查找有用的行情資料,學習更多百科知識
当前位置:首页 » 石油矿藏 » 石油工程中阻位是什么意思
扩展阅读
怎么订二手房价格 2025-07-31 14:44:04

石油工程中阻位是什么意思

发布时间: 2022-06-27 01:20:08

‘壹’ 我想问一下n是什么意思根据管材、管径确定管道比阻:s=10.3n^2/D^5.33

1、管道比阻---单位管长、单位流量时的沿程水力损失,计算公式较麻烦,例如塑料硬管的比阻So=0.000915/内径的4.77次方。为了简化计算工作,一般把不同材质、不同管径的比阻So值算出后列表,供查用。
2、管道是用管子、管子联接件和阀门等联接成的用于输送气体、液体或带固体颗粒的流体的装置。通常,流体经鼓风机、压缩机、泵和锅炉等增压后,从管道的高压处流向低压处,也可利用流体自身的压力或重力输送。管道的用途很广泛,主要用在给水、排水、供热、供煤气、长距离输送石油和天然气、农业灌溉、水力工程和各种工业装置中。

‘贰’ 减水剂的作用机理是什么

减水剂的作用机理是减水剂中的亲水基极性很强,因此水泥颗粒表面的减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而使混凝土流动性进一步提高。

由于水泥颗粒的水化作用,水泥颗粒表明形成双电层结构,使之形成溶剂化水膜,且水泥颗粒表面带有异性电荷使水泥颗粒间产生缔合作用,使水泥浆形成絮凝结构,使10%~30%的拌合水被包裹在水泥颗粒之中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性。

当加入减水剂后,由于减水剂分子能定向吸附于水泥颗粒表面,使水泥颗粒表面带有同一种电荷(通常为负电荷),形成静电排斥作用,促使水泥颗粒相互分散,絮凝结构解体,释放出被包裹部分水,参与流动,从而有效地增加混凝土拌合物的流动性。

(2)石油工程中阻位是什么意思扩展阅读

减水剂结构中具有亲水性的支链,伸展于水溶液中,从而在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层。当水泥颗粒靠近时,吸附层开始重叠,即在水泥颗粒间产生空间位阻作用,重叠越多,空间位阻斥力越大,对水泥颗粒间凝聚作用的阻碍也越大,使得混凝土的坍落度保持良好。

新型的减水剂如聚羧酸减水剂在制备的过程中,在减水剂的分子上接枝上一些支链,该支链不仅可提供空间位阻效应,而且,在水泥水化的高碱度环境中,该支链还可慢慢被切断,从而释放出具有分散作用的多羧酸,这样就可提高水泥粒子的分散效果,并控制坍落度损失。

适用于强度等级为C15~C60及以上的泵送或常态混凝土工程。特别适用于配制高耐久、高流态、高保坍、高强以及对外观质量要求高的混凝土工程。对于配制高流动性混凝土、自密实混凝土、清水饰面混凝土极为有利。

