当前位置:首页 » 石油矿藏 » 石油钻井吊环为什么一个长一个短
扩展阅读
饲料价格上涨为什么下跌 2025-07-23 02:57:13

石油钻井吊环为什么一个长一个短

发布时间: 2023-01-25 09:19:30

Ⅰ 石油钻井一付350吨吊环多钱

看你是通过哪种途径来采购了——

正规厂家要上千元,如果是淘汰下来的设备中,或者熟人转售、二手设备倒手等情况1-2百也可以搞定。

Ⅱ 石油钻进刹把操作如何控制工贝面

说来很多,我就说一些基本的吧,希望对你有所帮助
1操作刹把之前,首先要征得相关人员的同意,方可操作。2 。初学者最好是在钻时慢的情况下进行刹吧操作,而且操作时要和师傅问清楚你所操作的绞车的电(气)开关的重要作用。刚开始学送钻,也就是下放。等学会了送钻再开始学上提钻具坐吊卡。然后再学习接单根操作。3过段时间之后,就开始学习下钻的作业操作,然后再学习起钻作业的操作,因为开始学习时,对电(气)开关的性能把握不好,防止单吊环起钻造成事故。 3:所谓的刹把操作的过程,其实就是操作人员上提、刹车、下放的速度的控制的过程。4:操作刹把时,眼看指重表,左眼和右眼的余光看滚筒大绳的转动速度和泵压表的工作压力,鼻闻异味耳听异常声音,精力集中。(详细的请参阅石油钻井工岗位操作规范)
回答不易,满意请点赞。
祝楼主吉祥
O(∩_∩)O谢谢

参考资料:网络经验等

Ⅲ 钻井方法及原理是什么

1人工挖井方法

1973年出土于浙江余姚县的河姆渡古井是世界上目前已知的最古老的水井,经14C测定表明它是5700多年前的产物。

挖掘井阶段大约从远古到西周末年,我们的祖先用原始的工具,诸如石铲等手工挖井,井的深度很浅。在公元前15世纪前后我国的甲骨文中就出现有“井”字。

2冲击钻井方法

冲击钻井方法经过了三个阶段,即顿钻大口井阶段、顿钻小口井(卓筒井)阶段和机械顿钻阶段。

1)顿钻大口井阶段

最初的顿钻设备,主要由“踩架”和井架组成。“踩架”上有碓板,碓板一端悬挂着钻头,它是直接钻凿岩石的工具;碓板另一端供人踩踏,使钻头反复上提、下顿,产生冲击运动。

2)顿钻小口井(卓筒井)阶段

从北宋开始,我国古代钻井技术又有了新的发展。一是顿钻大口井发展为顿钻小口井。当时把口径只有“碗口大小”的小口井称为卓筒井,卓筒井地面设备、井身结构示意图如图6-11所示。

图6-12转盘旋转钻井示意图

1—天车;2—游动滑车;3—大钩;4—动力机;5—钻井泵;6—空气包;7—钻井液池;8—钻井液槽;9—旋流除砂器;10—钻井液振动器;11—表层套管;12—钻杆;13—钻铤;14—钻头;15—井眼;16—防喷器;17—转盘;18—绞车;19—方钻杆;20—水龙头

(1)动力系统。

钻井好像是一座流动性大的独立作业的小型工厂。钻机所需的各工作系统大多数是用柴油机作发动机,通过变速箱直接驱动或由柴油机发电来驱动钻井设备的。动力系统的作用是产生动力,并把动力传递给钻井泵、绞车和转盘。

(2)起升系统。

起升系统主要用来起升、下放或悬吊钻柱、套管柱等,主要完成起下钻、接单根和钻进时的钻压控制任务。这个系统主要由井架、天车、游车、大绳、大钩、吊环及绞车等组成。一般用最小的提升速度和最大的负载来确定提升系统的能力。

(3)旋转系统。

旋转系统主要由转盘、转盘变速箱、水龙头、方钻杆组成,主要功能是保证在洗井液高压循环的情况下,给井下钻具提供足够的旋转扭矩和动力,以满足破岩钻进和井下的其他要求。旋转系统还有接、卸钻柱和钻具的功能。

(4)循环系统。

钻机循环系统最主要的功能是在钻进中通过循环洗井液从井底清除岩屑、冷却钻头和润滑钻具。钻机循环系统主要包括钻井泵、钻井液净化装置(固相控制设备)和钻井液槽、罐等。整个循环系统的中心设备是钻井泵。

(5)气控系统。

气控系统主要包括控制面板(控制机构)、传输管线和阀门、执行机构(如气动离合器、气缸和气马达等)以及压风机等。气控系统的功能是确保对整个工作机构及其部件的准确、迅速控制,使整机协调一致地工作。

(6)井控系统。

在整个钻井作业过程中,井控系统要对井下可能发生的复杂情况进行控制和处理,以恢复正常作业。井控系统包括四个主要部分:防喷器组、储能器机组和防喷器组遥控面板、节流管汇、压井管汇。

Ⅳ 石油钻井平台吊环的挡销规格是多少

你好,石油钻井平台吊环的挡销规格是多少?吊环有M12、M16、M20、M24、M30、M36等不同规格。吊环的承重能力会随着规格增加而提升,比如M12承重是200千克,M16是400千克,M20是600千克,如果选择M36能达到2500千克,M40是3500千克,M48是5000千克。吊环的规格主要有M12、M16、M20、M24、M30、M36、M42、M48等不同的型号。而不同的型号,则代表着螺纹的外径,包括钻孔的直径不一样。规格越大,外径以及钻孔的直径也随之增加。比如,如果是M12,螺纹外径就是12毫米,钻孔的直径是10.2毫米。如果选择的是M24螺纹,外径就能够达到两倍24毫米,相应的钻孔直径也接近了两倍,大概是21毫米。吊环的规格和承重是成正比例的关系,也就是说规格越大,承重能力也会越。M12,对应的承重就是200千克。M16,对应是400千克。M20的承重能力能够达到600千克,M24的承重能力是1100千克。而M30的承重能力是1800千克,M36承重能力2500千克,M42的承重能力3500千克,以及最高的M48规格,承重能力是5000千克。请参考!

Ⅳ 顶部驱动装置原理

什么是顶部驱动钻井系统?编辑

所谓的顶驱,就是可以直接从井架空间上部直接旋转钻柱,并沿井架内专用导轨向下送进,完成钻柱旋转钻进,循环钻井液、接单根、上卸扣和倒划眼等多种钻井操作的钻井机械设备。
见图:它主要有三个部分组成:导向滑车总成、水龙头-钻井马达总成和钻杆上卸扣装置总成。
该系统是当前钻井设备自动化发展更新的突出阶段成果之一。经实践证明:这种系统可节省钻井时间20%到30%,并可预防卡钻事故,用于钻高难度的定向井时经济效果尤为显着。

3顶部驱动系统的研制过程:编辑
1、钻井自动化进程推动了顶部驱动钻井法的诞生。
二十世纪初期,美国首先使用旋转钻井法获得成功,此种方法较顿钻方法是一种历史性的飞跃,据统计,美国有63%的石油井是用旋转法钻井打成的。
但在延续百多年的转盘钻井方式中,有两个突出的矛盾未能得到有效的解决:其一、起下钻时不能及时实现循环旋转的功能,遇上复杂地层或是岩屑沉淀,往往造成卡钻。其二、方钻杆的长度限制了钻进的深度(每次只能接单根),降低了效率,增加了劳动的强度,降低了安全系数。
二十世纪七十年代,出现了动力水龙头,改革了驱动的方式,在相当的程度上改善了工人的操作条件,加快了钻井的速度以及同期出现的“铁钻工”装置、液气大钳等等,局部解决了钻杆位移、连接等问题,但远没有达到石油工人盼望的理想程度。

