井成像技术;(3)高性能优质钻井液及完井液的研制;(4)精确的地层压力预测和监测技术;(5)高温超压测试技术;(6)海底大位移井眼轨道控制技术。
特别的,在“863”计划“九五”期间27项重大项目中,海洋石油的《莺琼大气区勘探关键技术》更为显着。其中的海上中深层高分辨率地震勘探技术、海上高温超压地层钻井技术、海底大位移井钻井技术、海上成像测井技术等取得了举世瞩目的成就。
“863”计划执行16年间取得了一大批具有世界领先水平的研究成果,突破并掌握了一批关键技术,同时培育了一批高技术产业生长点,为传统产业的改造提供了高技术支撑,更为中国高技术发展形成顶天立地之势提供了巨大的动力。
3.“九五”技术创新硕果
海上中、深层高分辨率地震勘探技术跻身前列,研制了海上多波地震勘探设备,打破了国际技术垄断。研制出的框架式多枪相干组合震源、立足于不叠加或少叠加的处理技术、聚束滤波去多次波等技术,均已达到世界先进水平。
成像测井系列仪器达到了国际90年代中期水平,属于国内先进技术。认可的技术创新有:(1)八臂地层倾角测井仪的八臂液压独立推靠技术;(2)高温高压绝缘短节;(3)薄膜应变型井径与压力传感器;(4)多极子声波测井仪的高温高压单极、偶极,斯通利波换能器;(5)高温专用混合厚膜电路芯片;(6)电阻率扫描测井仪的24电扣极板技术;(7)内置电动扶正、八臂独立机械推靠器技术。
解决了高温超压钻井世界性难题的关键技术,包括高温超压钻完井液、精确的地层压力预测和监测技术、高温超压地层测试技术。
确认高温超压环境可以成藏,莺歌海中深层有良好的砂岩储层和封盖层,二号断裂带是断裂继承性发育带,既要重视古近系断裂批复结构的圈闭,又要注意新近系反转构造及砂岩体的勘探。
三、勘探技术分析
1.海洋石油地质研究与评价
富生油凹陷的分析与评价技术说明了我国近海油气资源分布基本规律,也是油气选区的基本依据。中国近海51个主要生油凹陷,经多次评价共筛选出10个富生油凹陷作为勘探重点。富生油凹陷占总储量发现的84%,其中5个凹陷储量发现超过了1亿吨。
气成藏动力学研究系统,在油气勘探实践中形成的石油地质研究系统,它强调了在烃源体和流体输导体系的框架上,用模型研究和模拟研究正、反演油气生成—运移—聚集的全过程,使油气运移——这一石油地质研究中最薄弱的一环有了可操作研究方法和量化表现。该技术不但使中国海油地质研究跨入世界石油地质高新技术前沿,而且在珠江口盆地的实践中,发现了重要的石油勘探新领域。
三维智能盆地与油气成藏动力学模拟系统,中国自主开发的石油地质综合研究计算机工作平台,这套系统突破了许多高难度的技术课题,实现了三维数字化盆地的建立和油气运移、聚集的模拟。
精细层序地层学研究,引进国外先进技术实现成功应用的典范,大大提高了对地下沉积预测的能力,取得了丰富的应用成果。
勘探目标评价与风险分析方法,石油地质软件科学研究的突出成果,它反映了勘探家由“我为祖国献石油”到“股东要我现金流”的观念性的转化。通过规范勘探管理,将单纯追求探井成功率转变成储量替代率、资本化率、桶油发现成本等全面勘探资本运营管理,使探井建井周期缩短2/3,每米探井进尺费用降低40%。
2.海洋石油地震勘探技术
从1962年至今,我国海上地震勘探技术发展已走过40个春秋,从初期光点记录到24位模数转换多缆多源数字磁带记录;从炸药震源到高分辨率相干空气枪阵列震源;从光学6分定位、罗盘导航到DGPS、无线电声呐综合定位导航;从单次二维地震到非线性多次覆盖三维地震;从“一炮定终生”的无处理地震到运算速度达每秒70亿~80亿次的大规模并行数字处理;从二维模拟处理到全三维数字处理;从NMO速度分析和叠加到DMO速度分析和叠加;从二维叠后射线偏移到全三维叠前波动方程时间偏移至全三维叠前深度偏移;从人工解释绘图到人机交互三维可视化解释绘图;从单一的构造解释到构造、地震地层学和岩性地震学综合解释;从单一的纵波地震勘探到转换多波地震勘探;从常规二维地震作业到高分辨率二维至三维地震作业,我国海上地震勘探技术经历了脱胎换骨的变化,基本上达到了与国际先进技术接轨的水平。海洋石油人多年的耕耘,换来了丰硕的成果:查清我国海域区域地质和有利沉积盆地的分布,为勘探指明方向;查明了盆地主要构造带和局部构造的分布,为油气钻探提供了井位;发现了以蓬莱19-3油田为代表的多个亿吨级大油田和以崖城13-1气田为代表的多个大气田;直接使构造和探井成功率不断提高,分别达到53%和49%;为开发可行性研究、建立油气藏模型、编制OPD报告,提供各种主要参数和地质依据。
