当前位置:首页 » 钻石矿藏 » 钻石常见的内含物是什么
扩展阅读
什么低成本战略 2025-07-31 22:33:50
轿车托运企业什么价格 2025-07-31 22:31:55

钻石常见的内含物是什么

发布时间: 2022-06-15 06:46:30

A. 什么是钻石内含物

钻石内含物 是钻石内部天然的成分 包括云状物、针状物、羽裂纹等等 会影响钻石净度和颜色分级

B. 钻石的内含物类型有哪些

钻石的内含物是指影响钻石净度的所有特征。不同类型的内含物,对净度的影响程度不同,它包括内含物和外部瑕疵两大类型。内含物是指钻石内部或可达到钻石表面的瑕疵。观察内含物非常重要,因为它们是决定钻石净度级别的主要因素。 内含物类型如下: 【晶体】 晶体是指钻石内所有具有明显的三维几何形态的矿物晶体,晶体又可分为无色的或浅色的包裹体及深色的或黑色的包裹体。 【点状物】 钻石内部最小的可见包裹物.在10倍放大镜下看起来像一小白点。 【云状物】 钻石中朦胧状或乳状无清晰边界的包裹物,可能是由许多极细小的点状物组成,也可能是一种空洞。云状物常依钻石的对称轴分布(与钻石的成长历史有关),有时在白色的云雾里还可出现一些黑色的大小不等的点状物。 【羽状纹】 钻石内由于解理或张力所造成的裂隙,形似羽毛状。若羽状纹相对较大,则可称之为“裂纹”,有时还可见到半圆状羽状纹。 【须状腰(毛边、胡须)】 存在于腰部的须状裂纹深入内部的部分,形似老人的胡须,它是由于过激的粗磨造成的。 【内部纹理】 钻石内部因原子排列不规则所造成的生长痕迹,常呈平直线状,若为白色、有色或反光,则会对净度有影响。 【双晶中心】 结晶构造发生错动的中心点,常伴生有点状物。【凹原晶面】 从表面凹入钻石内部的原始晶面。 【激光孔】 用激光束及化学药品去除钻石内部深色包裹物时留下的孔洞,形似白色的漏斗或管道,可被高折射率玻璃充填。 【击伤痕(击痕)】 钻石表面受外力撞击成根状,伸入钻石内部。

C. 钻石裏的内含物有哪些形状常见的有哪几个

钻石裏的内含物主要有:晶体,碳体,云状物,针状物,羽状物,裂纹,缺口,雷射孔。

D. 净度:什么是钻石的内含物和表面特征

净度是决定钻石价值的四项质量因素(4C
标准)之一。从定义上看,净度指的是钻石不含内含物和表面特征的程度。内含物和表面特征位于不同位置内含物在钻石内部,而表面特征位于钻石的外部。尽管有些内含物和表面特征微小到肉眼不可见,但它们都可能会影响钻石的明亮度。
内含物和表面特征生成于不同的阶段。内含物可能在钻石形成时就存在了,而表面特征则可能在切磨、镶嵌甚至是佩戴的过程产生。
内含物的种类很多,也被称为内部净度特征。钻石是在极高温和高压下形成的,可能会包覆进细小的结晶体。结晶体是常见的一种内含物。被包覆进来的结晶体通常要在钻石被放大10倍的情况下才可见。如果钻石的原子结构不规则,则会有另一种净度特征叫做孪晶纹,看起来就像是晕染的线条或者条纹。钻石也可能会有内部的破裂,这些破裂发生于钻石的形成过程中或者形成后,因其酷似羽毛的外观通常被称为羽裂纹。
表面特征发生在钻石形成之后的切磨、镶嵌或者佩戴过程中。在钻石的打磨过程中,额外刻面、抛光线(通常是一些互相平行的槽线或者脊线)或者由抛光轮过热造成的灼伤都有可能造成表面特征。在钻石的处理、镶嵌以及佩戴中有可能会发生小缺口、刮痕、缺口或者磨损痕,也会造成表面特征。缺口通常指的是在腰围处发生的部分钻石崩缺后形成的浅浅的开口。
很多内含物和表面特征都微小到只有受过专业训练的钻石鉴定人员才能看出来。有些钻石达到无瑕级,即没有任何内含物和表面特征。钻石的价值与其稀有程度相关,因此,无瑕级的钻石是非常罕见的,因而也是最具价值的。