TDS-3SB
二十世纪八十年代,美国首先研制了顶部驱动钻井系统TDS-3S投入石油钻井的生产。80年代末期新式高扭矩马达的出现为顶驱注入了新的血液和活力。TDS—3H、TDS—4应运而生,直至后来的TDS-3SB、TDS-4SB、TDS-6SB。
二十世纪九十年代研制的IDS型整体式顶部驱动钻井装置,用紧凑的行星齿轮驱动,才形成了真正意义上的顶驱,既有TDS到IDS,由顶部驱动钻井装置到整体式顶部驱动钻井装置,实现了历史性的飞跃。
2、挪威DDM-HY-650型顶部驱动钻井装置:
最大载荷6500kN,液压驱动,工作扭矩为55kN.m,工作时最大扭矩为63.5kN.m,工作转速为130—230r/min,液压动力压力为33MPa,排量1600L/min,水龙头吊环到吊卡上平面的距离为6.79米,质量17吨。
3、加拿大8035E顶部驱动钻井装置:
额定钻井深度5000米,额定载荷3500kN,输出功率670kW,最大连续扭矩33.10kN.m,最高转速200r/min,质量为8.6吨。最低井架高度要求39米。
4、美国ES-7型顶部驱动钻井系统:
采用25kW直流电机驱动钻柱,连续旋转扭矩34.5kN.m,间歇运转扭矩41.5kN.m,额定载荷5000kN,最高转速300r/min,钻井液压力35.1MPa,系统总高7.01米,质量8.1吨。
5、国产DQ-60D型顶部驱动钻井装置。
额定钻井深度6000m,最大钩载4500kN,动力水龙头最大扭矩40kN.m,转速范围0—183r/min,无级调速;直流电机最大输出功率940kw;倾斜臂最大倾斜角,前倾30°,后倾15°;回转半径1350mm;最大卸扣扭矩80kN.m;上卸扣装置夹持钻杆的范围Ø89—Ø216mm(3½—8½ in)。

4顶部驱动钻井装置的结构:编辑
(一)、 顶部驱动钻井装置主要有以下部件和附件组成:
1、水龙头--钻井马达总成(关键部件);
2、马达支架/导向滑车总成(关键部件);
3、钻杆上卸扣总成(体现最大优点的部件);
4、平衡系统;
5、冷却系统;
6、顶部驱动钻井装置控制系统;
7、可选用的附属设备。
顶部驱动钻井装置的主体部件,主要包括:
1、钻井马达;
2、齿轮箱;
3、整体水龙头;
4、平衡器。
钻井马达的冷却系统:
马达的冷却为风冷。
1、近距离安装鼓风机
2、加高进气口的近距离安装鼓风机
3、远距离安装鼓风机近距离就是近距离向马达提供冷却风,取风高度在马达行程最低点距离钻台6米以上。
远距离安装鼓风机:
在不能保证提供安全冷却空气的情况下,例如:井架为密闭式的即可采用直径8in软管冷却系统,且鼓风机马达为40hp(比近距离安装提高了一倍),马达安在二层平台,从井架外吸进空气,增加的马力用于驱使空气流过较长的进气软管。
(二)、导向滑车总成
整个导向滑车总成沿着导轨与游车导向滑车一起运动。当钻井马达处于排放立根的位置上时,导向滑车则可作为马达的支撑梁。导轨有单轨和双轨两种。
(三)、钻杆上卸扣装置
主要组成部件:
1、扭矩扳手
2、内防喷器和启动器
3、吊环连接器和限扭器
4、吊环倾斜装置
5、旋转头
扭矩扳手总成提供钻杆的上卸扣的手段。他位于内防喷器下部的保护接头一侧,他有两个液缸在扭矩管和下钳头之间。
钳头有一直径为10in的夹紧活塞,用以夹持与保护接头相连接的钻杆母扣。范围:3½in--7⅜in。
钻杆上卸扣装置另有两个缓冲液缸,类似大钩弹簧,可提供丝扣补偿行程125mm。
内防喷器是全尺寸、内开口、球型安全阀式的。带花键的远控上部内防喷器和手动的下部内防喷器形成井控防喷系统,内防喷器采用6⅝in正规扣,工作压力为105MPa。
吊环倾斜装置:
有两种功用:
1、吊鼠洞中的单根。
2、接立柱时,不用井架工在二层台上将大钩拉靠到二层台上。若行程1.3米的倾斜装置不能满足要求则可选择2.9米的长行程吊环倾斜装置。
平衡系统的主要作用是防止上卸接头扣时螺纹的损坏,其次在卸扣时可帮助公扣接头从母扣接头中弹出,这依赖于它为顶部驱动钻井装置提供了一个类似于大钩的152 毫米的减震冲程。是因为使用顶部驱动钻井装置后没有再安装大钩了;退一步说,即使装有大钩,它的弹簧也将由于顶部驱动钻井装置的重量而吊长,起不了缓冲作用。

5顶部驱动装置操作过程编辑
接立根钻进
接立根钻进是顶部驱动钻井装置普遍采用的方式。采用立根钻进方法很多。对钻从式井的轨道钻机和可带立根运移的钻机,钻杆立根可立在井架上不动,留待下一口井接立根钻进使用。若没有立根,推荐两种接立根方法:一是下钻时留下一些立根竖在井架上不动,接单根下钻到底,用留下的立根钻完钻头进尺;二是在钻进期间或休闲时,在小鼠洞内接立根。为安全起见,小鼠洞最好垂直,以保证在垂直平面内对扣,简化接扣程序。还应当注意接头只要旋进钻柱母扣即可,因为顶部驱动钻井钻井马达还要施加紧扣扭矩上接头。
接单根钻进
通常在两种情况需要接单根钻进。一种是新开钻井,井架中没有接好的立根;另一种是利用井下马达造斜时每9.4 m必须测一次斜。吊环倾斜装置将吊卡推向小鼠洞提起单根,从而保证了接单根的安全,提高了接单根钻进的效率。接单根钻进程序如下:
1 钻完单根坐放卡瓦于钻柱上,停止泥浆循环(图a);
2 用钻杆上卸扣装置上的扭矩扳手卸开保护接头与钻杆的连接扣;
3 用钻井马达旋扣;
4 提升顶部驱动钻井装置。提升前打开钻杆吊卡,以便让吊卡通过卡瓦中的母接箍(图b);
5 起动吊环倾斜装置,使吊卡摆至鼠洞单根上,扣好吊卡;
6 提单根出鼠洞。当单根公扣露出鼠洞后,关闭起动器使单根摆至井眼中心(图c);
7 对好钻台面的接扣,下放顶部驱动钻井装置,使单根底部进入插入引鞋(图d);
8 用钻井马达旋扣和紧扣,打背钳承受反扭矩;
起下钻操作
起下钻仍采用常规方法。为提高井架工扣吊卡的能力和减少起下钻时间,可以使用吊环倾斜装置使吊卡靠近井架工。吊环倾斜装置有一个中停机构,通过它可调节吊卡距二层台的距离,便于井架工操作。
打开旋转锁定机构和旋转钻杆上卸扣装置可使吊卡开口定在任一方向。如钻柱旋转,吊卡将回到原定位置。起钻中遇到缩径或键槽卡钻,钻井马达可在井架任一高度同立根相接,立即建立循环和旋转活动钻具,使钻具通过卡点。
倒划眼操作
1、使用顶部驱动钻井装置倒划眼
可以利用顶部驱动钻井装置倒划眼,从而防止钻杆粘卡和破坏井下键槽。倒划眼并不影响正常起钻排放立根,即不必卸单根。
2、倒划眼起升程序
倒划眼起升步骤如下(参见下图):
1) 在循环和旋转时提升游车,直至提出的钻柱第三个接头时停止泥浆循环和旋转(图a),即已起升提出一个立根;
2) 钻工坐放卡瓦于钻柱上,把钻柱卡在简易转盘中;
3) 从钻台面上卸开立根,用钻井马达旋扣(倒车扣);
4) 用扭矩扳手卸开立根上部与马达的连接扣,这时只有顶部驱动钻井装置吊卡卡住立根。在钻台上打好背钳,用钻井马达旋扣(图b);
5) 用钻杆吊卡提起自由立根(图c);
6) 将立根排放在钻杆盒中(图d);
7) 放下游车和顶部驱动钻井装置到钻台(图e);
8) 将钻井马达下部的公接头插入钻柱母扣,用钻井马达旋扣和紧扣。稍微施加一点卡瓦力,则钻杆上卸扣装置的扭矩扳手就可用于紧扣;
9) 恢复循环,提卡瓦,起升和旋转转柱,继续倒划眼起升。
一、下管套
顶部驱动钻井装置配用500~750 t吊环和足够额定提升能力的游动滑车,就能进行额定重量500~650 t的下套管作业。为留有足够的空间装水龙头,必须使用4.6 m的长吊环。
将一段泥浆软管线同钻杆上卸扣装置保护接头相连,下套管过程中可控制远控内防喷器的开启与关闭,实现套管的灌浆。
如果需要,也可使用悬挂在顶部驱动钻井装置外侧的游动滑车和大钩,配用Varco BJ规定吊卡和适当的游动设备,按常规方法下套管。顶部驱动钻井装置起下套管装置如图3—5所示。

