㈠ 钻石为什么会有火彩
钻石的光彩也叫“火彩”,它能反射出五光十色、光怪陆离的彩光,尤其以柔和冷艳的蓝光为主,这种现象是钻石色散作用的结果。所谓色散就是折射率的大小随着光颜色的不同而变化。在所有的天然宝石中钻石的色散度是最强的。因此,钻石会出现火焰般冷艳、璀璨夺目的美丽光彩。如果转动钻石,就会发现钻石上的奇彩光芒能迅速改变、闪烁不定、异常驻迷人,这种现象又叫钻石的“闪烁”度。
无色为最好,色调越深,质量越差。在无色钻石分级里,顶级颜色是D色,依次往下排列到Z,在这里只说从D到J的颜色级别,D-F是无色级别,G-J是近无色级别,从K往下基本没有收藏意义,K色以下的戒托做黄金的也很漂亮。因为从K往下钻石就会逐渐偏黄,选钻的时候,选H 以上的颜色,I-J级别也在近无色范畴,但也能察觉到一丝微黄.具有彩色的钻石,如:黄色、绿色、蓝色、褐色、粉红色、橙色、红色、黑色、紫色等,属于钻石中珍品,价格昂贵。红钻最为名贵。
㈡ 宝石颜色的成因
一、传统宝石学颜色成因
传统宝石学主要基于宝石的化学成分和外部构造特点,将宝石颜色划分为自色、他色和假色。
1.自色
由作为宝石矿物基本化学组分中的元素而引起的颜色,这些致色元素多为过渡金属离子,如铁铝榴石、绿松石、孔雀石、蓝铜矿等。
2.他色
由宝石矿物中所含杂质元素引起的颜色。他色宝石在十分纯净时呈无色,当其含有微量致色元素时,可产生颜色,不同的微量元素可以产生不同的颜色。如尖晶石,其化学成分主要是Mg Al2O4,纯净时无色,含微量的Co元素时呈现蓝色,含微量Fe元素时呈现褐色,而含微量Cr元素时呈现红色。另外同一种元素的不同价态可产生不同的颜色,如含Fe3+常呈棕色,含Fe2+则呈现浅蓝色。同一元素的同一价态在不同的宝石中也可引起不同的颜色,如Cr3+在刚玉中产生红色,在绿柱石中产生绿色。
3.假色
假色与宝石的化学成分和内部结构没有直接关系,而与光的物理作用相关。宝石内常存在一些细小的平行排列的包裹体、出溶片晶、平行解理等。它们对光的折射、反射等光学作用产生的颜色就是假色。假色不是宝石本身所固有的,但假色能为宝石增添许多魅力,这一方面的具体内容已在宝石的特殊光学效应一节里进行了较详细的叙述。
二、近代科学宝石颜色的成因
随着科学的发展,人们发现宝石的颜色不仅仅取决于其化学组成,更重要的是取决于其内部结构。近代科学颜色成因理论打破了传统颜色成因理论中的自色、他色的界限,从晶体场理论、分子轨道理论和能带理论等的角度揭示了宝石颜色成因的本质。
(一)离子内部的电子跃迁呈色(晶体场理论)
晶体场理论研究的对象是处于宝石晶体结构中的过渡金属元素和某些镧系、锕系元素。它把晶体场看成一种正负离子间的静电作用,将带有正电荷的阳离子称为中心离子,把带有负电荷的阴离子和络阴离子统称为配位离子,或简称配位体。晶体场理论与其他理论的区别在于,它把配位体处理为一个点电荷,点电荷作用的实质是产生静电势场力,这种静电势电场又被称之为晶体场。晶体场跃迁包括d-d跃迁和f-f跃迁。元素周期表中第四、五周期的过渡金属元素分别含有3d和4d轨道,镧系和锕系元素分别含有4f和5f轨道。在配位体的存在下,过渡元素五个能量相等的d轨道和镧系元素七个能量相等的f轨道分别分裂成几组能量不等的d轨道和f轨道。当它们的离子吸收光能后,低能态的d电子或f电子可以分别跃迁至高能态的d或f轨道,这两类跃迁分别称为d-d跃迁和f-f跃迁。由于这两类跃迁必须在配位体的配位场作用下才可能发生,因此又称为配位场跃迁。