E. 钻石的基本性质

钻石的矿物名称为金刚石,英文名称为Diamond,源自希腊语“adamant”,意思是“坚不可摧”。

钻石与红宝石、蓝宝石和祖母绿一起并称为四大珍贵宝石。目前钻石已成为结婚的信物,并被誉为四月的生辰石,象征坚韧、永恒和纯洁无瑕。

一、钻石的化学成分和分类

1.化学成分

钻石是具有立方结构的碳。主要成分是C,其质量分数可达99.95%,次要成分有N、B、H等。其他微量元素还有Si、Al、Ca、Mg、Mn、Ti、Cr等。

2.分类

钻石的分类最早由Robertson、Fox和Martin等三人根据钻石在红外区吸收带和对紫外光透射的差异提出,他们认为Ⅰ型钻石能透过400~300nm的紫外光并在红外区显示与氮有关的吸收带,而Ⅱ型钻石可透过低至220nm的紫外光并在红外区无明显的吸收带。

1959年美国的Kaiser和Bond发现Ⅰ型和Ⅱ型钻石的差异与杂质氮有关,后来人们又发现在含氮的钻石中氮的最常见的存在形式不只一种,氮以单个氮原子分散在钻石中,称为C心、以原子对集合体出现,称为A心、3个氮形成的原子团称为N3中心,而多于4个原子的原子团则称为B集合体(B心),也可为一些较大的有几个原子厚的扁平层偏片晶氮存在,称为D心。钻石的分类是按照是否含氮和硼及氮的聚型类型划分如下(表14-1-1)。

表14-1-1 钻石的分类

天然钻石中Ⅰa型钻石约占98%以上,Ⅱa型占1%左右,Ⅰb型和Ⅱb型很少,人工合成钻石中以Ⅰb型为主,少量为Ⅰb和Ⅰa型混合型。

二、钻石的结构与形态

1.晶体结构

钻石属等轴晶系,

;a0=0.35595nm;Z=8,具立方面心格子,C原子位于立方体角顶和面的中心,将立方体平分为8个小立方体,在其中4个相间排列的小立方体的中心还存在C原子,呈四次配位。每个C原子以SP3外层电子构型与相邻的4个C原子形成共价键(如图14-1-1)。C—C间距为0.1542nm,C-C-C键角109°28′16″。

图14-1-2b 钻石晶体不同聚形示意图

大多数彩钻颜色发暗,强至中等饱和度、颜色艳丽的彩钻极为罕见。彩钻是由于少量杂质 N、B和H原子进入钻石的晶体结构之中,形成各种色心而产生的颜色。另一种原因是晶体塑性变形而产生位错、缺陷,对某些光能的吸收而使钻石呈现颜色。

(1)黄至棕黄色钻石的颜色是由于N原子代替C原子而产生的。理想的钻石晶体是禁带很宽的半导体,宽的禁带避免了可见光范围内的一切可能吸收,因此理想的钻石是无色的。当N原子代替部分C原子时,由于氮外层有5个电子,代替碳原子后多余一个电子,这电子在禁带中形成一个新的能级,相当于减少了禁带宽度,从而使得晶体能吸收可见光范围内的光能而呈现颜色。N原子代替C原子有不同的形式,一种情况是孤立的N原子代替C原子,它对能量高于2.2eV(波长小于560nm)的入射光有明显的吸收,使钻石呈现一系列黄色、褐色、棕色,其颜色很鲜艳浓郁,Ⅰb型钻石的颜色往往由该种色心引起;另一种情况是金刚石内N原子可移动聚合在一起形成多个N原子集合体,这种集合体对400~425nm光有明显的吸收作用,同时对477.2nm有弱吸收,由于人们对477.2nm吸收反应灵敏,477.2nm蓝光被吸收后,钻石呈现黄色。