6顶部驱动钻井装置的优越性编辑
1、节省接单根时间。顶部驱动钻井装置不使用方钻杆,不受方钻杆长度的限制也就避免了钻进9米左右接一个单根的麻烦。取而带之的是利用立根钻进,这样就大大减少了接单的时间。按常规钻井接一个单根用3—4min计算,钻进1000米就可以节省4-5h。
2、倒划眼防止卡钻。由于不用接方钻杆就可以循环和旋转,所以在不增加起下 钻时间的前提下,顶部驱动钻井装置就能够非常顺利的将钻具起出井眼,在定向钻井中,这种功能可以节约大量的时间和降低事故发生的机率。
3、下钻划眼。顶部驱动钻井装置具有不接方钻杆钻过砂桥和缩径点的能力。
4、节省定向钻进时间。该装置可以通过28米立根钻进、循环,这样就相应的减少了井下马达定向的时间。
5、人员安全。顶部驱动钻井装置,是钻井机械操作自动化的标志性产品,终于将钻井工人从繁重的体力劳动中解救出来。接单根的次数减少了2/3,并且由于其自动化的程度高,从而大大减少了作业者工作的危险程度,进而大大降低了事故的发生率。
6、井下安全。在起下钻遇阻、遇卡时,管子处理装置可以在任何位置相连,开泵循环,进行立根划眼作业。
7、设备安全。顶部驱动钻井装置采用马达旋转上扣,操作动作平稳、可以从扭矩表上观察上扣扭矩,避免上扣过赢或不足。最大扭矩的设定,使钻井中出现憋钻扭矩超过设定范围时马达就会自动停止旋转,待调整钻井参数后再进行钻进。这样就避免了设备长时间超负荷运转,增加了使用寿命。
8、井控安全。该装置可以在井架的任何位置钻具的对接,数秒钟内恢复循环,双内防喷器可安全控制钻柱内压力。
9、便于维修。钻井马达清晰可见。熟练的现场人员约12小时就能将其组装和拆卸。
10、使用常规的水龙头部件。顶部驱动装置可使用650吨常规水龙头的一些部件,特殊设计后维修难度没有增加。
11、下套管。顶部驱动钻井装置的提升能力很大(650吨),在套管和主轴之间加一个转换头(大小头)就可以在套管中进行压力循环。套管可以旋转和循环入井,从而减少缩径井段的摩阻力。
12、取心。能够连续钻进28米,取心中间不需接单根。这样可以提高取心收获率,减少起钻的次数与传统的取心作业相比它的优点明显。污染小、质量高。
13、使用灵活。可以下入各种井下作业工具、完井工具和其他设备,即可以正转又可以反转。
14、节约泥浆。在上部内防喷器内接有泥浆截流阀,在接单根时保证泥浆不会外溢。
15、拆卸方便。工作需要时不必将它从导轨上移下就可以拆下其他设备。
16、内防喷器功能。起钻时如果有井喷的迹象即可由司钻遥控钻杆上卸扣装置,迅速实现水龙头与钻杆的连接,循环钻井液,避免事故的发生。
17、其他优点:采用交流电机驱动,减低维修保养费用;特别适用于定向井和水平井,因为立根钻进能使钻杆尽快的通过水平井段的一些横向截面。

7顶驱钻井装置与常规钻井设备的比较编辑
钻井效率明显提高。
A、从钻井到起下钻或从起下钻恢复钻进状态,该装置不存在常规钻机的上、卸水龙头和方钻杆所造成的时间损失。
B、不存在常规钻机转盘方补心蹦出所造成的停工。
C、不用钻鼠洞。
D、立根钻进,从而减少了常规钻井接单根上提钻柱需从新定工具面角的时间。
E、在井下纯作业时间增多,上扣、起下钻、测量和其他非纯钻进时间减少。
立柱钻进节省了大量的时间
A、减少了坍塌页岩层扩眼或清洗井底的时间。
B、在井径不足需扩眼或首次下入足尺寸稳定器进行扩眼时减少了钻进时间。
C、在同一平台钻丛式井,不用甩钻具或卸立柱。
D、不需要接单根就能够回收最大长度的岩心。
E、定向钻井时,减少了定向时间。
连续旋转和循环降低了风险。
A、连续的旋转和循环是顶部驱动钻井装置的重要特征。
B、顶部驱动钻井装置允许使用少量的、比较便宜的润滑剂、钻井液或添加剂。
c、减少了钻柱或昂贵的井下工具卡钻的几率。
有利于井控。
A、任何时间和位置的于钻柱对接。
B、随时可以进行的循环和旋转。
C、减少钻柱被卡后,上卸方钻杆的危险作业程序。
安全性提高。
A、减少了使用大钳和猫头等,降低了钻井工人作业危险。
B、减少许多笨重的工作,提高了起升重钻具的安全性。
C、自动吊卡,消除了人工操作吊卡的事故隐患。
D、井控安全性得到大大提高。
E、遥控防喷盒,防止泥浆溅落到钻台上,增加了工作的安全性。
作业时间的比较
起下钻