过渡金属元素的d-d电子跃迁引起宝石颜色变化的最好例子是红宝石、祖母绿及变石,图1-4-11为三者的紫外可见吸收光谱。
图1-4-11 红宝石、祖母绿及变石的UV吸收光谱
A——红宝石;B——变石.C——祖母绿
红宝石中致色离子为Cr3+,从Cr3+的3d3电子组态导出的自由离子谱项为:基谱项为4F,激发谱项为4P、2G、2D等。八面体场中,由基谱项4F分裂为三个能级,即4A2、4T2、4T1。红宝石的吸收光谱特征表明,在可见光区域内,出现两个强而宽的吸收带,分别由4A2→4T2、4A2→4T1能级之间的跃迁所致。d电子在4A2→4T2、4A2→4T1能级间跃迁的过程中,分别吸收2.25和3.02e V能量,其余吸收后的残余能量组合成红宝石的颜色(见图1-4-12)。
祖母绿吸收光谱特征表明(见图1-4-13),在可见光区域内,出现两个强而宽的吸收带,分别由4A2→4T2、4A2→4T1能级之间的跃迁所致。d电子在4A2→4T2、4A2→4T1能级间跃迁的过程中,分别吸收2.04和2.92e V能量,其余吸收后的残余能量组合成祖母绿的颜色。
图1-4-12 红宝石的UV吸收光谱
图1-4-13 祖母绿的UV吸收光谱
变石的化学式组成(BeAl2O4)介于红宝石和祖母绿之间,影响铝氧八面体的金属离子只有Be一种,因此Cr3+离子与周围配位体电场强度低于红宝石而高于祖母绿,它的金属氧离子之间化学键的性质也介于红宝石和祖母绿之间。变石中Cr3+离子4A2→4T2跃迁吸收的能量为2.16eV,介于红宝石(2.25eV)和祖母绿(2.04eV)之间,而4A2→4T1跃迁所吸收的能量(2.98eV)与红宝石和祖母绿相差不大。在可见光区域内,变石中红光和蓝绿光透过的几率近于相等,于是外部环境的光源条件(色温)就决定了变石的颜色。例如,色温较高的日光灯中蓝绿色成分偏多,导致变石中蓝绿色成分的叠加,而呈现蓝绿色。反之,白炽灯光源中色温偏低,导致变石中红色成分的叠加,而呈现红色(见图1-4-14)。
图1-4-14 变石的UV吸收光谱
(二)离子间的电荷迁移呈色(分子轨道理论)
分子中单个电子的状态函数称为分子轨道。根据分子轨道模型,认为一个分子中所有的轨道都扩展至整个分子上。占据这些轨道的电子不是定域在某个原子上,而是存在于整个分子之中。根据分子轨道理论,电子可以从这一个原子轨道上跃迁到另一个原子轨道上去,这种电子跃迁称为电荷迁移。
某些分子既是电子给体,又是电子受体,当电子受辐射能激发从给体外层轨道向受体跃迁时,就会产生较强的吸收,这种光谱称为电荷迁移光谱。伴随电荷转移,在吸收光谱中产生强吸收带,如果电荷转移带出现在可见光范围内,则产生相应的颜色。电荷迁移有多种形式,它可以发生在同核原子价态之间,也发生在异核原子价态之间。
1.金属—金属原子间的电荷迁移
金属—金属原子间的电荷迁移可分为同核原子价态之间的电荷迁移和异核原子价态之间的电荷迁移。
(1)同核原子价态之间的电荷迁移
同核原子价态之间的电荷迁移来自不同价态的同一过渡元素的两个原子之间的相互作用,当两个不同价态的同核原子分布在不同类型的格点中,且两者之间有能量差时,电子可发生转移,并产生光谱吸收带,从而使宝石呈现颜色。堇青石的蓝紫色的产生是这种情况的典型实例。在堇青石中,Fe3+和Fe2+分别处于四面体和八面体位置中,两个配位体以共棱相接,当可见光照射到堇青石时,其Fe2+的一个d电子吸收一定能量的光跃迁到Fe3+上,此过程的吸收带位于17000cm-1(相当于黄光),使堇青石呈现蓝色。蓝色、绿色电气石和海蓝宝石也是由于Fe2+-Fe3+间的电荷迁移而呈的色。