普通减水剂宜用于日最低气温5℃以上施工的混凝土。高效减水剂宜用于日最低气温0℃以上施工的混凝土,并适用于制备大流动性混凝土、高强混凝土以及蒸养混凝土。

‘叁’ 关于苯加氢用阻聚剂的问题。。。。

阻聚剂
Polymerization Inhibitor

橡胶进出口网 - 橡胶助剂列表

1 阻聚剂及碘参与的活性自由基聚合和新均相引发剂CAN的研究 张鸿硕士 苏州大学 2006 3
2 高效甲醛阻聚剂的研制 刘魁 化学试剂 2006 2
3 毛细管气相色谱法分析丙烯腈中阻聚剂(MEHQ)的含量 惠希东 检验检疫科学 2006 1
4 阻聚剂对自由基聚合的活性化影响 常丽群 胶体与聚合物 2006 1
5 茂名乙烯装置脱丙烷塔用高效阻聚剂RIPP1461的研制与应用 孙晶磊 广东化工 2005 8
6 丁二烯抽提阻聚剂的研制 何玉莲硕士 大庆石油学院 2005 12
7 甲基丙烯酸甲酯中阻聚剂2, 4-二甲基-6-叔丁基苯酚的测定 刘兴富 辽宁化工 2004 7
8 HDPE辐照接枝AA与SSS体系阻聚剂用量对接枝率的影响 俎建华 辐射研究与辐射工艺学报 2004 4
9 丁二烯抽提装置阻聚剂的研制及应用 包静严 化工科技市场 2004 4
10 高效液相色谱法分析甲基丙烯酰氧乙基三甲基氯化铵中的阻聚剂 李素真 山东化工 2004 3
11 国产阻聚剂BL-628在天津乙烯装置上的应用 吴铁锁 石化技术 2004 2
12 甲醛阻聚剂聚乙烯醇缩甲醛的合成 王岩 丹东纺专学报 2004 2
13 新型阻聚剂JD-A249在丁二烯抽提装置上的应用 李海强 齐鲁石油化工 2004 2
14 一步催化法合成新型阻聚剂DNBP 刘春媚 吉林化工学院学报 2004 2
15 阻聚剂HK-17A在焦化粗苯加氢中的应用 王力 河北化工 2004 1
16 仿丙烯腈生产过程研究ZC-01阻聚剂的阻聚效果 金耀琴 石化技术与应用 2004 1
17 碳五馏分中微量阻聚剂二乙基羟胺的气相色谱测定法 徐秀红 分析科学学报 2003 5
18 乙烯工艺阻聚剂在选择与使用过程中应注意的问题 盖月庭 乙烯工业 2003 4
19 阻聚剂脱除方法对丙烯酸钠聚合的影响 刘继泉 青岛科技大学学报(自然科学版) 2003 4
20 对新型丁二烯阻聚剂的剖析研究 肖占敏 炼油与化工 2003 3
21 GC/MS法测定苯乙烯中阻聚剂对叔丁基邻苯二酚的含量 陈朝方 检验检疫科学 2002 6
22 阻聚剂性能动力学评定方法的改进 姜维硕士 石油化工科学研究院 2002 5
23 丙烯酰胺提纯过程中阻聚剂的有效控制 杨涛 江西化工 2002 3
24 气相色谱-质谱联用测定苯乙烯中的阻聚剂对叔丁基邻苯二酚 陈朝方 色谱 2002 3
25 苯乙烯中阻聚剂DNPC快速测定方法的建立 顾桂珍 广东化工 2001 5
26 国产阻聚剂RIPP-1403在燕山乙烯装置上的应用 李光松 石化技术 2001 3
27 阻聚剂的存在对碳氢燃料热分解动力学的影响 郭晓亚 化工时刊 2001 2
28 新型苯乙烯阻聚剂的性能评价与工业应用 靳由顺 山西化工 2001 2
29 氮氧自由基光阻聚剂的研究 严宝珍 北京化工大学学报 2001 2
30 脱丙烷塔用高效阻聚剂RIPP1461的研制与应用 邹余敏 石油化工 2001 12
31 从裂解汽油中萃取蒸馏分离苯乙烯的溶剂及阻聚剂的评选 田龙胜 石油炼制与化工 2001 11
32 新型高效阻聚剂DNBP合成 杜长海 吉林工学院学报(自然科学版) 2000 4
33 新型阻聚剂EC3144A在乙烯生产中的应用 商平 黑龙江石油化工 2000 4
34 苯乙烯精馏阻聚剂的研究进展 菅秀君 精细石油化工 2000 3
35 高效阻聚剂DNBP合成新工艺 林艳红 吉林工学院学报(自然科学版) 2000 1
36 RIPP-1461乙烯高效阻聚剂工业试验 洪庆尧 石油炼制与化工 1999 7
37 阻聚剂TBC在亚硫酸盐防腐蚀中的作用 魏刚 化工机械 1999 4
38 阻聚剂TBC对亚硫酸盐自动氧化的阻滞作用 熊蓉春 化工机械 1999 3
39 高效阻聚剂RIPP-1461的应用 吴启龙 乙烯工业 1999 2
40 乙烯工艺阻聚剂的研制及工业应用 洪庆尧 乙烯工业 1999 2
41 几种常用酚类阻聚剂的高效液相色谱法分析 李素真 山东化工 1998 5
42 RIPP-1402阻聚剂工业试验及应用 洪庆尧 石油化工 1998 5
43 甲醛阻聚剂的制备 陈瑞兰 化学试剂 1998 5
44 RIPP-1402阻聚剂的研究 洪庆尧 石油化工 1998 4