(2)蓝色钻石:从晶体完美程度来讲,蓝色钻石是最好的,也是极罕见的。它不含N却含有微量B(wB<1%),属Ⅱb型钻石。正是这些B使钻石呈现美丽的蓝色。少数含H杂质的钻石也呈蓝色。

(3)粉红色钻石和褐色钻石:这两种彩钻都是由于钻石在高温和各向异性压力的作用下发生晶格变形而产生的颜色,相比之下粉红色钻石罕见得多,因而极其昂贵。这种晶体缺陷在极端情况下可形成紫红色钻石。

(4)绿色钻石:绿色和蓝绿色钻石通常是由于长期天然辐射作用而形成的。当辐射线的能量高于晶体的阈值时,碳原子被打入间隙位置,形成一系列空位-间隙原子对,使钻石的电子结构发生变化,从而产生一系列新的吸收,使钻石着色。若辐照时间足够长或辐照剂量足够大,可使钻石变成深绿色甚至黑色。辐射造成的晶格损伤有时还可形成蓝色钻石和黄褐色钻石。

2.光泽

钻石具有特征的金刚光泽,金刚光泽是自然界透明矿物最强的光泽。但钻石的光泽有时会因表面不平而显得暗淡。

3.透明度

钻石的透明度为透明-不透明。纯净的钻石应该是无色透明的,但由于地质条件的复杂性,常有杂质元素进入钻石的晶格或以包裹体的形式存在于钻石中,使钻石的透明度受到一定的影响。

4.光性

钻石属等轴晶系,为均质体,在正交偏光下全消光,但有些钻石由于内部应变或内部含有包裹体,偶见异常消光。

5.折射率

钻石为单折射宝石,在钠光(589.3nm)中折射率为2.417,超过了常规折射仪的测试范围,是透明矿物中折射率最大的。

6.色散

钻石的色散强,色散值为0.044,比天然无色透明宝石的色散都高,所以我们在切割标准的钻石表面能看到漂亮的“火彩”。

7.发光性

(1)紫外荧光:钻石在紫外灯下的荧光可有不同的反应,有些钻石发光很强,有些则不发光。钻石在长短波紫外光下可呈现从无至强的蓝色、黄色、橙黄色、粉色等荧光,通常长波较短波的荧光强。

(2)X射线荧光:钻石在X射线下一般呈现蓝白色的荧光,且稳定性好,在钻石开采中可根据钻石X射线下的荧光特性,将其他砾石分选出去。

(3)阴极发光:阴极发光可揭示钻石的内部生长结构,钻石在阴极发光仪的电子束照射下,绝大多数钻石会发出阴极荧光,主要呈现蓝色、橙红色和黄绿色,天然钻石和合成钻石的生长条件不同,表现出的生长结构也不同,目前阴极发光技术已成为鉴别钻石是天然的还是合成的主要手段之一。

8.吸收光谱

无色—浅黄色的钻石,在紫色区415.5nm处有一吸收谱带;其他颜色的钻石的吸收线位于453nm,466nm和478nm处;褐—绿色钻石,在绿区504nm处有一条吸收窄带,有的钻石可能同时具有415nm和504nm处的两条吸收带。辐照改色的黄色钻石可能在498nm,504nm和592nm处有吸收带。

四、钻石的力学性质

1.解理

钻石有四组八面体{111}方向的中等解理,{110}、{221}的不完全解理。图14-1-3为钻石{111}方向解理示意图。

图14-1-3 钻石{111}方向解理示意图

2.硬度

钻石的摩氏硬度为10,是自然界最硬的矿物,钻石的硬度具有各向异性的特征,不同方向硬度不同,其八面体晶面的硬度大于立方体晶面的硬度,因此在钻石加工中可用钻石研磨钻石。