(2)异核原子价态之间的电荷迁移
图1-4-15 蓝宝石的UV吸收光谱
异核原子价态之间的电荷迁移的典型实例是蓝宝石(见图1-4-15),在蓝宝石中Fe2+与Ti4+分别位于相邻的以面相连接的八面体中,Fe、Ti离子的距离为0.265nm,二者的d轨道沿结晶轴重叠,当电子从Fe2+中跑到Ti4+中时,Fe2+转变为Fe3+,而Ti4+转变为Ti3+,即Fe2++Ti4+→Fe3++Ti3+。电荷迁移的这一过程,伴随着的光谱吸收能为2.11eV,吸收带的中心位于588nm,其结果是在蓝宝石的c轴方向只透过蓝色,呈现蓝色。当两个八面体在垂直c轴方向上以棱相连接时,这时电荷转移吸收带略向长波方向位移,使蓝宝石在非常光方向上呈现蓝绿色。异核原子价态之间的电荷迁移,也是蓝色黝帘石、褐色红柱石呈色的原因。
2.其他类型的电荷迁移
除了上述两种类型的电荷迁移外,还有非金属与金属原子之间的电荷迁移和非金属与非金属原子之间的电荷迁移。
宝石中常见的非金属与金属原子之间的电荷迁移为O2-→Fe3+。02-与Fe3+之间的电荷迁移对可见光光谱中紫色、蓝色光强烈吸收,导致宝石呈金黄色。金黄色绿柱石、金黄色蓝宝石的颜色均由02-→Fe3+之间的电荷迁移引起。
(三)能带间的电子跃迁呈色(能带理论)
能带理论是研究宝石材料的一种量子力学模式,是分子轨道理论的进一步发展。它较好地解释了天然彩色钻石的呈色机理及其金刚光泽的产生原因。能带理论认为:固体中电子并非束缚于某个原子上,而为整个晶体所共有,并在晶体内部三维空间的周期性势场中运动。电子运动时的能量具一定的上下限值,这些电子运动所允许的能量区域就称之为能带。它与晶体场理论和分子轨道理论的区别是:晶体场理论和分子轨道理论主要适用于局部离子和原子团上的电子,电子是定域的,是局部态之间的跃迁;能带理论则与之相反,它认为电子是不定域的,是非局部态之间的电子跃迁。能带又可分为:①导带(又称空带),由未填充电子的能级所形成的一种高能量带。②带隙(又称禁带),价带最上部的面(又称为费米面)与导带最下部面之间的距离,禁带的宽度随矿物键性的不同而不同;③价带(又称满带),由已充满电子的原子轨道能级所构成的低能量带,当自然光通过宝石时,宝石将吸收能量使电子从价带跃迁至导带,所需的能量取决于带隙的宽度,即价带顶部与导带底部间的能量差,又称能量间隔,一般用ΔEg表示。不同的宝石由于能量间隔不同而呈现不同的颜色。与晶体场理论一样,电子从导带返回至价带的过程中,其吸收的能量仍以光的形式发射出来。例如,Ⅱa型钻石带隙的能量间隔(ΔEg=5.4e V)大于可见光的能量,即电子从价带跃迁至导带时吸收的能量为5.4e V,故吸收主要发生在紫外光区,对可见光能量无任何吸收,故理论上,IIa钻石为无色(见图1-4-16);由于Ⅰb型钻石中含有微量的孤氮原子,氮原子外层电子(1s22s22p3)比碳原子(1s22s22p2)多一个,额外的电子则在禁带中生成一个杂质能级(氮施主能级),由此缩小了带隙的能量间隔,电子从杂质能级跃迁至导带所吸收的能量为2.2e V(564nm),故该类钻石显橙黄色(见图1-4-17)。
(四)晶格缺陷呈色