非生产

纯钻进

典型钻井的作业时间分配

30%

40%

30%

顶部驱动钻井装置钻井时间分配

25%

35%

40%

水平井费用比较
项 目

转盘/方钻杆

顶驱装置

日成本,美元

40800

43000

测深,M

2000

2000

机械钻速, m/h

30

30

日进尺

240

288

钻2000m所需天数

8.3

6.9

单井成本,美圆

338640

296700

单井用顶驱节约,美圆

41940

8口井用顶驱节约,美圆

335120

8维护保养以及操作注意事项编辑
强电系统
1)、防尘、防潮是最主要的两条。SCR主控柜、综合柜在尚未置放在空调房前必须注意防潮、防尘,并且
不能在温度过高(45°C以上)、过低(一10℃以下)的环境中工作。放置一段时间重新启用前,须用吸尘器将元件积存的尘埃除去,然后用电吹风将元件烘干,最后须测绝缘电阻值,至少在1MΩ以上,一般应在5MΩ以上。只有在进行了以上步骤以后,方可启动SCR。
2)、一定要先启动鼓风电机,然后选择主电机的转向。再给定额定电流值(即额定钻井扭矩值),最后开动主电机,即给出一个电压值(转速值)。
3)、一般说来应先启动冷却风机及合上励磁开关后再合主开关。如先合主开关,那就该尽快合上励磁关。
4)、运行中要随时注意观察电流大小(PLC操作柜上的扭矩表反映出主电机工作电流的大小)。
5)、各部分电缆应连接牢靠,焊接部位不应有虚焊现象。
6)、由于光线照射及空气的氧化作用,电缆会发生老化现象,使用二年以后应注意观察有无裂开、剥落老化现象,一般说,使用四年后应更换电缆。
弱电控制系统
1)、PLC柜、操作柜均为正压防爆系统,要配备动三大件,保证空气的干燥、清洁,不含易燃、易爆危险气体。
2)、使用操作柜时应先合上电源开关,再打开操作柜开关,最后打开PLC开关,停止操作时先关PLC,再关操作柜,最后关电源柜。
3)、PLC柜操作柜也应注意防潮防尘,但因其具有防爆结构,相应地防潮防尘能力也较强。
主电机
1)、吸风口应朝下,防止雨水进入。
2)、主电机外壳不应承受本身重量以外的负荷。
3)、由于主电机停止转动,加热器即自动加热,当长期不用时应关掉加热电路。
4)、电枢及励磁部分的绝缘电阻应大于1MΩ,当小于0.8MΩ时必须先烘干再工作。
5)、主电机轴伸锥度、粗糙度、接触斑点均应符合要求。
6)、由于泥浆管路从电机中心穿过,故在密封要求上必须严格。
7)、正常钻井时,每天应在主轴承部位加润滑脂。
液压系统
1)、油箱的液位不低于250mm,油温不高于80℃。
2)、过滤器应定期更换滤芯(3月至6月),具有发讯装置 的过滤器更应勤清洗和制订相应的更换措施。
3)、液压油必须干净,在使用三个月以后应更换。
4)、开泵前,吸油口闸阀一定要打开,出口管应与系统连起来。
5)、管路连接一定要可靠,注意各部位组合垫。o形圈不要遗忘,在不经常拆卸的螺纹处可以使用密封胶。
6)、滤芯应经常清洗,半年应重新更换滤芯,二年至三年应更换高压胶管。
7)、要防止在拆装、搬运、加油、修理过程中外界 污染物进入系统。
8)、液压源的溢流阀应调整至略高于泵的压力限定值,一般地不要在无油流输出情况下启动泵。
本体部分:
减速箱是一个传递动力和运动的重要部件,润滑油应经常更换(三个月至半年),油面应保持一定高度,初次装配需经充分空运转跑合,出厂前应更换为干净的润滑油。减速箱内装有铂电阻温度传感器,箱体外装有温度变送器,用来监视润滑油的温度,现已调整为75℃,超过此温度,PLC操作柜相应的红灯将显示,并有声报警。
两个防喷器(手动、液动各一个)均应密封可靠,试压在50Mpa以上。正常情况下当主轴转动时,不得操作内防喷器,只有发生井喷井涌时才操作,使之关闭。起下钻时为节省钻井液的消耗,应将内防喷器关闭,开钻前一定要先打开内防喷器,再开钻井泵。
上卸扣机构应根据钻杆的尺寸选择相应牙板,各油缸之间的协调动作借助于减压阀、顺序阀来调整。
上卸扣机构与回转头相连的链条长度应调整合适,略微松弛一些,可起到安全的作用。

Ⅵ 石油钻机盘刹刹带怎么调

石油钻机
在石油钻井中,带动钻具破碎岩石,向地下钻进,钻出规定深度的井眼,供采油机或采气机获取石油或天然气。一部常用石油钻机主要由动力机、传动机、工作机及辅助设备等八大部分组成。
中文名
石油钻机
外文名
oil rig
产品应用
石油钻井中
组成
动力机、传动机、工作机
快速
导航
主要系统工作原理
系统组成
一般有八大系统(起升系统、旋转系统、钻井液循环系统、传动系统、控制系统和监测显示仪表、动力驱动系统、钻机底座、钻机辅助设备系统),要具备起下钻能力、旋转钻进能力、循环洗井能力。其主要设备有:井架、天车、绞车、游动滑车、大钩、转盘、水龙头(动力水龙头)及钻井泵(现场习惯上叫钻机八大件)、动力机(柴油机、电动机、燃气轮机)、联动机、固控设备、井控设备等。
主要系统
起升系统
为了起升和下放钻具、下套管以及控制钻压、送进钻具,钻具配备有起升系统。
起升系统包括绞车、辅助刹车、天车、游车、大钩、钢丝绳以及吊环、吊卡、吊钳、卡瓦等各种工具。
起升时,绞车滚筒缠绕钢丝绳,天车和游车构成副滑轮组,大钩上升通过吊环、吊卡等工具实现钻具的提升。下放时,钻具或套管柱靠自重下降,借助绞车的刹车机构和辅助刹车控制大钩的下放速度。在正常钻进时,通过刹车机构控制钻具的送进速度,将钻具重量的一部分作为钻压施加到钻头上实现破碎岩层。
旋转系统
旋转系统是转盘钻机的典型系统,其作用是驱动钻具旋转以破碎岩层,旋转系统包括转盘、水龙头、钻具。
根据所钻井的不同,钻具的组成也有所差异,一般包括方钻杆、钻杆、钻铤和钻头,此外还有扶正器、减震器以及配合接头等。
其中钻头是直接破碎岩石的工具,有刮刀钻头、牙轮钻头、金刚石钻头等类型。钻铤的重量和壁厚都很大,用来向钻头施加钻压,钻杆将地面设备和井底设备联系起来,并传递扭矩。方钻杆的截面一般为正方形,转盘通过方钻杆带动整个钻柱和钻头旋转,水龙头是旋转钻机的典型部件,它既要承受钻具的重量,又要实现旋转运动,同时还提供高压泥浆的通道。

Ⅶ 划眼注意事项

对全段设备进行检修,重点是钻井泵、水龙头及高低压管汇。

准备足够的钻井液处理剂,并配置符合井下情况的钻井液。

把全套循环罐、池清理干净,保证净化设备工作正常。

按预计划眼长,卸钻台部分钻杆立柱成单根,甩在场地重新丈量编号。

钻头钻具结构

选用长齿钻头,上部软地层可选用加强钢齿LRT127G钻头,下部硬地层437G的钻头。划眼钻具组合尽量简化,井斜小、钻压能很好的传递的情况下,可使用加重钻杆配重;反之则可加1-2根钻铤配重。

2.划眼的方法

“一冲、二通、三划眼”法。其具体做法是:接好单根开泵正常后,先冲下去,上提钻具转动一个方位再通下去,然后再提起钻具转动划下去。

“拨放点划”法。其具体做法是:当遇到冲不动、通不下的情况时,先加压20~30 KN转动转盘,观看指重表指示若悬重回升,则立即停转盘,再加压20~30 KN转动转盘。如此重复操作,直到拨放点划一单根,再提起下划一次。

3.注意事项及安全要求

前提:在井下有贵重仪器及钻具结构复杂的情况下,必须起钻甩仪器、简化钻具,才能划眼。

通井划眼要坚持中途循环,划一段巩固一段,处理和调整好钻井液以形成新井壁。

上部地层防出新井眼,下部地层防止憋泵。

停泵后活动钻具正常,能放到底方可接单根,接单根时要晚停泵、早开泵,尽量缩短停泵时间,并加快接单根速度,防止沉砂卡钻。

专人观察泵压,泵压升高马上停泵,同时上提钻具。起至正常井段,用小排量开泵正常后,逐渐加大排量,恢复划眼。

划眼时早开泵、迟停泵,大排量划眼,划眼过程中要注意观察返出岩屑和间断防空现象。划眼时要注意缩径井段不能硬压,防蹩泵。

划眼时钻具丝扣要上紧,避免钻具事故;划眼防止打倒车,负荷严重时先停总车,钻机快要停时合上低速,刹死刹把。

划眼下钻时上提困难不要抢接方钻杆,要上下活动,使钻杆接头处处于自由状态,摘下吊环,转动转盘正常后再接方钻杆,上下活动、旋转正常后重新由小排量逐渐增大排量下划。

划眼要步步为营,划3-5米要上提至正常井段,划完一个单根后要多提一个单根,停泵后上提无阻卡,可下放到底,停转盘无倒车,不返喷泥浆,方可接单根。

长井段每划眼5-6个单根,要大排量循环泥浆一周,以便携砂和巩固井壁。其长度视井眼复杂情况而定。

划眼过程中设备出现故障,造成长时间无法循环时要起钻,并设法灌满钻井液。

Ⅷ 石油钻井技术

《中国国土资源报》2007年1月29日3版刊登了“新型地质导向钻井系统研制成功”的消息。这套系统由3个子系统组成:新型正脉冲无线随钻测斜系统、测传马达及无线接收系统、地面信息处理与决策系统。它具有测量、传输和导向三大功能。在研制过程中连续进行了4次地质导向钻井实验和钻水平井的工业化应用,取得成功。这一成果的取得标志着我国在定向钻井技术上取得重大突破。