45 浅谈丁苯橡胶装置丁二烯脱阻聚剂系统夹带问题 任军 合成橡胶工业 1998 4
46 阻聚剂2, 6-二硝基对甲酚的合成研究 李德鹏 化学工程师 1997 3
47 过氧化物胺和阻聚剂含量对树脂固化和性能的影响 王军 现代口腔医学杂志 1997 1
48 盘锦乙烯装置C_3阻聚剂系统的改造 徐海琴 乙烯工业 1996 4
49 碳五萃取精馏阻聚剂适应性研究 赵全聚 金山油化纤 1996 4
50 甲基丙烯酸β-羟乙酯合成及其蒸馏阻聚剂研究 赵慈义 武汉化工学院学报 1995 4
51 苯乙烯精馏过程新型高效阻聚剂调研 何连生 石化技术 1995 3
52 胺和酚类及其复合阻聚剂在乙烯装置中的应用 张继朋 石油炼制与化工 1994 9
53 乙烯系自由基聚合阻聚效应(XⅧ)——哌啶氮氧自由基氨基硫脲化合物与通用阻聚剂混合对MMA阻聚效应研究 张自义 高等学校化学学报 1994 3
54 BR生产回收溶剂油中微量阻聚剂TBC的测定 李远芬 合成橡胶工业 1991 1
55 新型阻聚剂在丙烯腈成品塔上的工业试验 韩国梁 石化技术与应用 1990 3
56 丙烯腈阻聚剂简介 韩国梁 石化技术与应用 1990 1
57 气相色谱法测定C_5馏分中微量阻聚剂二乙羟胺 李兆琳 合成橡胶工业 1989 6
58 液相色谱法测定MMA中的痕量阻聚剂2, 2, 6, 6-四甲基-4-羟基哌啶-1-氧自由基 段志兴 合成橡胶工业 1989 5
59 高效液相色谱法定量分析微量阻聚剂硫代二苯基胺 迟久春 石油与天然气化工 1989 4
60 阻聚剂在乳液聚合中的行为(Ⅱ)——第Ⅰ类动力学体系?〈〈 0.5) A.Penlidis 化工学报 1989 4
61 阻聚剂在乳液聚合中的行为(Ⅰ)——第Ⅱ类动力学体系(?=0.5) 霍炳培 化工学报 1989 4
62 羟乙基丙烯酸酯阻聚剂的选择 刘同保 化学世界 1988 6
63 新型丙烯腈阻聚剂在丙烯腈系统工业试验 韩国梁 石化技术与应用 1988 4
64 防止高效阻聚剂TMHPO使丙烯酸系单体着色的方法 张自义 化学世界 1987 5
65 共轭双烯烃用新型阻聚剂 林基兰 合成橡胶工业 1987 5
66 新型丙烯腈阻聚剂工业试验 韩国梁 石化技术与应用 1987 3
67 HK-14用作轻苯阻聚剂 王惠良 化学世界 1986 4
68 苯乙烯精馏阻聚剂的应用技术 何仕新 石化技术与应用 1986 2
69 苯乙烯的高温型阻聚剂 张自义 化学世界 1985 8
70 苯乙烯新型高效阻聚剂Q的工业应用 蔡万有 合成橡胶工业 1985 5
71 低醇甲醛阻聚剂阻聚试验 冯小锁 石化技术与应用 1985 2
72 丙烯酸酯、甲基丙烯酸酯类单体中混合阻聚剂分析 张兰芬 涂料工业 1985 1
73 氯丁二烯温和阻聚剂的研究 庞义 山西化工 1984 2
74 甲基丙烯酸阻聚剂的研究——非金属盐新阻聚剂-4-羟基-2.2.6.6-四甲基哌啶-1-氧自由基(TMPO~·)的考察 刘善政 河南科学 1984 1
75 苯乙烯高温阻聚剂的评选 何仕新 合成橡胶工业 1984 1
76 精馏异戊二烯阻聚剂的研究 张自义 兰州大学学报(自然科学版) 1983 S1
77 丙烯腈阻聚剂的研究 张自义 合成橡胶工业 1983 4
78 低醇甲醛阻聚剂 黄绍和 现代化工 1983 1
79 影响甲醛阻聚剂质量因素的讨论 顾敬瑜 安徽化工 1982 2
80 制备甲基丙烯酸的高效阻聚剂 潘治平 化学世界 1980 8
81 聚氨酯预聚物制造中的有效阻聚剂—正磷酸 何愫明 涂料工业 1980 6
82 分离异戊二烯过程中的阻聚剂 张镜澄 合成橡胶工业 1980 5
83 高效阻聚剂对叔丁基邻苯二酚 合成橡胶工业 1980 4
84 阻聚剂的评选方法 张自义 合成橡胶工业 1980 3
85 甲醛阻聚剂的试制 安徽化工 1980 1
86 裂解C_5馏份阻聚剂的研究 张自义 兰州大学学报(自然科学版) 1979 3
87 异戊二烯阻聚剂的再研究 合成橡胶工业 1978 4
88 脱C_3塔釜液阻聚剂的评选 合成橡胶工业 1978 3
89 氯丁二烯高效阻聚剂的研究 合成橡胶工业 1978 3
90 阻聚剂在接枝共聚中抑制均聚的作用 陈锦甫 高分子学报 1978 1
91 略谈二烯烃阻聚剂类型 张自义 兰州大学学报(自然科学版) 1977 3
92 异戊二烯阻聚剂的研究 兰州大学学报(自然科学版) 1976 3
93 高效阻聚剂——对-叔丁基邻苯二酚(TBC) 塑料工业 1975 2
94 丙烯腈阻聚剂的初步研究和应用 合成纤维 1975 1