宝石晶体结构中的局部范围内,质点的排列偏离其格子状构造规律(质点在三维空间作周期性的平移重复)的现象,称为晶格缺陷。其产生原因与宝石晶体内部质点的热振动、外界的应力作用、高温高压、辐照、扩散、离子注入等有关。
例如,在上地幔的高温高压环境中结晶出的金刚石晶体,被寄主岩浆(金伯利岩岩浆或钾镁煌斑岩岩浆)快速携带到近地表时,温压条件的迅速改变和晶体与围岩物质的相互碰撞,则易导致侵位金刚石晶体的结构局部发生改变,并诱发晶格缺陷,使一部分原本无色的金刚石的颜色发生改变,从而形成褐黄、棕黄色及粉红色金刚石。
图1-4-16 Ⅱa型钻石中电子跃迁图示
图1-4-17 Ⅰb型钻石中电子跃迁图示
色心作为晶格缺陷的一种特例,泛指宝石中能选择性吸收可见光能量并产生颜色的晶格缺陷。属典型的结构呈色类型。色心的种类十分复杂,但最常见的为电子心(F心)、空穴心(V心)及杂质离子心。
1.电子心(F心)
电子心(F心)是由宝石晶体结构中阴离子空位引起的。就整个宝石晶体而言,当阴离子缺位时,空位就成为一个带正电的电子陷阱,它能捕获电子。如果一个空位捕获一个电子,并将其束缚于该空位,这种电子呈激发态,并选择性吸收了某种波长的能量而呈色。因此,电子心是由一个阴离子空位和一个受此空位电场束缚的电子所组成的。例如,紫色萤石晶体中的氟离子离开正常格位,而形成一个阴离子空位(缺少负电荷),该结构位显示正电性,形成一个带正电的电子陷阱。为了维持晶体的电中性,阴离子空位必须捕获一个负电子,由此产生了颜色。
2.空穴心(V心)
空穴心(V心)是由晶体结构中阳离子缺位引起的。从静电作用考虑,缺少一个阳离子,等于附近增加了一个负电荷,则附近一个阴离子必须成为“空穴”才能保持静电平衡。因此,空穴心是由一个阳离子空位捕获一个“空穴”所组成的。例如,烟晶中以类质同象形式替代Si4+的Al3+杂质,在晶格位中形成正电荷不足的位置(正电荷陷阱),为了维持暂时的电中性,Al3+离子周围必须有相应的正一价阳离子存在。当水晶受到辐照后,与最近邻的O2-将失去一个多余的电子,而残留下一个空穴,形成空穴心(V心)。利用辐照源的带电粒子(加速电子、质子)、中子或射线辐照宝石,通过带电粒子、中子或Y射线与宝石中离子、原子或电子的相互作用,最终在宝石中形成电子-空穴心或离子缺陷心。如辐照处理钻石、蓝黄玉等,辐照的本质是提供激活电子、格位离子或原子发生位移的能量,从而形成辐照损伤心。
㈢ 白金钻石戒指有点泛红是什么原因
是氧化了, 你买的哪个品牌的钻戒?可以直接去店里清洗。 如果自己在家清洗,就可以使用一杯温水,加一点洗涤剂(最好是中性),将首饰放进去泡泡...然后擦干净
我之前买的戴珂拉的钻戒,我去店里人家就帮我免费清洗,和新的一样,特别亮。
另外要主钻戒要注意保养,不要戴着做饭洗衣服。
望采纳~~
㈣ 天然钻石用紫光灯照为什么会变颜色粉色钻石用紫外线灯照为什么会是红色
钻石用紫光灯照出蓝色是怎么回事
答:天然钻石用紫光灯照会变颜色属于钻石的荧光反应,是钻石在强烈紫外线下会发出的蓝光或者黄光等有色光的强度。 荧光的原理是钻石在紫外光线照射下,由于含有氮原子,紫外能量被它吸收后立刻在较低能级或较长波长重新发射的现象,所看到的较低能量.
紫光灯照射下钻戒是荧光色的是不是就证明是假的啊?
答:不是。两颗相同色级的钻石在含有较强紫外光的阳光下观察时。钻石的荧光反应不全都是蓝色荧光。严格说起来,钻石的荧光反应是指钻石在强烈紫外线下会发出的蓝光或者黄光等有色光的强度,但中等以上荧光的钻石在国际价格里会有3%--5%的差距。
莫桑石用紫光灯照会变色吗?