2.3.1.1 地质导向钻井技术

地质导向钻井技术是20世纪90年代发展起来的前沿钻井技术,其核心是用随钻定向测量数据和随钻地层评价测井数据以人机对话方式来控制井眼轨迹。与普通的定向钻井技术不同之处是,它以井下实际地质特征来确定和控制井眼轨迹,而不是按预先设计的井眼轨迹进行钻井。地质导向钻井技术能使井眼轨迹避开地层界面和地层流体界面始终位于产层内,从而可以精确地控制井下钻具命中最佳地质目标。实现地质导向钻井的几项关键技术是随钻测量、随钻测井技术,旋转导向闭环控制系统等。

随钻测量(MWD)的两项基本任务是测量井斜和钻井方位,其井下部分主要由探管、脉冲器、动力短节(或电池筒)和井底钻压短节组成,探管内包含各种传感器,如井斜、方位、温度、震动传感器等。探管内的微处理器对各种传感器传来的信号进行放大并处理,将其转换成十进制,再转换成二进制数码,并按事先设定好的编码顺序把所有数据排列好。脉冲器用来传输脉冲信号,并接受地面指令。它是实现地面与井下双向通讯并将井下资料实时传输到地面的唯一通道。井下动力部分有锂电池或涡轮发电机两种,其作用是为井下各种传感器和电子元件供电。井底钻压短节用于测定井底钻压和井底扭矩。

随钻测井系统(LWD)是当代石油钻井最新技术之一。Schlumberger公司生产的双补偿电阻率仪CDR和双补偿中子密度仪CDN两种测井系统代表了当今随钻测井系统的最高水平。CDR和CDN可以单独使用也可以两项一起与MWD联合使用。LWD的CDR系统用电磁波传送信息,整套系统安装在一特制的无磁钻铤或短节内。该系统主要包括电池筒、伽马传感器、电导率测量总成和探管。它主要测量并实时传输地层的伽马曲线和深、浅电阻率曲线。对这些曲线进行分析,可以马上判断出地层的岩性并在一定程度上判断地层流体的类型。LWD的CDN系统用来测量地层密度曲线和中子孔隙度曲线。利用这两种曲线可以进一步鉴定地层岩性,判断地层的孔隙度、地层流体的性质和地层的渗透率。

旋转导向钻井系统(Steerable Rotary Drilling System)或旋转闭环系统(Rotary Closed Loop System,RCLS)。常规定向钻井技术使用导向弯外壳马达控制钻井方向施工定向井。钻进时,导向马达以“滑行”和“旋转”两种模式运转。滑行模式用来改变井的方位和井斜,旋转模式用来沿固定方向钻进。其缺点是用滑行模式钻进时,机械钻速只有旋转模式钻进时的50%,不仅钻进效率低,而且钻头选择受到限制,井眼净化效果及井眼质量也差。旋转导向闭环钻井系统完全避免了上述缺点。旋转导向钻井系统的研制成功使定向井钻井轨迹的控制从借助起下钻时人工更换钻具弯接头和工具面向角来改变方位角和顶角的阶段,进入到利用电、液或泥浆脉冲信号从地面随时改变方位角和顶角的阶段。从而使定向井钻井进入了真正的导向钻井方式。在定向井钻井技术发展过程中,如果说井下钻井马达的问世和应用使定向钻井成为现实的话,那么可转向井下钻井马达的问世和应用则大大提高了井眼的控制能力和自动化水平并减少了提下钻次数。旋转导向钻井系统钻井轨迹控制机理和闭环系统如图2.5所示。

目前从事旋转导向钻井系统研制的公司有:Amoco、Camco、Baker Hughes Inteq、Cambridge Drilling Automation以及DDD Stabilizers等。这些公司的旋转导向闭环钻井系统按定向方法又可分为自动动力定向和人工定向。自动动力定向一般由确定钻具前进方向的测量仪表、动力源和调节钻具方向的执行机构组成。人工定向系统定向类似于导向马达定向方法,需要在每次连接钻杆时进行定向。两种定向系统的定向控制原理都是通过给钻头施加直接或间接侧向力使钻头倾斜来实现的(图2.6)。按具体的导向方式又可划分为推靠式和指向式两种。地质导向钻井技术使水平钻井、大位移钻井、分支井钻井得到广泛应用。大位移井钻井技术和多分支井钻井技术代表了水平钻井技术的最新成果水平。

图2.5 旋转导向闭环系统

(1)水平井钻井技术

目前,国外水平钻井技术已发展成为一项常规技术。美国的水平井技术成功率已达90%~95%。用于水平井钻进的井下动力钻具近年来取得了长足进步,大功率串联马达及加长马达、转弯灵活的铰接式马达以及用于地质导向钻井的仪表化马达相继研制成功并投入使用。为满足所有导向钻具和中曲率半径造斜钻具的要求,使用调角度的马达弯外壳取代了原来的固定弯外壳;为获得更好的定向测量,用非磁性马达取代了磁性马达。研制了耐磨损、抗冲击的新型水平井钻头。

图2.6 旋转导向钻井系统定向轨迹控制原理

(2)大位移井钻井技术

大位移井通常是指水平位移与井的垂深之比(HD/TVD)≥2的井。大位移井顶角≥86°时称为大位移水平井。HD/TVD≥3的井称为高水垂比大位移井。大位移井钻井技术是定向井、水平井、深井、超深井钻井技术的综合集成应用。现代高新钻井技术,随钻测井技术(LWD)、旋转导向钻井系统(SRD)、随钻环空压力测量(PWD)等在大位移井钻井过程中的集成应用,代表了当今世界钻井技术的一个高峰。目前世界上钻成水平位移最大的大位移井,水平位移达到10728m,斜深达11287m,该记录是BP阿莫科公司于1999年在英国Wytch Farm油田M-16井中创造的(图2.7所示)。三维多目标大位移井也有成功的例子。如挪威Gullfalks油田B29大位移井,就是将原计划用2口井开发该油田西部和北部油藏的方案改为一口井开采方案后钻成的。为了钻成这口井,制定了一套能够钻达所有目标并最大限度地减少摩阻和扭矩的钻井设计方案。根据该方案,把2630m长的水平井段钻到7500m深度,穿过6个目标区,总的方位角变化量达160°。

图2.7 M-16井井身轨迹

我国从1996年12月开始,先后在南海东部海域油田进行了大位移井开发试验,截至2005年底,已成功钻成21口大位移井,其中高水垂比大位移井5口。为开发西江24-1含油构造实施的8口大位移井,其井深均超过8600m,水平位移都超过了7300m,水垂比均大于2.6,其中西江24-3-A4井水平位移达到了8063m,创造了当时(1997年)的大位移井世界纪录。大位移井钻井涉及的关键技术有很多,国内外目前研究的热点问题包括:钻井设备的适应性和综合运用能力、大斜度(大于80°)长裸眼钻进过程中井眼稳定和水平段延伸极限的理论分析与计算、大位移井钻井钻具摩擦阻力/扭矩的计算和减阻、成井过程中套管下入难度大及套管磨损严重等。此外大位移井钻井过程中的测量和定向控制、最优的井身剖面(结构)设计、钻柱设计、钻井液性能选择及井眼净化、泥浆固控、定向钻井优化、测量、钻柱振动等问题也处在不断探索研究之中。

