❶ 海底可燃冰相当于全球已知煤石油天然气总和的几倍以上
海底可燃冰相当于全球已知煤石油天然气总和的2倍以上。
天然气水合物分布于深海或陆域永久冻土中,其燃烧后仅生成少量的二氧化碳和水,污染远小于煤、石油等,且储量巨大,因此被国际公认为石油等的接替能源。
目前全球海底可燃冰约是全球已知煤、石油和天燃气总和的2倍以上。可燃冰常见于深海沉积物或陆上永久冻土中,由于分布浅、分布广、总量巨大、能量密度高等优势,成为未来主要替代能源。
可燃冰储量
在这个领域,中国近年来可是战果频频。在南海、东海、青藏高原等地,已经探明相当巨大的可燃冰储量,相当于原油当量1000亿吨以上。这就是中国的可燃冰不完全统计,就达到了世界燃油总剩余储量的约70%。
中国2020年消耗石油7.2亿吨,按这个消耗量,中国的可燃冰储量可以供中国人消耗138年,即便储量再大些,在1500吨以上,也就可供消耗200来年。
❷ 全球海底可燃冰所含的有机碳总量相当于全球已知煤石油和天然气总和的几倍以上
全球海底可燃冰所含尺春的有机碳总量相当于全球已知煤石油和天然气总和的两倍以上。
可燃冰,即天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”(Combustible ice)或者“固体瓦斯”和“气冰”。
天然气水合物在海洋浅水生态圈,通常出现在深层的沉淀物结构中,或是在海床处露出。甲烷气水包合物据推测是因地理断层深处的气体迁移,以及沉淀、结晶等作用,于上升的巧困埋气体流与海洋深处的冷水接触所形成。
在高压下,甲烷气水包合物在18°C的温度下仍能维持稳定。一般的甲烷气水化合物组成为1摩尔的甲烷及每5.75摩尔的水,然而这个比例取决于多少的甲烷分子“嵌入”水晶格各种不同的包覆结构中。据观测的密度大约在 0.9 g/cm³;一升的甲烷气水包合物固体,在标准状况下,平均包含168升的甲烷气体。
❸ 石油和天然气总和的几倍以上
全球海底“可燃冰”所含的有机碳总量相当于全球已知煤、石油和天然气总和的2倍以上。
可燃冰,学名“天然气水合物”,是一种气体分子和水分子在低温高压下形成的结晶物质,分解为气体后,甲烷含量一般在80%以上,最高可达99.9%。
可燃冰外貌极像冰雪,遇火可以燃烧,又称“气冰”、“固体瓦斯”等。自然界中多呈块状、层状、透镜状、结核状、脉状、浸染状、分散状等形态。2007年起,在我国海域陆续发现了多种形态的可燃冰,2009年我国祁连山冻土区发现的可燃冰则以裂隙充填型为主。
可燃冰的形成需要大量的烃类气体,这些烃类气体有的来自于微生物的分解,也有一些来自于深部油气田的热降解,当然也有两者混合形成的。相应的可以分为三种类型,分别是微生物气型、热解气型、混合气型。
在海域发现的可燃冰绝大多数为微生物气型,我国南海北部海域发现的主要属于这种类型。在陆域发现的可燃冰以混合气型、热解气型为主,如我国祁连山冻土区发现的可燃冰。可以利用碳同位素的比例关系,来判断可燃冰的气体来源。
❹ 全球已知煤石油和天然气总和的多少倍以上
2倍以上。
可燃冰是由天然气和水在高压低温的条件下形成的类冰状的结晶化合物,预测资源量相当于已发现煤、石油、天然气等化石能源的两倍以上,是世界公认的一种清洁高效的未来替代能源,极具商业价值。
因绝大部分埋藏于海底,所以开采难度十分巨大。目前,日本、加拿大等国都在加紧对这种未来能源进行试开采尝试,但都因种种原因未能实现或未达到连续产气的预定目标。
分布范围
天然气水合物在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。在标准状况下,一单位体积的天然气水合物分解最多可产生164单位体积的甲烷气体。
世界上海底天然气水合物已发现的主要分布区是大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东海岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、冲绳海槽、日本海、四国海槽、中国南海海槽、苏拉威西海和新西兰北部海域等。