钻石具有很强的抗磨性能,摩擦系数小,其抗磨能力是刚玉的90倍。这种特性使钻石能高度抛光,并使每个小面边棱锐利、挺直。但值得注意的是,钻石虽硬,但常显脆性,在外力冲击作用下很容易破碎。

3.密度

钻石的密度为3.52(±0.01)g/cm3,因钻石成分单一,并且纯度较高,所以钻石的密度相对很稳定。

五、钻石的内含物

钻石的内含物主要有浅色至深色矿物包体、云状物、点状包体、羽状纹和生长纹。矿物包裹体主要是钻石、橄榄石、辉石、石榴子石、锆石、刚玉、黑色石墨、暗色的赤铁矿、钛铁矿、铬铁矿、硫化物等。云状物由云雾状白色或灰色包体组成,羽状体则包括开放式裂隙和隐蔽式裂隙两种裂隙类型。此外,钻石中还可见生长纹和解理等特征。

六、钻石的电学性质和热学性质

1.电学性质

Ⅰ型和Ⅱa型钻石是绝缘体,室温下电阻率为1014~1015Ω·cm。通常情况下,Ⅱb型钻石因含硼而电阻率降低,为25~108Ω·cm,为P型半导体,钻石半导体的电阻值随温度变化特别灵敏,甚至连很微小的变化(0.0024℃±)都能在瞬间被记录下来,这一特点被广泛应用于真空仪器和精密测温的仪器中。

2.热学性质

(1)导热性:钻石具有很高的导热率,且导热率与含氮量有关。若300°K下其导热率为铜的3倍,则其含氮量<300×10-6。Ⅰa型钻石的含氮量多高于此值,故不宜作散热元件。Ⅰb和Ⅱ型钻石含氮量低,均具有很高的导热率,适于作散热元件。其中Ⅱa型钻石的导热率最好,约比铜高6倍,在190℃则升至30倍左右。

根据钻石的高导热率,宝石鉴定中可用钻石笔(热导仪)鉴定钻石和其仿制品;若简单地对着样品哈气,如果是钻石,则表面上的那层雾气比仿制品要消失得快,这是因为钻石传热快,钻石提供的热量让水膜迅速蒸发的缘故。

(2)热膨胀性:钻石的热膨胀性非常低,温度的突然变化对钻石的影响很小,但若钻石中有裂隙或含有热膨胀性大于钻石的包裹体时,温度的突变可能使钻石发生破裂。

(3)可燃性:高温下钻石可燃,燃点在空气中为850~1000℃,钻石在氧中加热到650℃时,即缓慢燃烧而变为气体二氧化碳。燃点和钻石与空气的接触面及增温率有关,一般小颗粒钻石比大颗粒钻石易燃。激光打孔就是利用该原理在很小区域内提供集中的热量,使空气中的氧将钻石中的暗色物质烧掉。在绝氧并加压的真空条件下,钻石加热到1800℃,可转变成石墨。