‘肆’ 大庆油田是哪一年发现和开采的

大庆油田是1959年9月发现,于松辽盆地开采的。

1960年,国家组织大庆石油会战,投入试验性开发。1963年底,大庆油田结束试验性开发,进入全面开发建设,先后开发了萨尔图、杏树岗和喇嘛甸三大主力油田,并勘探准备了一批可开发的新油田。大庆油田的开发建设,甩掉了中国“贫油”的帽子。

截至2021年6月,大庆油田自主创新复合驱大幅度提高采收率技术,已达到国际领先水平。复合驱成为大庆油田战略性接替技术,使中国成为世界上唯一大规模工业化应用复合驱技术的国家。

大庆油田的资源量:

大庆的石油勘探范围,包括黑龙江省全部和内蒙古自治区呼伦贝尔盟共72万平方千米的广大地区,占据中国陆地面积的1/13。其中松辽盆地面积26万平方千米,纵跨黑龙江、吉林、辽宁三省,在黑龙江境内约占12万平方千米。

在地质历史上,这里曾是一个大型内陆湖盆,中生代侏罗纪和白垩纪时期,沉积了丰富的生油物质。盆地中心的沉积岩厚度达7000至9000多米。据记载,在这个地区,科学预测,至少蕴藏着100—150亿吨石油储量,可供开采的石油储量为80—100亿吨。

以上内容参考:

网络—大庆油田

网络—大庆

‘伍’ 流体力学在煤层气多分支井身结构设计中的应用研究

鲜保安 王宪花 高颖

(中国石油勘探开发研究院廊坊分院煤层气项目经理部 河北廊坊 065007)

作者简介:鲜保安,1966年生,男,陕西户县人,博士学位,1991年毕业于石油大学(华东)开发系钻井工程专业,长期从事石油、天然气、煤层气钻井完井技术研究工作。通讯地址:河北省廊坊市44信箱,邮编:065007,Email:xbalffy 69@Petrochina.com.cn。

摘要 煤层气是一种以吸附态储集在煤层中的天然气资源,煤层裂缝系统由众多不同类型的裂纹组成,原始裂纹与应力变化产生的新裂纹形成网状结构,煤层气多分支井增产机理在于实现了广域面的效应,可以大范围沟通煤层裂隙系统,扩大煤层降压范围,降低煤层水排出时的摩阻,大幅度提高单井产量和采收率。根据流体串联和并联管路设计原理,推导出多分支井身结构协调方程,并依此设计出2类紊流型和5类层流型的多分支井身结构。

关键词 煤层气 多分支井 井身结构 设计模型

Application Study of Hydrodynamics in Well Bore Structure Design of Multi-Lateral Wells of CBM

Xian Bao'an,Wang Yaohua,Gao Ying

(Langfang Branch of PetroChina Research Institute of Petroleum Exploration & DeveloPment,Langfang 065007)

Abstract:CBMis a kind of natural gas stored in coal seams in absorption states.Facture system of coal seams consists of many different types of cleats.The original and stress-inced cleats formed network of fracture system of coal seams.The reasons why multilateral well of CBM can enhance proction of CBM are that it establishes better communication and connection channels within a larger radius among coal cleats,expands the scope of pressure dropping of coal seams,reces the frictional force of flow-out of coal seam water and consequently greatly enhances CBM proction and recovery of single well.Based on the theory of series-parallel circuit design,the author designed a coordination equation for wellbore structure of multilateral well and subsequently designed two sorts of turbulent flow and five sorts of laminar flow of wellbore structures of multilateral wells.