东太平洋海域的中美洲海槽、加利福尼亚滨外和秘鲁海槽等,印度洋的阿曼海湾,南极的罗斯海和威德尔海,北极的巴伦支海和波弗特海,以及大陆内的黑海与里海等。
以上内容参考:网络-天然气水合物
❺ 天然气水合物资源量
世界范围内,陆上永久冻土带天然气水合物中天然气水合物资源量为1.4×1013m3~3.4×1016m3,而海洋天然气水合物中天然气水合物资源量为3.1×1015m3~7.6×1018m3(表7-5)。虽然已公布的天然气水合物资源量估计值差别较大,但总体来讲,海洋天然气水合物资源量远大于陆上天然气水合物资源量。目前,全球天然气水合物中甲烷资源量粗略估计为2×1016m3(Kvenvolden,1988),比剩余常规天然气可采资源量(约2×1014m3)大两个数量级(Masters et al.,1991)。
表7-5世界天然气水合物的天然气估算资源量
续表
(修改自Kvenvolden,1988)
全球天然气水合物蕴藏的碳总量相当于地球上已探明的化石能源(石油、天然气、煤炭等)总碳量的两倍。根据Kvenvolden(1988)测算,天然气水合物孝行中的有机碳约为10×1012t,占全球有机碳的53.3%,而煤、石油和天然气三者的总量才占到26.6%(图7-29,图7-30)。陆地上天然气水合物最大地质资源量大约为5.3×1011t,主要贮存在永久冻土带中;海洋中的天然气水合物最大地质资源量约1.61×1014t油当量(表7-6),主要分布在大陆坡、海沟附正耐近的增生楔和海岭等区域。因此,天然气水合物是一种具有巨大潜力的洁净能源,可能是举慎春未来石油、天然气和煤炭的替代物。
表7-6地球上可燃矿物资源预测表
(据金庆焕等,2006)
❻ 天然气水合物简介
王力锋
(中国石化石油勘探开发研究院无锡石油地质研究所,无锡214151)
摘要 天然气水合物的发展历史不过200 多年时间,而真正得到科学界和工业界重视的时间则更加短暂,仅有60多年而已。但在能源问题突出严重的当今社会,天然气水合物作为下一代清洁的非常规能源却正以飞快的速度赢得各个领域的不同程度的重视。本文以简述的形式,回顾天然气水合物的发展历程,着重于天然气水合物的现状、未来的发展方向以及各国策略分析。
关键词 天然气水合物,非常规能源,能源政策
A Brief Introction to Natural Gas Hydrates
WANG Li-feng
(Wuxi Research lnstitute of Petroleum Geology,SlNOPEC,Wuxi214151)
Abstract The history of research on natural gas hydrate is not more than two hundred years and the time for it to get scientific and instrial solid concerns essentially is only of sixty years.But under the coming global energy crisis,the studies of natural gas hydrate which is regarded as potential new unconventional resources have been growing dramatically in all fields.As a brief introction,we show reviews on its history,current situation,future perspective and energy policies all over the world.