3.其他性质

(1)表面性质:钻石表面具有亲油性和疏水性。由于钻石由非极性的碳原子组成,对水的H+和(OH)-不产生吸附作用,即水对钻石不产生极化作用,故钻石具有疏水性。

(2)化学稳定性:钻石对任何酸都是稳定的,甚至在高温下,酸对钻石也不显示任何作用,但在含氧盐类和金属熔体中,钻石很容易受侵蚀。

F. 钻石是由什么组成的

通常指宝石级金刚石,尤指琢型宝石级金刚石,其实,钻石和金刚石在国外并无这种用词的区分,英文中均使用同一个词汇“diamond”,但国内则常把“金刚石”一词用于矿物学领域,钻石一词用于宝石学领域。但也不尽然,如“工业钻石”虽然不属于宝石学领域,只是人们已习惯于这样称呼,故在本词条中也采用之。②宝石级钻石以无色透明为上品,但常见的多为略带微黄色调者。黄色调或褐色调愈深,品级也愈低。有一种无色透明中带一点蓝色的被称作“水火色”,却是佳品。而带深蓝、深黑、深金黄和红色、绿色者,更是少见的珍品,被称为“艳钻”或“奇珍钻石”,同一矿区的钻石带有相似的“色素”特征,以致有经验的人常可凭此认出钻石的产地。最早发明标准圆形明亮式切割的是在1914年,比利时安特卫普的钻石切割师托考夫斯基发明。判别钻石的标准被称为4C,分别是净度、颜色、切工、克拉重量。其中净度是指钻石的内含物,而不应称为瑕疵。内含物的存在正说明了钻石的天然性。当然,我们还是希望这种包裹体状的内含物越少越好,所以就有了净度的分级。即:LC、VVS、VS、SI、P级。过去人们不会琢磨钻石,只能用钻石原石作为饰品,金刚石晶体真正成为钻石,变为首饰的时代,大约在1450年。当时琢磨钻石只有17个面,1558年--1603年当政的英国女王佩戴的钻石戒,只是一个八面体钻石晶体,磨掉了一个顶尖作为戒面的。直到1919年一位住在美国的波兰人名叫塔克瓦斯墓(Tolkowsky),设计出58个翻面的钻石切割工艺,至今仍在采用,这个切工是根据钻石的折光率系数等因素而精确计算出来的,不能任意改变,否则磨出的钻石将无光彩或漏光

G. 澳大利亚金刚石/钻石的宝石矿物学特征

8.5.4.1 澳大利亚金刚石/钻石的颜色及类型

西澳大利亚阿盖尔金刚石中大约72%为棕色(亦称“香槟色”“干邑色”),其余大部分则是黄色到近无色和无色,不超过1%的金刚石是非常稀有的粉色、灰蓝色和绿色,特征见图8.31,图8.32和表8.8 (Shigley et al.,2001)。目前,阿盖尔的棕色金刚石/钻石和粉色金刚石/钻石已经享誉全球。

表8.8 Argyle金刚石/钻石的颜色特征及类型Table 8.8 Argyle diamond colors and diamond types

a. 根据 Chapmen et al,1996 整理,数据有更新;b. 同样发现比例 <1%的蓝色和绿色金刚石 / 钻石

西澳大利亚Ellendale具有商业价值的金刚石(>1mm)常呈黄色(图8.34),1mm以下的金刚石呈无色或浅褐色(Taylor et al.,1990)。

南澳大利亚Springfield Basin砂矿和Eurelia原生矿的金刚石/钻石具有相似的颜色特征,据Tappert等(2009a)的统计结果,约40%为淡棕色,20%为深棕色,另外还有无色、黄色和灰色。两个产地金刚石/钻石的氮赋存状态相似,低氮者(<100×10-6)占绝大多数,包括了各种氮集合体状态(Tappert et al.,2009a)。

新南威尔士冲积砂矿产出的A组金刚石/钻石包括了稻草黄至浅黄、白色和褐色,B组金刚石/钻石包括50%的褐色或白色(B1组)和50%的黄色(B2组)。A组金刚石/钻石可进一步划分,其中A1组占90%,N含量为(250~2500)×10-6,6%~42%为IaB型;A2组占10%,N含量为(140~900)×10-6,44%~95%为IaB型。B组金刚石/钻石中,B1组N含量小于400×10-6,不到12%为IaB型;N含量为(900~2800)×10-6,33%~65%为IaB型(Davies et al,2002;Taylor et al.,1990;Davies et al.,2003;Barron et al.,2008)。

8.5.4.2 澳大利亚金刚石/钻石的晶体形态、生长结构及微量元素

西澳大利亚阿盖尔金刚石/钻石很重要的一个特征,就是大部分金刚石/钻石都经历了晶格的变形。不规则形态者的比例小于60%,八面体双晶约占25%,晶体集合体约占10%,强烈熔蚀的十二面体及正八面体-十二面体约占5%,立方体少见。通常,金刚石/钻石的内部和表面常经过了蚀刻,有凹蚀管、六边形蚀坑,以及霜化的表面等特征(Chapman et al.,1996)。阿盖尔金刚石常见条带状、交叉阴影线、榻榻米等异常消光式样(Shigley et al.,2001)。粉钻常见不规则的内部断裂,互相平行或呈60°/120°交角;可见内部位错;阴极发光具同心圆或六边形的发光式样,证实了晶格缺陷的存在(Rolandi et al.,2008)。