(3)分支井钻井技术

多分支井钻井技术产生于20世纪70年代,并于90年代随着中、小曲率半径水平定向井钻进技术的发展逐渐成熟起来。多分支井钻井是水平井技术的集成发展。多分支井是指在一个主井眼(直井、定向井、水平井)中钻出若干进入油(气)藏的分支井眼。其主要优点是能够进一步扩大井眼同油气层的接触面积、减小各向异性的影响、降低水锥水串、降低钻井成本,而且可以分层开采。目前,全世界已钻成上千口分支井,最多的有10个分支。多分支井可以从一个井眼中获得最大的总水平位移,在相同或不同方向上钻穿不同深度的多层油气层。多分支井井眼较短,大部分是尾管和裸眼完井,而且一般为砂岩油藏。

多分支井最早是从简单的套管段铣开窗侧钻、裸眼完井开始的。因其存在无法重入各个分支井和无法解决井壁坍塌等问题,后经不断研究探索,1993年以来预开窗侧钻分支井、固井回接至主井筒套管技术得到推广应用。该技术具有主井筒与分支井筒间的机械连接性、水力完整性和选择重入性,能够满足钻井、固井、测井、试油、注水、油层改造、修井和分层开采的要求。目前,国外常用的多分支系统主要有:非重入多分支系统(NAMLS),双管柱多分支系统(DSMLS),分支重入系统(LRS),分支回接系统(LTBS)。目前国外主要采用4种方式钻多分支井:①开窗侧钻;②预设窗口;③裸眼侧钻;④井下分支系统(Down Hole Splitter System)。

2.3.1.2 连续管钻井(CTD)技术

连续管钻井技术又叫柔性钻杆钻井技术。开始于20世纪60年代,最早研制和试用这一技术钻井的有法国、美国和匈牙利。早期法国连续管钻进技术最先进,1966年投入工业性试验,70年代就研制出各种连续管钻机,重点用于海洋钻进。当时法国制造的连续管单根长度达到550m。美国、匈牙利制造的连续管和法国的类型基本相同,单根长度只有20~30m。

早期研制的连续管有两种形式。一种是供孔底电钻使用,由4层组成,最内层为橡胶或橡胶金属软管的心管,孔底电机动力线就埋设在心管内;心管外是用2层钢丝和橡胶贴合而成的防爆层;再外层是钢丝骨架层,用于承受拉力和扭矩;最外层是防护胶层,其作用是防水并保护钢丝。另一种是供孔底涡轮钻具使用的,因不需要埋设动力电缆,其结构要比第一种简单得多。第四届国际石油会议之后,美国等西方国家把注意力集中在发展小井眼井上,限制了无杆电钻的发展。连续管钻井技术的研究也放慢了脚步。我国于20世纪70年代曾开展无杆电钻和连续管钻井技术的研究。勘探所与青岛橡胶六厂合作研制的多种规格的柔性钻杆,经过单项性能试验后,于1975年初步用于涡轮钻。1978年12月成功用于海上柔性钻杆孔底电钻,并建造了我国第一台柔杆钻机钻探船。1979~1984年勘探所联合清华大学电力工程系、青岛橡胶六厂研究所和北京地质局修配厂共同研制了DRD-65型柔管钻机和柔性钻杆。DRD-65型柔管钻机主要有柔性钻杆、Φ146mm潜孔电钻、钻塔、柔杆绞车及波浪补偿器、泥浆泵、电控系统和液控系统等部分组成。研制的柔性钻杆主要由橡胶、橡胶布层、钢丝绳及动力线组成。拉力由柔杆中的钢丝骨架层承担,钢丝绳为0.7mm×7股,直径2.1mm,每根拉力不小于4350N,总数为134根,计算拉力为500kN,试验拉力为360kN。钻进过程中,柔性钻杆起的作用为:起下钻具、承受反扭矩、引导冲洗液进入孔底、通过设于柔性钻杆壁内的电缆向孔底电钻输送电力驱动潜孔电钻运转、向地表传送井底钻井参数等。

柔性钻杆性能参数为:内径32mm;抗扭矩不小于1030N·m;外径85~90mm;单位质量13kg/m;抗内压(工作压力)40kg/cm2,曲率半径不大于0.75m,抗外压不小于10kg/cm2;弯曲度:两弯曲形成的夹角不大于120°;额定拉力1000kN;柔杆内埋设动力导线3组,每组15mm2,信号线二根;柔杆单根长度为40、80m两种规格。

Φ146mm型柔杆钻机由Φ127mm电动机、减速器、液压平衡器和减震器组成。动力是潜孔电钻,它直接带动钻头潜入孔底钻井。Φ146mm孔底电钻是外通水式,通水间隙宽5mm,通水横断面积为2055mm2

与常规钻井技术相比,连续管钻井应用于石油钻探具有以下优点:欠平衡钻井时比常规钻井更安全;因省去了提下钻作业程序,可大大节省钻井辅助时间,缩短作业周期;连续管钻井技术为孔底动力电钻的发展及孔底钻进参数的测量提供了方便条件;在制作连续管时,电缆及测井信号线就事先埋设在连续管壁内,因此也可以说连续管本身就是以钢丝为骨架的电缆,通过它可以很方便地向孔底动力电钻输送电力,也可以很方便地实现地面与孔底的信息传递;因不需拧卸钻杆,因此在钻进及提下钻过程中可以始终保持冲洗液循环,对保持井壁稳定、减少孔内事故意义重大;海上钻探时,可以补偿海浪对钻井船的漂移影响;避免了回转钻杆柱的功率损失,可以提高能量利用率,深孔钻进时效果更明显。正是由于连续管钻井技术有上述优点,加之油田勘探需要以及相关基础工业技术的发展为连续管技术提供了进一步发展的条件,在经过了一段时间的沉寂之后,20世纪80年代末90年代初,连续管钻井技术又呈现出飞速发展之势。其油田勘探工作量年增长量达到20%。连续管钻井技术研究应用进展情况简述如下。

1)数据和动力传输热塑复合连续管研制成功。这种连续管是由壳牌国际勘探公司与航空开发公司于1999年在热塑复合连续管基础上开始研制的。它由热塑衬管和缠绕在外面的碳或玻璃热塑复合层组成。中层含有3根铜质导线、导线被玻璃复合层隔开。碳复合层的作用是提供强度、刚度和电屏蔽。玻璃复合层的作用是保证强度和电隔离。最外层是保护层。这种连续管可载荷1.5kV电压,输出功率20kW,传输距离可达7km,耐温150℃。每根连续管之间用一种特制接头进行连接。接头由一个钢制的内金属部件和管子端部的金属环组成。这种连续管主要用于潜孔电钻钻井。新研制的数据和动力传输连续管改变了过去用潜孔电钻钻井时,电缆在连续管内孔输送电力影响冲洗液循环的缺点。