Keywords:CBM;multi-lateral wells;wellbore structure;design models

引言

煤层气是指储集在煤层中的天然气,主要指吸附在煤岩基质内的甲烷,即煤层中以吸附状态存在的天然气[1]。多分支井可定义为提高泄油(气)面积,把主水平井或直井侧钻多次,从主水平井或直井井筒钻出多个分支井眼。煤层气多分支井技术正是针对煤层气储层的低压、低渗、低流体动能和低产特性而提出来的,集煤层气钻井、完井与增产措施于一体。

多分支井按曲率半径划分为四类,即长半径分支井、中半径分支井、短半径分支井、超短半径分支井,其中中曲率半径分支井应用最广泛。分支井按井眼轨迹划分为四类,即主井筒为直井的双分支井、主井筒为直井的三分支井、主井筒为水平井的三分支井、主井筒为水平井的梳齿状分支井。主井筒为直井的双分支,分别开发两个不同的产层,两个井筒分别是直井和定向井。主井筒为直井的三分支井,主井筒以下有两个分支。主井筒为水平井的三分支井,三个分支井在主井筒同侧,分别开发三个层位。主井筒为水平井的梳齿状分支井,主井筒为水平井,各分支呈梳齿状或逆斜分布[2]

1 多分支井主要增产机理与优点

多分支井技术适合于开采低渗透储层的煤层气,主要原因在于分支井眼能够改善低渗透储层流体的流动状态。煤层裂缝系统由众多不同类型的裂纹组成,产状各异的裂纹将煤层分割成形状不同的晶体,即煤岩基质。煤层段分支或水平井眼以张性与剪切变形形成的裂纹为主,并且由于钻采过程中煤层应力状态的变化,导致原始闭合的裂纹重新开启,原始裂纹与应力变化产生的新裂纹形成网状结构,所以煤层气多分支井的增产机理在于突破了原来直井点的范围与单一水平井的线或窄面的局限,实现了广域面的效应,可以大范围沟通煤层裂隙系统,扩大煤层降压范围,降低煤层水排出时的摩阻,大幅度提高单井产量和采收率[3]。多分支水平井技术的优点主要有以下几方面:

(1)增加有效供给范围。水平钻进400~600m是比较容易的,然而要压裂这么长的裂缝几乎是不可能的,而且造就一条较长的支撑裂缝要求使用大型的压裂设备。多分支水平井在煤层中呈网状分布,将煤层分割成很多连续的狭长条带,从而大大增加煤层气的供给范围。

(2)提高煤层导流能力。压裂的裂缝无论长度多长,流动的阻力都是相当大的,而水平井内流体的流动阻力相对于割理系统要小得多。分支井眼与煤层割理的相互交错,煤层割理与裂隙更畅通,就提高了裂隙的导流能力。

(3)减少对煤层的伤害。常规直井钻井完钻后要固井,完井后还要进行水力压裂改造,每个环节都会对煤层造成不同程度的伤害,而且煤层伤害很难恢复。采用多分支水平井钻井完井方法,就避免了固井和水力压裂作业,这样只要在钻井时设法降低钻井液对煤层的伤害,就能满足工程要求。

(4)单井产量高,经济效益好。采用多分支水平井开发煤层气,单井成本比直井高,但在一个相对较大的区块开发,可大大减少钻井数量,降低钻井工程、采气工程及地面集输与处理费用,从而降低综合成本,而且产量是常规直井的2~10倍,采出程度比常规直井平均高出近2倍,既提高经济效益,更为重要的是充分地开发了煤层气资源。

(5)具有广阔的应用前景。多分支水平井不仅可用于开发煤层气资源,还能应用于开发稠油或低渗渗透油藏、地下水资源和地下储油储气库工程。

2 多分支井眼摩阻计算与结构设计模型

2.1 多分支井眼管路与摩阻计算模型

这里只计算分支水平井的摩阻,可将分支水平井的水平投影简化成并联管路,钻进煤层的主井眼可简化成主管路,分支段管路为部分主管路和并联管路再串联(图1),利用并联管路的水力计算模型计算水平井眼的摩阻。