答:莫桑钻用紫光灯照会变颜色属于钻石的荧光反应,是莫桑钻石在强烈紫外线下会发出的蓝光或者黄光等有色光的强度。 荧光的原理是莫桑钻石在紫外光线照射下,由于含有氮原子,紫外能量被它吸收后立刻在较低能级或较长波长重新发射的现象,所看到的较...
2020-08-17回答者:唯钻会1个回答
莫桑钻在紫光灯的照射下是什么颜色?
答:培育魔星钻用紫光灯照会变颜色属于魔星钻的荧光反应,是魔星钻在强烈紫外线下会发出的蓝光或者黄光等有色光的强度。 荧光的原理是魔星钻在紫外光线照射下,由于含有氮原子,紫外能量被它吸收后立刻在较低能级或较长波长重新发射的现象,所看到的..
㈤ 为什么蓝宝石在强光下看到是红色的
变色蓝宝石非常珍贵,一般不常见。
1、蓝宝石与红宝石一样名贵,如果色泽、净度、切割好,价格很高,小小的一颗,往往要几万元。但市场上假冒的蓝宝石不少,因此务必谨慎,花很少的钱就买到一颗高质量的蓝宝石。
2、市场上充当蓝宝石的,最常见的是玻璃。其实鉴定玻璃还是较容易的。玻璃是高温下压模而出来的,冷却后自然收缩,平面向内凹陷。这凹陷现象肉眼不易发现,必须借助放大镜,使用放大镜时,不能直线聚焦,应该斜向聚焦,就易发现凹面,凹陷的,通常是玻璃。而宝石的打磨抛光,通常达到十分平整的效果。另外一个鉴定方法是,玻璃中的包裹体种类繁多,最常见的就是气泡,而宝石没有气泡。玻璃里的气泡,用10倍的放大镜观察,就能发现。
3、还有一个充当蓝宝石的,是人工合成的蓝宝石,鉴别方法是,先看质地,质地的结构是否天然结晶,天然结晶往往是凌乱的、无序的,因而通常是真品。而合成的蓝宝石,结晶往往十分有序。当然不少合成的蓝宝石里面洁净无瑕,这通常也是假货。因为天然的宝石总是有些杂质,洁净无瑕的几乎没有。这种合成的蓝宝石,往往色泽刺眼,光彩非常肤浅,没有天然色泽的深沉感。而天然的宝石颜色纯度高、不刺眼,光彩自里向外自然射出。
4、人们通常所说的红宝石、蓝宝石是泛指红色、蓝色的宝石,实际上真正的红宝石(Ruby)和蓝宝石(Sapphire)是达到宝石级的刚玉(刚玉是矿物名称),红、蓝宝石的硬度在自然界所有矿物中仅次于金刚石,它们的化学成分为氧化铝(Al2O3),纯净时无色,含有0.9%-4%的铬元素时呈红色,含铁和钛时呈蓝色;形状呈三方晶系,自然界中的晶体形态常为柱状(两端稍细,中间稍粗)或板状的六边形,外观多似桶状;颜色主要有无色、红色及蓝色,红宝石主要呈深紫红色或橙红色,蓝宝石主要呈蓝色或蓝绿色,其它还有绿、黄、粉、褐等颜色;硬度为9;相对密度为3.99-4.0;由于常见聚片双晶、接触双晶,会有裂理;整体为透明至半透明,光泽呈现出玻璃光泽至亚金刚光泽,红宝石在紫外灯下有明显的红色荧光,蓝宝石大多数无荧光;通常红、蓝宝石的折射率能达到1.762-1.778,对于含有三组定向排列的纤维状内含物的红、蓝宝石,采用弧形的素面切割,能产生星光效应。
5、红、蓝宝石天然品与合成品在外形上有很大区别,首先,观察宝石内的生长纹,焰熔法合成的多为弧形,而天然结晶形成的是直的折线。再次,观察宝石内的包体,助熔剂法合成宝石中常含有未能熔化的熔质小点和致色熔剂的残留物,在20倍放大镜下为“蠕虫状”;有时有圆形的气泡和微小的气泡群,有时可见坩埚上脱落下来的六边形或三角形铂金片。天然宝石中的包裹体多是一些细小的金红石晶体,或是指纹状气液包体;还常见小裂隙。最后是观察它的颜色,合成品的颜色过于艳丽,非常均匀,看起来有点呆板、刺眼,天然品则色泽相对柔和。