2)井下钻具和钻具组合取得新进展。XL技术公司研制成功一种连续管钻井的电动井下钻具组合。该钻具组合主要由电动马达、压力传感器、温度传感器和震动传感器组成。适用于3.75in井眼的电动井下马达已交付使用。下一步设想是把这种新型电动马达用于一种新的闭环钻井系统。这种电动井下钻具组合具有许多优点:不用钻井液作为动力介质,对钻井液性能没有特殊要求,因而是欠平衡钻井和海上钻井的理想工具;可在高温下作业,振动小,马达寿命长;闭环钻井时借助连续管内设电缆可把测量数据实时传送到井口操纵台,便于对井底电动马达进行灵活控制,因而可使钻井效率达到最佳;Sperry sun钻井服务公司研制了一种连续管钻井用的新的导向钻具组合。这种钻具组合由专门设计的下部阳螺纹泥浆马达和长保径的PDC钻头组成。长保径钻头起一个近钻头稳定器的作用,可以大幅度降低振动,提高井眼质量和机械钻速。泥浆马达有一个特制的轴承组和轴,与长保径钻头匹配时能降低马达的弯曲角而不影响定向性能。在大尺寸井眼(>6in)中进行的现场试验证明,导向钻具组合具有机械钻速高、井眼质量好、井下振动小、钻头寿命长、设备可靠性较高等优点。另外还研制成功了一种连续软管欠平衡钻井用的绳索式井底钻具组合。该钻具组合外径为in上部与外径2in或in的连续管配用,下部接钻铤和in钻头。该钻具组合由电缆式遥控器、稳定的MWD仪器、有效的电子定向器及其他参数测量和传输器件组成。电缆通过连续管内孔下入孔底,能实时监测并处理工具面向角、钻井顶角、方位角、自然伽马、温度、径向振动频率、套管接箍定位、程序状态指令、管内与环空压差等参数。钻具的电子方位器能在钻井时在导向泥浆马达连续旋转的情况下测量并提供井斜和方位两种参数。

其他方面的新进展包括:连续管钻井技术成功用于超高压层侧钻;增加连续管钻井位移的新工具研制成功;连续管钻井与欠平衡钻井技术结合打水平井取得好效果;适于连续管钻井的混合钻机研制成功;连续管钻井理论取得新突破。

2.3.1.3 石油勘探小井眼钻井技术

石油部门通常把70%的井段直径小于177.8mm的井称为小井眼井。由于小井眼比传统的石油钻井所需钻井设备小且少、钻探耗材少、井场占地面积小,从而可以节约大量勘探开发成本,实践证明可节约成本30%左右,一些边远地区探井可节约50%~75%。因此小井眼井应用领域和应用面越来越大。目前小井眼井主要用于:①以获取地质资料为主要目的的环境比较恶劣的新探区或边际探区探井;②600~1000m浅油气藏开发;③低压、低渗、低产油气藏开发;④老油气田挖潜改造等。

2.3.1.4 套管钻井技术

套管钻井就是以套管柱取代钻杆柱实施钻井作业的钻井技术。不言而喻套管钻井的实质是不提钻换钻头及钻具的钻进技术。套管钻井思想的由来是受早期(18世纪中期钢丝绳冲击钻进方法用于石油勘探,19世纪末期转盘回转钻井方法开始出现并用于石油钻井)钢丝绳冲击钻进(顿钻时代)提下钻速度快,转盘回转钻进井眼清洁且钻进速度快的启发而产生的。1950年在这一思想的启发下,人们开始在陆上钻石油井时,用套管带钻头钻穿油层到设计孔深,然后将管子固定在井中成井,钻头也不回收。后来,Sperry-sun钻井服务公司和Tesco公司根据这一钻井原理各自开发出套管钻井技术并制定了各自的套管钻井技术发展战略。2000年,Tesco公司将4.5~13.375in的套管钻井技术推向市场,为世界各地的油田勘探服务。真正意义的套管钻井技术从投放市场至今还不到10年时间。

套管钻井技术的特点和优势可归纳如下。

1)钻进过程中不用起下钻,只利用绞车系统起下钻头和孔内钻具组合,因而可节省钻井时间和钻井费用。钻进完成后即等于下套管作业完成,可节省完井时间和完井费用。

2)可减少常规钻井工艺存在的诸如井壁坍塌、井壁冲刷、井壁键槽和台阶等事故隐患。

3)钻进全过程及起下井底钻具时都能保持泥浆连续循环,有利于防止钻屑聚集,减少井涌发生。套管与井壁之间环状间隙小,可改善水力参数,提高泥浆上返速度,改善井眼清洗效果。

套管钻井分为3种类型:普通套管钻井技术、阶段套管或尾管钻井技术和全程套管钻井技术。普通套管钻井是指在对钻机和钻具做少许改造的基础上,用套管作为钻柱接上方钻杆和钻头进行钻井。这种方式主要用于钻小井眼井。尾管钻井技术是指在钻井过程中,当钻入破碎带或涌水层段而无法正常钻进时,在钻柱下端连接一段套管和一种特制工具,打完这一段起出钻头把套管留在井内并固井的钻井技术。其目的是为了封隔破碎带和水层,保证孔内安全并维持正常钻进。通常所说的套管钻井技术是指全程套管钻井技术。全程套管钻井技术使用特制的套管钻机、钻具和钻头,利用套管作为水利通道,采用绳索式钻井马达作业的一种钻井工艺。目前,研究和开发这种钻井技术的主要是加拿大的Tesco公司,并在海上进行过钻井,达到了降低成本的目的。但是这种钻井技术目前仍处于研究完善阶段,还存在许多问题有待研究解决。这些问题主要包括:①不能进行常规的电缆测井;②钻头泥包问题严重,至今没有可靠的解决办法;③加压钻进时,底部套管会产生横向振动,致使套管和套管接头损坏,目前还没有找到解决消除或减轻套管横向振动的可靠方法;④由于套管钻进不使用钻铤,加压困难,所以机械钻速低于常规钻杆钻井;部分抵消了套管钻进提下钻节省的时间;⑤套管钻井主要用于钻进破碎带和涌水地层,其应用范围还不大。

我国中石油系统的研究机构也在探索研究套管钻井技术,但至今还没有见到公开报道的成果。目前,套管钻井技术的研究内容,除了研制专用套管钻机和钻具外,重点针对上述问题开展。一是进行钻头的研究以解决钻头泥包问题;二是研究防止套管横向振动的措施;三是研究提高套管钻井机械钻速的有效办法;四是研究套管钻井固井办法。

套管钻井应用实例:2001年,美国谢夫隆生产公司利用加拿大Tesco公司的套管钻井技术在墨西哥湾打了2口定向井(A-12和A-13井)。两井成井深度分别为3222×30.48cm和3728×30.48cm。为了进行对比分析,又用常规方法打了一口A-14井,结果显示,同样深度A-14井用时75.5h,A-13井用时59.5h。表层井段钻速比较,A-12 井的平均机械钻速为141ft/h,A-13井为187ft/h,A-14井为159ft/h。这说明套管钻井的机械钻速与常规方法机械钻速基本相同。但钻遇硬地层后套管钻井,钻压增加到6.75t,致使扩眼器切削齿损坏,钻速降低很多。BP公司用套管钻井技术在怀俄明州钻了5口井。井深为8200~9500ft,且都是从井口钻到油层井段。钻进过程中遇到了钻头泥包和套管振动问题。

此外,膨胀套管技术也是近年来发展起来的一种新技术,主要用于钻井过程中隔离漏失、涌水、遇水膨胀缩经、破碎掉块易坍塌等地层以及石油开采时油管的修复。勘探所与中国地质大学合作已立项开展这方面的研究工作。

2.3.1.5 石油钻机的新发展

国外20世纪60年代末研制成功了AC-SCR-DC电驱动钻机,并首先应用于海洋钻井。由于电驱动钻机在传动、控制、安装、运移等方面明显优于机械传动钻机,因而获得很快的发展,目前已经普遍应用于各型钻机。90年代以来,由于电子器件的迅速发展,直流电驱动钻机可控硅整流系统由模拟控制发展为全数字控制,进一步提高了工作可靠性。同时随着交流变频技术的发展,交流变频首先于90年代初成功应用于顶部驱动装置,90年代中期开始应用于深井石油钻机。目前,交流变频电驱动已被公认为电驱动钻机的发展方向。