1.2.…….i.i+1.……n表示分支井眼与主井眼连接处节点序号,A、B为主井眼流体起始与终止节点。

图8 高陡构造、低压、低渗煤区多分支井身结构

(3)加强煤层井壁稳定与煤层保护技术的统一性研究。通常情况下解决井壁稳定问题是以提高钻井液密度并改善其流变性能,但出于防止煤层污染的考虑,又不能实行过平衡钻井,应将欠平衡与保持煤层井壁稳定统一起来研究。

(4)加快多分支井小井眼技术研发,配套相应的钻完井工具。煤层气多分支井技术目前发展较快,但由于配套的小井眼(主要指152mm和120mm井径)井下钻井工具与配套工具严重不足,如动力钻具、MWD、减阻器等,都限制了这项技术试验与推广的力度。

参考文献

[1]黄景城等.1990.煤层气译文集.郑州:河南科学技术出版杜,P.1~64

[2]王亚伟等着.2000.分支井钻井完井技术.北京:石油工业出版杜,1~8

[3]鲜保安等.2005.多分支水平井在煤层气开发中的控制因素及增产机理分析.中国煤层气,2(1):14~17

[4]祁德庆着.1995.工程流体力学.上海:同济大学出版杜,133~145

‘陆’ 什么是接地降阻剂有哪些用途

是不是地线接地的时候用的,可以降低地线于地面之间的电阻。

一、降电阻原理:
本降阻剂由多种成份组成,其中含有细石墨、膨润土、固化剂、润滑剂、导电水泥等。它是一种良好的导电体,将它使用于接地体和土壤之间,一方面能够与金属接地体紧密接触,形成足够大的电流流通面;另一方面它能向周围土壤渗透,降低周围土壤电阻率,在接地体周围形成一个变化平缓的低电阻区域。
二、产品使用范围:
本产品用途十分广泛,用于国民经济的各个领域中。它用于电力、电信、建筑、广播、电视、铁路、公路、航空、水运、国防军工、治金矿山、煤炭、石油、化工、纺织、医药卫生、文化教育等行业中的电气接地装置中。
三、产品的优点:
降电阻效果明显,能减少施工工作量,可少打接地体,尤其可用水平接地体代替难于施工的垂直接地体(在山区及岩石地区等)。施工方便,可解决施工场地受局限的困难,可大量节省金属材料,具有长效性与稳定性,防腐性能好。较少受气候的影响。综合技术经济性好等。

‘柒’ 什么叫管道比阻

管道比阻---单位管长、单位流量时的沿程水力损失,计算公式较麻烦,例如塑料硬管的比阻So=0.000915/内径的4.77次方。为了简化计算工作,一般把不同材质、不同管径的比阻So值算出后列表,供查用。

管道比阻S=(10.3×n^2)/d^5.33=289

其中n为PE管道糙率查表得0.01,d为管道内径单位米,这里取0.095

管道两端作用水头差H 35米 压差P= 343231.48Pa

H=343231.48/ρg=343231.48/1000×9.8=35.024米

ρ液体密度 g重力加速度

流量Q=(H/S×L)^(1/2)=(35.024/289×500)^(1/2)=0.015568m³/秒

即每小时流量=0.015568m/s×3600=56m³/h

(7)石油工程中阻位是什么意思扩展阅读:

电阻率与温度的具体关系为:ρ=ρ0(1+αt),其中ρ0为零度时导体的电阻率,α为导体的温度系数。

R=1/G, 其中G为物体电导,导体的电阻越小,电导就越大,数值上等于电阻的倒数。单位是西门子,简称西,符号s。

初中要求掌握的影响电阻的因素:

导体的长度、材料相同时,横截面积越大,电阻越小;

导体的横截面积、材料相同时,长度越长,电阻越大;