Key words natural gas hydrate unconventional resources energy policies
1 简介
天然气水合物(natural gas hydrates,简称为NGH)属于笼形化合物(clathrate)的一种,因此又被称为笼形水合物(clathrate hydrates)[1]。从化学意义角度也可解释为一种分子构架包裹另一种分子的形式。天然气水合物是由一种或几种小分子气体在一定的温度和压力下与水作用生成的一种非固定化学计量的笼形晶体化合物[2]。在自然界中,天然气水合物呈现为似冰状的固体[3],水分子通过氢键构成骨架,由于客气体被裹在骨架内部,因此客气体最基本的要求就是其分子体积要足够的小,以便容纳于骨架内部。尽管这样的小分子气体很多,例如早在1810年,英国化学家Humphry Davy在实验室中首先发现以氯气作为客气体的水合物[4],但现在从全世界的发展前景观察,主要研究以CO2/H2O 和CH4/H2O为主的水合物主客结构,前者涉及大气环境、绿色效应和工业界尾气的封存[5,6],后者涉及新能源探测和开发利用[7]。
天然气水合物有机碳储量大,约占全球有机碳的53.3%,是其他包括煤、石油和天然气三者总量的一倍以上。其中分布在陆地上的天然气水合物最大地质储量约为5.3×1011t,主要分布在高原冻土带和高纬度的常年冻土区;分布在海洋中的最大地质储量约为1.61×1014t,主要分布在被动大陆边缘和活动大陆边缘[8]。天然气水合物能量密度大,客气体中甲烷多,可占到90%以上。在标准状态下,1标准体积的饱和甲烷气水合物完全释放后,其甲烷体积可达到164倍标准体积,因而单位体积的天然气水合物燃烧所放出的热量远远大于煤、石油和天然气,为煤的10倍,是传统天然气的2~5倍[1]。
天然气水合物的赋存条件主要受温度、压力和气源等控制,当然也包括其他因素的限定。目前研究表明,天然气水合物是在低温(0~10℃)、高压(>10 MPa)下形成的,在陆地和海洋中稳定带分布条件并不十分苛刻[9]。资料统计表明,冻土地区天然气水合物可在100m左右深度的浅层存在,最大可达1800~2000m,最常见的是700~1000m;在海洋中存在水深为300~5500m,在距离海底1000m深处都可能稳定存在[2]。
2 研究进展
英国科学家Davy在1810年首次发现了天然气水合物,当时他所发现的是氯气作为客气体的水合物[4]。第二年,Davy经过仔细地研究这种物质后,发表了正式的学术论文,稍后他又在英国皇家学会展示了他的发现,这是天然气水合物走进人类历史的第一个印迹。
但在此之后的100年里天然气水合物研究发展速度不快,进展相对缓慢,人们仅通过实验室来认识水合物。1832年,Faraday在实验室合成了氯气水合物Cl2·10H2O,并对水合物的性质做了较系统的描述。其后人们陆续在实验室合成了Br2,SO2,CO2以及H2S等的气水合物。1884年,Roozeboom提出了天然气水合物形成的相理论[10]。此后不久,Villard在实验室合成了CH4,C2H6,C2H4以及C2H2等的气水合物[11]。1919 年,Scheffer和Meijer建立了一种新的动力学理论方法来直接分析天然气水合物,他们应用Clausius-Clapeyron方程建立三相平衡曲线,来推测水合物的组成。由此可见这段时期的研究主要集中在纯科学的研究范围内。
天然气水合物从发现到20世纪30年代并没有引起工业界重视,直到人们发现它是远东地区冬天里堵塞煤气管道的物质[12],这时对它的物理化学性质才开始比较深入的研究,出于工业生产目的,其间对水合物的抑制剂研究较为繁盛[13]。60年代,原苏联科学家预言了自然界中存在天然气水合物[14],后来在远东的梅索亚哈气田勘测证实有天然气水合物存在,极大地促进了人们对未来能源的期盼。据科学家保守估计,现在全世界以天然气水合物形式包裹的碳总量是其他常规能源碳总量的两倍之巨[2]。另一方面,由于温室效应气体二氧化碳大量地排放到空气中,使近些年来全球气候异常,厄尔尼诺现象和全球平均温度的上升已经开始导致生物生存的环境发生不可逆的恶化,因此有效地减少二氧化碳这种温室气体排放到空气中、减少温室效应,在科学界和工业界也逐渐形成广泛共识[15]。目前,日本、美国等几个国家前瞻性地研究天然气水合物将其作为对二氧化碳的有效封闭物质,把二氧化碳禁锢在主气体的框架内沉到深海排泄地,从而达到封存温室气体的效果[16]。