国内开展电驱动钻机的研究起步较晚。兰州石油化工机器厂于20世纪80年代先后研制并生产了ZJ60D型和ZJ45D型直流电驱动钻机,1995年成功研制了ZJ60DS型沙漠钻机,经应用均获得较好的评价。90年代末期以来,我国石油系统加大钻机的更新改造力度,电驱动钻机取得了较快发展,宝鸡石油机械厂和兰州石油化工机器厂等先后研制成功ZJ20D、ZJ50D、ZJ70D型直流电驱动钻机和ZJ20DB、ZJ40DB型交流变频电驱动钻机,四川油田也研制出了ZJ40DB交流变频电驱动钻机,明显提高了我国钻机的设计和制造水平。进入21世纪,辽河油田勘探装备工程公司自主研制成功了钻深能力为7000m的ZJ70D型直流电驱动钻机。该钻机具有自动送钻系统,代表了目前我国直流电驱动石油钻机的最高水平,整体配置是目前国内同类型钻机中最好的。2007年5月已出口阿塞拜疆,另两部4000m钻机则出口运往巴基斯坦和美国。由宝鸡石油机械有限责任公司于2003年研制成功并投放市场的ZJ70/4500DB型7000m交流变频电驱动钻机,是集机、电、数字为一体的现代化钻机,采用了交流变频单齿轮绞车和主轴自动送钻技术和“一对一”控制的AC-DC-AC全数字变频技术。该型钻机代表了我国石油钻机的最新水平。凭借其优良的性能价格比,2003年投放市场至今,订货已达83台套。其中美国、阿曼、委内瑞拉等国石油勘探公司订货达42台套。在国内则占领了近2~3年来同级别电驱动钻机50%的市场份额。ZJ70/4500DB型钻机主要性能参数:名义钻井深度7000m,最大钩载4500kN,绞车额定功率1470kW,绞车和转盘挡数I+IR交流变频驱动、无级调速,泥浆泵型号及台数F-1600三台,井架型式及有效高度K型45.5m,底座型式及台面高度:双升式/旋升式10.5m,动力传动方式AC-DC-AC全数字变频。

Ⅸ 天然气那个表怎么读一个长绳代表多少一个短绳代表多少

天然气的读法是当面对燃气表时,天然气表右边的第四位数是个位,第五位数是十位,而右边三个字轮的数可以不读。例如01127888此数中,888三位是小数位,这个可以不需要读的。再从右面开始数的第四位数是分别是个位,十位,百数,千位,万位,单位是立方米。第四位7是个位数,2是十位数,1是百位,另一个1是千位。燃汽公司工作人员抄表时,小数位都是省略的。所以该表读数为1127立方米。

天燃气使用数据计算方法

就是将这个月的抄表读数与上一次的抄表读数进行相减,所得的差就是本次使用的天燃气数量。比如这次的燃气表读数是1127立方米,上期读数是1027立方米。那么本次使用的天燃气量是1127减1027等于100立方米。

在使用天然气的时候室内一定要注意通风,其主要目的是为了预防危险事故发生。假如室内的通风效果不好,燃气在燃烧的过程中氧气含量就会慢慢的降低。

Ⅹ 如何打开通往地下宝藏的通道

为了寻找与开采埋藏在地层中的石油和天然气,必须钻穿从地面到地下油层之间的地层岩石,形成一个油气通畅流到地面的通道,由此打开地下亿万年的油气宝藏,这个过程就是石油、天然气钻井。在整个钻井作业过程中,必须注意保护好地下油气层不受污染、伤害,为油气井的发现和长期开采打下良好基础。
钻井的过程其实并不复杂,原理就像我们用电钻在木块或金属块上打眼一样。不过石油钻井的对象是地层,钻下来的钻屑由循环的钻井液携带到地面。
首先要知道在什么地方打井。要在充分认识油藏的基础上,制订油田开发方案井网布置图,并在射孔方案中确定开发井储集层的位置。所以在钻开发井之前,井的位置、完井深度、需要射开的油层以及射孔的数量与方位都是确定的,必须严格执行。
然后在井位上打好基础,安装钻井井架和钻机。
钻井井架(钻塔)是石油工业的标志,它像一个个巨人一样矗立在大地上。目前世界最高的钻塔高达70米,可承受1000吨的重量。井架顶端装有定滑轮组,即天车。穿在滑轮组上的钢丝绳带动动滑轮组(即游动滑车)上下游动。游动滑车上装有大钩、吊环和吊钳等工具。钻井过程中起下钻具和下套管作业时,要把上百吨至几百吨的钻具或套管柱,从井中起出或下入。在起下钻过程中,井架还要能够存放和支撑全部由2根或3根钻杆组成的钻杆立柱。钻井井架主要由井架底座、井架本体、天车台、天车、起下钻具的操作台(二层台)、立管平台(即拆装水龙带的操作台)和井架扶梯等组成。
石油钻机是石油钻井的专用机械设备,它是由可使钻柱旋转的转盘、能提升井下钻具的绞车和维持钻井液循环的钻井泵组成的,是钻井过程的核心设备。动力系统是大功率柴油机组和柴油发电机组,由它们提供强大的动力。该动力一方面通过绞车、天车、游车、大钩吊住并起下钻具,另一方面通过减速箱和变矩器带动水平的转盘,再通过转盘内的方补心、方钻杆带动整个钻柱旋转;同时钻井泵把高压钻井液通过管线和水龙带、水龙头从空心钻柱泵入井底,从钻头上的高压水眼喷出,携带全部钻屑从钻柱与井壁之间的环形空间返出地面。钻井液净化系统在地面清除钻屑后,再由钻井泵将钻井液循环泵入井底。正常钻进时,整个钻柱垂直悬吊在大钩上,只有极小部分钻柱重量由最底部的厚壁不易弯曲的钻铤施加在钻头上,以保证井眼的垂直。
为了保证钻井过程正常进行,还需要其他的系统配合共同完成,主要包括控制系统、钻井液循环系统、井控装置等。
钻具就是整个井下钻柱。从上往下,由方型钻杆、钻杆(圆形)、钻铤、钻头及一系列配合接头组成。其中钻头是钻具的急先锋,它总是冲锋在前,承担钻进破岩任务。在石油钻井中,广泛应用的钻头有用于较软地层的刮刀钻头、用于较硬地层的牙轮钻头和用于坚硬地层的金刚石钻头。在克拉玛依注册的与美国哈里伯顿公司合资组建的新疆DBS钻头工具有限公司目前生产的适用于坚硬地层的高效PDC钻头(Polycrystalline——聚晶、Diamond——金刚石、Compact——复合片)在准噶尔、塔里木和吐哈三大油气区得到了广泛的应用。

钻井液是钻井施工中十分重要的组成部分,它是“钻井的血液”,通常将它称之为“泥浆”。可别小看它的作用,它可以悬浮并携带出井筒中岩屑;平衡地层流体的压力以防止井喷;冷却、润滑钻头和钻具;保护井壁;在井壁形成优质滤饼,可防止钻井液中的水和微细颗粒进入油气层造成污染,保护油气层;在喷射钻井过程中,从钻头水眼喷出的钻井液高压射流,可协助破岩,大大加快钻头的钻进速度。
钻井作业时,钻机提供动力,带动钻杆和钻头旋转。在钻头破碎岩石的同时,地面钻井泵通过空心钻杆向地下泵入钻井液,携带钻头破碎的大量岩屑,由钻杆与井壁之间的环形空间返出地面。钻头不断破碎岩石,钻井液通过循环,不断携带出产生的岩屑,形成井筒。钻进达设计深度后,要在井筒内下入专用的测井仪进行测井,确定井下地层岩性和各个油、气、水层的位置,然后在井筒里下入套管。钻井结束后要进行固井,即在套管与井壁的环形空间注入水泥浆,把套管固定在井壁上,并封隔地下油、气、水层,使之互不相通。最后,在要开采的油气层位置射孔,形成井下油气流入套管内的孔道。如果油气层压力高,循环替出高密度钻井液,降低井筒液柱压力后,油、气就会自行喷出地面,称为自喷油气井;而当油气层压力低时,需要借助于人工抽吸,将油气排出地面,称为非自喷井。