导体的横截面积、长度相同时,导体的材料不同,电阻大小不同。

‘捌’ 大庆油田归哪里管

大庆油田归中国石油天然气总公司管理。
中国石油天然气集团有限公司是国有重要骨干企业,是以油气业务、工程技术服务、石油工程建设、石油装备制造、金融服务、新能源开发等为主营业务的综合性国际能源公司,是中国主要的油气生产商和供应商之一。
截至2021年6月,大庆油田自主创新复合驱大幅度提高采收率技术,已达到国际领先水平。复合驱成为大庆油田战略性接替技术,使中国成为世界上唯一大规模工业化应用复合驱技术的国家。大庆油田实现了中国国内复合体系评价技术的飞跃,首次利用国产原料研发出高效界面位阻表面活性剂,攻克了界面张力和溶解性相互矛盾的瓶颈,引领国内外表面活性剂研制技术快速发展。

‘玖’ 乳化剂的作用机理是什么

乳化剂主要是通过降低界面自由能,形成牢固的乳化膜,以形成稳定的乳状液。降低界面自由能,液滴粒子形成球状,以保持最小表面积。

两种不同的液体形成乳液的过程是两相液体之间形成大量新界面的过程。液滴越小,新增界面越大,液滴粒子表面的自由能就越大。

乳化剂吸附于液滴表面,可有效降低表面张力或表面自由能。乳化剂吸附于液滴周围,在液滴周围定向排列成膜,从而降低油水界面张力,有效阻止液滴聚集。乳化剂在液滴表面排列越整齐,乳化膜越牢固,乳状液越稳定。

(9)石油工程中阻位是什么意思扩展阅读:

根据乳化剂的来源,可分为合成的与天然的。上述诸乳化剂均为合成的;天然乳化剂有卵磷脂、羊毛脂、阿拉伯胶等。

乳化剂广泛用于食品、化妆品、洗涤剂、合成橡胶、合成树脂、农药、医药、制革、涂料、纺 织、印染、石油化工等方面。乳化剂除乳化作用外,还具有增溶、渗透、润湿、去垢等作用。

乳化剂是食品加工中常用的食品添加剂之一,类似表面活性剂,借裹住分散相小滴防止其聚结,使之成为存在于另一不溶混或部分溶混液体中的稳定的胶态分散体。

‘拾’ 角张力影响环烷烃稳定性因素之一,在烷烃分子中什么最不稳定

含有脂环结构的饱和烃。有单环脂环和稠环脂环。含有1个脂环且环上无取代烷基的环烷烃,分子通式为CnH2n。环戊烷、环己烷及它们的烷基取代衍生物是石油产品中常见的环烷烃。稠环环烷烃存在于高沸点石油馏分中。环烷烃有很高的发热量,凝固点低,抗爆性介于正构烃和异构烃之间。化学性质和烷烃相似。其中以五碳脂环和六碳脂环的性质较稳定。环烷烃是指分子结构中含有一个或者多个环的饱和烃类化合物。最简单的脂环烃是环丙烷。脂环烃是不少重要药物的主要成份。命名法 1.确定主体 2.取代基定位稳定性1.角张力 2.扭转张力 3.空间位阻具有脂肪族性质的环烃,分子中含有闭合的碳环,但不含苯环。脂环烃的结构式常用多边形表示,多边形的每个顶点代表一个碳原子和扣除取代基后使碳原子保持 4 价所需的氢原子。脂环烃也可含有两个以上的碳环,它们可用多种方式连接:分子中两个环可以共用一个碳原子,这种体系称为螺环;环上两个碳原子之间可以用碳桥连接,形成双环或多环体系,称为桥环;几个环也可以互相连接形成笼状结构。单环烃的命名是用环字表示环烃,用丙、丁、戊等表示环内碳原子的数目,用烷、烯、炔等表示环内只有单键或有双键、叁键,取代基的表示方法与链烃相同。双环烃是根据环内碳原子的总数称为双环〔〕某烷(或烯),在方括号内用阿拉伯数字表示联结桥头碳原子的每个碳桥上碳原子的数目,先写大环的碳原子数。如两个桥头碳原子直接相连,则桥上碳原子数为0。阿拉伯数字之间用圆点分开 。 螺环的命名与双环化合物相似,根据环上碳原子的总数称为螺〔〕某烷(或烯),在方括号内用阿拉伯数字表示除共用碳原子外,两个环上碳原子的数目,先写小环的碳原子数。更复杂的化合物常用习惯名。在室温和常压下,环丙烷和环丁烷为气体,环戊烷至环十一烷为液体,环十二烷以上为固体。环烷的熔点、沸点和相对密度都比含同数碳原子的直链烷高。环戊烷、环己烷及其烷基取代物存在于某些石油中。环己烷是重要的化工原料。