㈥ 钻石为什么会发光
钻石本身不会发光,钻石多样的晶面象三棱镜一样,能把通过折射、反射和全反射进入晶体内部的白光分解成白光的组成颜色——红、橙、黄、绿、蓝、靛、紫等色光。钻石石的折射率非常高,色散性能也很强,这就是钻石石为什么会反射出五彩缤纷闪光的原因。
钻石因为具有极高的反射率,其反射临界角较小,全反射的范围宽,光容易发生全反射,反射光量大,从而产生很高的亮度。当钻石或者光源、 观察者相对移动时其表面对于白光的反射和闪光。无色透明、结晶良好的八面体或者曲面体聚形钻石,即使不加切磨也可展露良好的闪烁光。
(6)钻石的光泽为什么泛红扩展阅读
钻石挑选有“4个C”原则:切割(cut)、色泽(color)、纯净度(clarity)和克拉(carat weight)。
1、切割
切割是其中唯一的人为因素。一个熟练的钻石切割师能使一块好的钻矿石光彩夺目,他能使内部的光芒最大程度地反射到钻石表面。抛光技术也将影响钻石的质量,一颗切割完美,对称的钻石可能因为抛光不好而降低价值。
2、色泽
在一些大的珠宝店里会陈列一些用于对比的钻石,他们将各种色泽等级的钻石列成一排,以帮助顾客进行对照,因为一般顾客无法用肉眼来区别钻石的色泽。钻石的颜色以无色为最上品,随着黄色的加深而逐渐次之。
3、纯净度
总的来说,瑕疵决定的钻石的价值。更准确的说,要看钻矿石中杂质的多少。几乎每块钻矿石中都含有杂质,即使是质量再好的钻矿石,也会存在些微瑕疵。当其净度为LC级时可视为无瑕级。
4、克拉
克拉是衡量钻石价值的一个重要因素。一颗切割工艺差、颜色偏黄且有瑕疵的2克拉的钻石的价值要远低于一颗切割完美,透明纯净的钻石。因此,钻石的重量并不是决定钻石价值的主要因素。
㈦ 钻石拥有光泽是因为什么
钻石拥有光泽是因为钻石中含有炭元素。金刚石俗称金刚石,是一种由碳元素组成的矿物,是碳元素的同素异形体,亦是自然界由单质元素组成的粒子物质。它是目前在地球上发现的众多天然存在中最坚硬的物质,天体陨落的陨石中也有金刚石的生成态相。金刚石的用途非常广泛,例如工艺品和工业中的切割工具。石墨可以在高温、高压下形成人造金刚石,其是贵重宝石。
㈧ 钻石的颜色是怎么形成的
钻石应该是没有颜色的,钻石一般是用光泽与火彩来形容的。
金刚光泽
即光泽,是由光从宝石表面反射所引起,影响光泽强弱的因素主要是析射率,析射率越高,光泽越强。反射率与折射率呈正比,所以,也可以说钻石的光泽强,其原因在于折射率高。为了提高钻石的火彩,必须对钻石小面实施良好的切磨和抛光。
火彩
自然光由不同波长的单色光所组成,由于自然光的各种单色光在钻石中的折射率存在差别,因此人射到钻石中的自然光将发生分离。经过精心设计的钻石琢型,可将分离的光多次反射,进一步分离后再从冠部射出,这样我们就可从钻石冠部看到钻石的各种单色光,即出火称色散。钻石加工工艺越好,自然光被分离越大,火彩越足,钻石越美,价值也越高。
㈨ 怎样鉴别钻石的真假
1、看火彩
普通人最简单易学地鉴别钻石真假的方法就是肉眼观察法。肉眼观察即主要观察钻石的“火彩”,也就是钻石能反射出五光十色的彩光,基本义蓝光为主。越是切割完美的钻石,“火彩”越是耀眼夺目。而高折射率的仿制品发散出的光彩会显得生硬呆板。
2、硬度检验
钻石是已知最硬的自然生成物质,没有什么东西可在钻石上划上痕迹,若能划上痕迹的则绝非钻石。
3、导热性试验