科学界认识到天然气水合物的研究已经成为一门综合各种学科的系统工程,除了涉及常规的物理和化学知识外,微生物学、计算机模拟、工程学和经济生态学等学科也渗透其中。物理、化学理论进展已经有几十年的积淀,成果斐然,而后来新兴的边缘科学从更广的角度给科学界带了对天然气水合物重新认识的机遇[1]。微生物(尤其是厌氧环境中的微生物)与水合物关系最为密切,其栖息环境与水合物的赋存环境相互依存。有迹象表明,在海底表面暴露的水合物与此相关[17]。计算机模拟的应用除了宏观地预测天然气水合物的赋存空间之外,还可在微观上模拟水合物分子的形成过程,便于理解和寻找水合物的有利靶区。工程学带动了水合物研究的实验室技术,现在已经开发了很多高度精密且灵活方便的仪器用来记录和刻画天然气水合物形成的实验过程,正是这些先进的实验装置极大地促进了水合物的研究进展。经济生态学既是自然科学,同时也是人文科学,由于天然气水合物是巨大的能源仓储,如果未来某一天可具有经济意义的开采,必将会改变现今世界的能量消耗模式,世界经济格局也必然随之改变,由能源再分配所引发的未来世界变化也应引起足够重视,这不仅关系到个人和国家的发展,同时也是企业未来发展的良好预判[18]。
3 各国动态
目前,美国、日本、印度等能源进口大国纷纷涉足天然气水合物的研究,上述3个国家最为积极,对天然气水合物的研究都受到了国家财政部的全力支持。
日本政府从1992年起开始关注天然气水合物,1995年由通商产业省资源能源厅石油公团联合10家石油天然气私营企业,设立了“甲烷天然气水合物研究及开发推进初步计划”,为期5年,投入的研究经费高达9000万美元。经由对日本周边海域,特别是对鄂霍次克海的调查,初估天然气水合物资源量可供日本100年的能源消耗。
1995年冬,以美国为首的ODP164航次海洋探测计划,在大西洋西部布莱克海台针对天然气水合物进行了专门的调查,首次肯定其具有商业开发价值。同时指出,天然气水合物矿层之下的游离气(气态天然气)也具有经济价值。据初步估计,该地区天然气水合物资源量多达100×108t,可满足美国105年的天然气消耗。美国参议院于1998年通过决议,把天然气水合物作为国家发展的战略能源,并列入国家级长程计划,要求政府每年投入2000万美元进行探勘,并计划于2015年进行商业性试采。
印度政府为了解决天然气供应问题也开展了大量的水合物研究,已获取了印度大陆边缘的地震数据。此外,在印度东海岸Krishna-Godavari盆地的常规油气田开采中也发现了水合物。
近年来,我国传统化石燃料已不能满足我国经济发展、环境保护的需要,仅2002年我国进口原油和成品油就近1×108t,预计2010 年石油缺口为1.2×108t。随着我国经济的快速发展,我国今后对能源的需求将急剧增加,我国能源安全和后续能源供应直接关系到我国社会和经济的可持续发展,因此开展天然气水合物研究具有重大战略意义。针对我国近年来能源供需矛盾日益突出、对国外石油和天然气资源的依赖程度不断加大的状况,面对国家开发新型洁净能源的现实需求,为提升我国天然气水合物的研究开发水平,促进我国经济和社会的可持续发展,中国科学院积极部署天然气水合物研究工作,组织了跨所、跨学科的优势研究力量,依托广州能源所,组织地质与地球物理所、广州能源所、广州地化所和南海海洋所等单位于2004年3月正式在广州成立了“中国科学院天然气水合物研究中心”。与此同时,一些国内大型企业也逐步开始认识到天然气水合物的未来能源意义,如中石化和中石油等已经着手启动了勘探研究等项目。发展、开发一套关键的高新技术,为开展海洋天然气水合物综合勘测研究提供高技术支撑,是形势的需要,是国家发展战略的需要。同时,高新研究勘测关键技术的开发,也可带动相关学科的发展,赶上国际发展步伐,维护国家权益,保持经济发展增长不衰。
中国天然气水合物研究虽起步较晚,但近几年效果显着,先后在我国南海和东海盆地发现了数量可观的天然气水合物矿带,通过分析地球物理探矿资料和追踪天然气水合物存在标志,证实仅在南海北部西沙海槽区估算的天然气水合物总量达到(469~563)×109桶的石油当量,大约相当于我国陆上和近海石油天然气总资源量的二分之一。在青藏高原的羌塘盆地,天然气水合物研究也处于调研阶段,研究项目稳步推进。令人更为欣喜的是最近在我国南海东沙海槽提取到天然气水合物实物,这无疑会大大加速我国天然气水合物的研发力度和规模。
致谢 研究工作得到所领导赵克斌教授和其他同事的帮助,表示衷心的感谢。
参考文献
[1]Sloan ED.Clathrate hydrates of natural gases[M].2nd ed.New York,Marcel Dekker.1998.
[2]Makogon IF,Makogon YF.Hydrates of hydrocarbons[M].Tulsa,Oklahoma,Penn Well Publishing Company.1997.