上述成果充分证明,海洋物探在海洋石油工业发展中起到了先锋作用,其技术发展是海上油气勘探与开发增储上产的重要手段。
3.海洋石油地球物理测井技术
我国海洋地球物理测井技术,是伴随海洋石油勘探开发成长发展起来的。改革开放以前,海上测井作业只能选用陆地上最先进、最可靠的测井仪器进行。到20世纪80年代,利用国家改革开放赋予海洋石油的优惠政策,有计划地引进国外先进技术与管理模式,1981年成立了中国海洋石油测井公司,并直接引进美国西方阿特拉斯CLS-3700多套技术装备。与此同时,在引进、消化、吸收国外先进技术的基础上,充分利用信息技术的新成果,紧紧抓着技术与学科紧密结合的关键,积极开展数控测井技术研究与开发,逐步形成了研究、制造、作业、解释、培训“五位一体”的机制。先后研制成功HCS-87数控测井和ELIS-I成像测井地面以及部分下井仪器设备。同时,培养了人才、锻炼了队伍,为测井设备的国产化打下了坚实的基础。
4.勘探过程中的海洋环境保护
在开发海上资源的同时也不能忽视海洋环境保护,这是海上油气田勘探开发中不容忽视的一项技术。1996年,中国海洋石油以全新的“健康、安全、环保”理念,实施安全、健康、环保、管理体系,开始步入科技化、规范化、井然有序的法制管理轨道。
安全生产是国家经济建设的重要组成部分,良好的安全生产环境和秩序是经济发展的保障。海洋石油工业有着投资大、技术难度高、环境因素复杂、风险大的特点,一旦出了事故,施救工作非常困难;在小小的平台上,集中了几百套设备和众多人员,一旦发生爆炸起火,人、物将毁于一旦;作业人员日常接触的介质不是易燃,就是易爆,稍有不慎,就会造成海洋环境污染、生态环境损害。因此,加重了安全环保的工作责任,必须建立完善健康安全环保管理体系,才能确保海上油气田安全生产。环境保护贯穿于整个生产过程和生产生活的各个领域,就此建立了完善的健康安全环保机构、安全的法规体系和管理体系,实行全方位、全过程的科学管理。
观测海洋、检测海洋,及时进行海冰、台风、风暴潮、地震等特殊海洋环境的预报,是海洋油气勘探开发生产的不可缺少的条件。为此,开展了广泛深入的观测、监测和预报系统研究及综合、集成、生产应用等工作,形成了海上固定平台水文气象自动调查系统、海洋环境要素数值模拟分析计算和各种灾害监测预报技术,在生产实践中取得了显着成效。
四、发展趋势
随着全球能源需求的不断膨胀,陆上大型油田日益枯竭,于是人们逐渐将目光投向海洋,因为那里有着很多未探明的油气储量。尽管过去由于技术不成熟人们对海洋望而却步,但自深海钻井平台出现后,人类就开始向几百米甚至几千米海洋深处进军。
随着海洋钻探和开发工程技术的不断进步,深水的概念和范围不断扩大。90年代末,水深超过300米的海域为深水区。目前,大于500米为深水,大于1500米则为超深水。研究和勘探实践表明,深水区油气资源潜力大,勘探前景良好。据估计,世界海上44%的油气资源位于300米以下的水域。随着未来投资的增加,海上油气储量和产量将保持较快增长。其中,深水油气储量增长尤为显着。到2010年,全球深水油气储量可达到40亿吨左右。
面对如此良好的开发前景,我国海洋石油公司也制定了协调发展、科技领先、人才兴起和低成本等4个发展策略。尽快提高中国海油科技竞争力无疑是其中重要的组成部分。就海洋石油勘探部分,我国通过建立中国海油地球物理勘探等技术,通过技术创新与依托工程有机地衔接,创造条件使其发挥知识和技术创新的重要作用。天然气的勘探也需要进一步解决地球物理识别技术、高温超压气田勘探开发技术、非烃气体分布于工业利用等;深水油田的勘探和开发需要深水地球物理采集和处理、深水钻完井技术、深水沉积扇研究、深水生产平台等多种技术。
我国海洋深水区域具有丰富的油气资源,但深水区域特殊的自然环境和复杂的油气储藏条件决定了深水油气勘探开发具有高投入、高回报、高技术、高风险的特点。发展海洋石油勘探技术需要面对如下问题:
(1)与国外先进技术存在很大差距。截至2004年底,国外深水钻探的最大水深为3095米,我国为505米;国外已开发油气田的最大水深为2192米,我国为333米;国外铺管最大水深为2202米,我国为330米。技术上的巨大差距是我国深水油气田开发面临的最大挑战,因此实现深水技术的跨越发展是关键所在。
(2)深水油气勘探技术。深水油气勘探是深水油气资源开发首先要面对的挑战,包括长缆地震信号测量和分析技术、多波场分析技术、深水大型储集识别技术及隐蔽油气藏识别技术等。
(3)复杂的油气藏特性。我国海上油田原油多具高黏、易凝、高含蜡等特点,同时还存在高温、高压、高CO2含量等问题,这给海上油气集输工艺设计和生产安全带来许多难题。当然,这不仅是我们所面临的问题,也是世界石油界面临的难题。
(4)特殊的海洋环境条件。我国南海环境条件特殊,夏季有强热带风暴,冬季有季风,还有内波、海底沙脊沙坡等,使得深水油气开发工程设计、建造、施工面临更大的挑战。我国渤海冬季有海冰,如何防止海冰带来的危害也一直是困扰科研人员的难题。
(5)深水海底管道及系统内流动安全保障。深水海底为高静压、低温环境(通常4℃左右),这对海上和水下结构物提出了苛刻的要求,也对海底混输管道提出了更为严格的要求。来自油气田现场的应用实践表明,在深水油气混输管道中,由多相流自身组成(含水、含酸性物质等)、海底地势起伏、运行操作等带来的问题,如段塞流、析蜡、水化物、腐蚀、固体颗粒冲蚀等,已经严重威胁到生产的正常进行和海底集输系统的安全运行,由此引起的险情频频发生。
(6)经济高效的边际油气田开发技术。我国的油气田特别是边际油气田具有底水大、压力递减快、区块分散、储量小等特点,在开发过程中往往需要考虑采用人工举升系统,这使得许多国外边际油气田开发的常规技术(如水下生产技术等)面临着更多的挑战,意味着水下电潜泵、海底增压泵等创新技术将应用到我国边际油气田的开发中;同时也意味着,降低边际油气田的开发投资,使这些油气田得到经济、有效的开发,将面临更多的、更为复杂的技术难题。
高科技是海洋油气业的重要特征,海洋油气业的发展正是我国石油能源产业“科技领先战略”的最直接体现。只有坚持自主科技创新,才能不断提高我国海洋油气业的核心竞争力。2004年以来,我国在海洋石油的勘探新领域和新技术、提高采收率、边际油田开发、深水油田开发、重质油综合利用、液化天然气与化工、新能源开发、海外勘探开发等领域实现了一系列突破。
2008年,中国海油两项成果获国家科技进步二等奖。其中一项成果是针对中国南海西部海域所存在的高温超压并存、井壁失稳严重等世界级重大钻井技术难题,研发出一套具有自主知识产权的复杂构造钻井关键技术。截至2008年底,这些技术在南海西部海域7个油田以及北部湾盆地、珠江口盆地、琼东南盆地的探井及评价井共计76口井的钻井作业中得到推广应用,并取得了良好效果。钻井井眼复杂事故率从40%~72%降至5%以下,远低于国际上20%的统计指标,井眼报废率也从5%降至0%,不仅节约了可观的钻井直接成本,而且加快了边际油气田的开发,创造了可观的经济效益。该项技术研究与应用大大提高了中国海油的钻井技术水平,扭转了之前该海域复杂井作业技术依赖外国石油公司的历史。
而经过十多年的自主研究,中国海油开发形成了一整套具有自主知识产权的适合海洋石油开发要求的成像测井系统(ELIS)。这是我国自行研制的第一个满足海上石油测井要求的成套技术装备。该系统的研发和产业化打破了国外测井设备对我国海上和世界石油测井市场的长期垄断。截至2008年底,中国海油累计生产装备10套,总值达5亿元人民币,产品已进入国内外作业市场,年服务收入达3.8亿元人民币,创汇2800万美元,效益显着。
同时,中国海油专利申请量和授权量也已进入稳步增长阶段,截至2008年底,中国海油累计获得授权的有效专利达423项,其中发明专利105项。
2008年,中国海油首次获准承担国家“973”计划课题,实现了科学研究层次的新突破。在国家重大科技专项“大型油气田及煤层气开发”里,中国海油将承担6个项目和两个示范工程。