在待辩钻石和其它相似物品上同时呼一口气,若是钻石则其表面凝聚的水雾应比其它物品上的水雾蒸发得快,这是因为钻石具有高导热性的原因。
4、观察反射光
用放大镜可观察到钻石的腰围处呈现一种很细的磨砂状并有亮晶晶的反射光。钻石的这种特征是独一无二的。
5、看生长点
在放大镜下观察,真品钻石的晶面上常有沟纹和三角形生长点,而赝品有三类:①加了氧化铝的普通玻璃,因折射率和色散提高, 容易误入,但硬度低。②用化学合成的蓝宝石和无色尖晶石仿制,硬度接近,但折射率低并有双折射现象,在放大镜下可见重影。
(9)钻石的光泽为什么泛红扩展阅读:
钻石的特征:
1、钻石的化学性质
钻石在高温下会燃烧生成二氧化碳。
实验证明钻石在大气中的燃烧度为850°—1000°,在纯氧的燃烧温度为720°-800°。燃烧时,钻石发出蓝色的光,表面出现雾状膜,在缺氧的状态下加热到2000°—3000°时,钻石会变成石墨。
钻石面对所有的酸都是稳定的,不溶于盐酸、硫酸、硝酸和王水。钻石受强碱、强氧化剂长时间作用会发生轻微腐蚀。
2、钻石硬度
钻石的摩氏硬度为10,比摩氏硬度为9的刚玉的绝对硬度强100倍,比摩氏硬度为7的水晶强1000倍。
钻石的高硬度保证了钻石的耐久性,钻石的耐久性是以钻石的抗磨损能力来衡量。相对韧性而言,在外力打击下容易破碎的性质称为脆性。
3、钻石的颜色
纯净的钻石是透明无色的,但是如果含有其他的杂质或者有结构的缺陷,钻石便会呈现各种颜色。比如钻石中若含有微量铬元素,就会成呈现天蓝色;含铝或氮元素会呈现黄色,极少量的钻石会变成红色、蓝色、绿色、紫色的。
4、钻石折射率
钻石折射率表示光在质中传播的时候,介质对光的一种折射性。钻石的折射率为2.417,是折射率最高的透明矿物。折射率越高,表明光线在该介质中传播速度越慢,受到的阻力越大,因此反射光的能力就越强。
钻石抛面光之所以呈现灿烂光泽,主要原因就是钻石具有高折射率和强色散特性,因此产生了五彩斑斓的光学效应。
5、钻石的光泽
宝石对光线的反射能力就是宝石的光泽,折射率越高,光泽越强。在矿物学中,按折射率由高到低把宝石光泽分为4级,即金刚光泽、金属光泽、半金属光泽、玻璃光泽。
有的钻石还有荧光,荧光是介质在不可见光照射下能发出可见光的性质。在紫外线下都有显示,发出蓝、绿、黄、红等颜色。
参考资料来源:网络-钻石鉴定
㈩ 有关钻戒小知识,钻戒戒托变颜色是否正常
戒托的材质是18K金,那么泛黄是正常的。
K金是金和其他金属的合金,经过长期佩戴后表面镀层就会被磨掉,自然露出原本的白黄K金。除了18K金之外,钻石戒托还有另一种常见材料——铂金。铂金是自然界中比较稀有的金属,其的颜色就是白色,其性质非常稳定,它不受外部条件的影响而导致自身变色。
(10)钻石的光泽为什么泛红扩展阅读
虽然钻石具有坚硬的特性,想要钻石饰品一如往昔的闪耀夺目,就需要佩戴者用心去保养。由于钻石本身的自身性质在保养方面会出现几个问题,第一个是亲油性,由于钻石具有亲油疏水的特性,在有油烟和环境比较脏的地方,会影响钻石表面的光泽,使其发乌。
所以在佩戴钻石的时候,要远离油烟,不要戴着钻石首饰做太多厨房内的工作。但消费者也不用担心,由于油烟导致钻石表面光泽度发生变化,是不会永久影响钻石的品质,只要定期保养,清除表面的油脂,就可以恢复钻石表面的亮度。
第二个由于钻石的脆性比较大,钻石本身是有节理的,如果发生磕碰,而磕碰的角度又是节理的方向,钻石就会出现裂纹,严重的还会出现v字形的破损,这种破损是无法修复的,会给钻石造成永久的创伤。