[3]Peters D,Mehta A,Walsh J.A comprehensive model based upon facts,conjecture,and field experience[C].In.Proceedings of the 4th international conference on gas hydrates.2002.
[4]Davy H.On a combination of oxymuriatic gas and oxygene gas London[C].Royal Society of London Philosophical Transactions,1810:1811.
[5]Lelieveld J,Crutzen PJ,Dentener FJ.Changing concentration,lifetimes and climate of forcing of atmospheric methane[J].Tellus B 1998,50:128~150.
[6]Houghton JT,et al.The scientific basis.Cambridge[M],Cambridge Univ.Press.2001.
[7]Kleinberg R,Brewer P.Probing gas hydrate deposits - Exploiting this immense unconventional energy resource presents great challenges[J].Am Sci 2001,89:244~51.
[8]蒋国盛,王达,汤凤林等.天然气水合物的勘探和开发[M].武汉:中国地质大学出版社.2002.
[9]Kvenvolden KA.Gas hydrates—Geological perspective and global change[J].Rev Geophys 1993,31:173~87.
[10]Dyadin YA,Aladko LS.Composition of clathrate hydrates of bromine[J].Journal of Structural Chemistry.1976,18(1):7~41.
[11]Mao WL,et al.Hydrogen clusters in clathrate hydrate[J].Sci.2002,297(5590):2247~2249.
[12]Lippmann D,Kessel D,Rahimian I.Gas hydrate equilibria and kinetics of gas/oil/water mixtures[J].Annal of the New York academy of sciences.1994,715(1):525~527.
[13]Nydal OJ,Banerjee S.Dynamic slug tracking simulations for gas-liquid flow in pipelines[J].Chemical Engineering Communications,1994,141(1):13~39.
[14]Yakushev VS,Chuvilin EM.Natural gas and gas hydrate accumulations within permafrost in Russia[J].Cold Regions Science and Technology,2000,31(3):189~97.
[15]Suess E,et al.Gas hydrate destabilization,enhanced dewatering,benthic material turnover and large methane plumes at the Cascadia convergent margin[J].Earth and Planetary Science Letters.1999,170(1~2):1~15.
[16]Handa N.Discussion on the direct ocean disposal of CO2.In:Handa N,Ohsumi T,editors.Direct ocean disposal of carbon dioxide[C].Tokyo,Terra Scientific Publishing Company.1995.45~61.
[17]Zhang GC,et al.Investigation of microbial influences on seafloor gas-hydrate formations[J].Marine Chemistry.2007,103(3~4),359~69.
[18]Max MD,Johnson AH,Dillon WP.Economic geology of natural gas hydrate[M].Dordrecht,Netherlands,Springer.2006.
❼ 全球可燃冰是煤石油天然气的几倍
2倍。
天然气水合物因其外观像冰一样而且遇火即可燃烧,“可燃冰”或者“固体瓦斯”和“汽冰”。
可燃冰在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。
(7)天然气水合物相当于煤石油多少倍扩展阅读:
天然气水合物在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。在标准状况下,一单位体积的天然气水合物分解最多可产生164单位体积的甲烷气体。
天然气水合物在在地球上大约有27%的陆地是可以形成天然气水合物的潜在地区,而在世界大洋水域中约有90%的面积也属这样的潜在区域。
已发现的天然气水合物主要存在于北极地区的永久冻土区和世界范围内的海底、陆坡、陆基及海沟中。由于采用的标准不同,不同机构对全世界天然气水合物储量的估计值差别很大。
❽ 可燃冰所含的有机碳总量相当于全球的多少
世界上天然气水合物所含的有机碳总量相当于全球已知煤、石油和天然气的2倍。
天然气水合物存在于海底或陆地冻土带内,是由天然气与水在高压低温条件下结晶形成的固态化合物。纯净的天然气水合物呈白色,形似冰雪,可以像固体散灶酒精一样直接被点燃,因此,又被形象地称为“可燃冰”。1立方米天然气水合物可以释放出164立方米的天然气。
(8)天然气水合物相当于煤石油多少倍扩展阅读
天然气水合物在海洋浅水生态圈,通常出现于深层的沉淀物结构中,或是在海床处露出。甲烷气水包合物据推测是因地理断层深处的气体迁移,以及沉淀、结晶等作用,于上升的气体流与海洋深处的冷水接触所形成。
可燃冰其资源密度高,全球分布广泛,具有极高的资源价值,因而成为油气工业界长期研究热点。自上世纪60年代起,以美国、日本、德国、中国、韩国、印度为代表的一些国家举掘历都制订了天然气水合物勘探开发研究计划。
迄正搜今,人们已在近海海域与冻土区发现水合物矿点超过230处,涌现出一大批天然气水合物热点研究区。
❾ 可燃冰是石油和天然气的几倍以上
2倍以上。可燃冰是一种天然气水合物,其中的主要化学成分是甲烷,全球海底的“可燃冰”所含的有机碳总量相当于全球已知煤、石油和天然气总和的2倍以上。可燃冰之所以被叫做可燃冰,是因为其外观像冰一样且遇火可以燃烧。
可燃冰特点
可燃冰分布在深海或陆域永久冻土中,燃烧后仅生成少量的二氧化碳和水,和石油、煤等传统燃料相比,污染较小。
我国的可燃冰主要分布在南海海域、东海海域、青藏高原冻土带以及东北冻土带。
❿ 可燃冰的总量是煤石油天然气的几倍
2倍。
天然气水合物因其外观像冰一样而且遇火即可燃烧,“可燃冰”或者“固体瓦斯”和“汽冰”。
可燃冰在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。
天然气水合物在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。在标准状况下,一单位体积的天然气水合物分解最多可产生164单位体积的甲烷气体。
天然气水合物在在地球上大约有27%的陆地是可以形成天然气水合物的潜在地区,而在世界大洋水域中约有90%的面积也属这样的潜在区域。
已发现的天然气水合物主要存在于北极地区的永久冻土区和世界范围内的海底、陆坡、陆基及海沟中。由于采用的标准不同,不同机构对全世界天然气水合物储量的估计值差别很大。