西澳大利亚艾伦代尔金刚石/钻石中,粒径在1mm以上者由于经历熔蚀作用而呈晶形圆化的十二面体,表面光滑,光泽较好;粒径在1mm以下者形态主要为平面的、有台阶状生长纹,外皮磨砂感强的八面体(Taylor et al.,1990)。通常显示为八面体的内部生长习性,与低碳超饱和的生长条件一致;也有一些金刚石显示出复杂的生长区,指示有几个微生长中心(Smit et al.,2010)。

阿盖尔金刚石和艾伦代尔4号岩筒、9号岩筒金刚石在微量元素上特征相似,都亏损Mn,Ni,Cr而富集Na,K,Ti,Zn,Cu,Ga,Rb,Sr。其中,绿辉石包裹体具有很高的K质量分数且高的K/Rb比值,可能指示了金刚石形成源区的地幔富集K和Rb(Griffin et al.,1988)。

南澳大利亚Springfield Basin砂矿金刚石/钻石的晶体形态和表面特征与Eurelia原生矿金刚石/钻石相似。Tappert等(2009a,b)对122颗Springfield金刚石/钻石和43颗Eurelia金刚石/钻石进行统计,结果表明:八面体晶形的金刚石/钻石在两个产地中的比例相似,约为20%;十二面体晶形分别为23%和40%;不规则晶形(即金刚石/钻石只有不到一半的晶面发育)分别为36%和26%;假异极像晶形分别为21%和12%;Eurelia金刚石/钻石中还出现了立方体晶形(2%)。两个产地的金刚石/钻石都有双晶以及单晶组成集合体。金刚石/钻石表面纹理多出现在八面体或十二面体晶面上,包括较深的凹坑、蚀坑和较少见的微圆盘,变形壳层只出现于十二面体晶面上。不过由于样本容量较小,上述归纳不能完全代表这两个产地的金刚石/钻石形态特征(Tappert et al.,2009a,b)。

新南威尔士冲积砂矿产出的金刚石/钻石经历了强烈的熔蚀,只保留了原重量的50%或更少的比例,呈圆化的十二面体形态。A组金刚石/钻石常见四六面体、十二面体,其中35%为双晶,而极少碎片状;B组金刚石/钻石常见扁平状、拉长状或不规则的十二面体,少见双晶,有15%的金刚石/钻石为碎片状。A组和B组金刚石/钻石的表面磨蚀及放射性破坏的程度有差异:A组金刚石/钻石具浅浮雕似的表面,有扇形条纹、楔形微坑、微形盘刻纹;40%的A组金刚石/钻石有滑动平面,粒状表皮上有碰击痕和细微冻裂,30%有绿色和褐色的斑点。B组金刚石/钻石具浅浮雕似的光亮表面,有半球形凹坑、环形坑;95%的B组金刚石/钻石有脆性形变纹,表面有变形小丘和细小新冻裂,少见绿色和褐色的斑点。

新南威尔士冲积砂矿产出的A组金刚石包括了稻草黄色至浅黄色、白色和褐色,B组金刚石包括50%的褐色或白色(B1组)和50%的黄色(B2组)。A组金刚石可进一步划分,其中A1组的占90%,N的质量分数为 0.025%~0.25%,其中6%~42%为IaB型;A2组的占10%,N的质量分数为 0.014%~0.09%,其中44%~95%为IaB型。B组金刚石中,B1组中N的质量分数小于 0.04%,不到12%为IaB型;B2组中N的质量分数为0.09~0.28%,其33%~65%为IaB型(Davies et al,2002;Taylor et al.,1990;Davies et al.,2003;Barron et al.,2008)。

从生长结构上看,A组金刚石中,75%的为十二面体(包括25%的多元生长),20%的生长结构均匀,5%的呈区块状;B组金刚石中,50%的为不规则脆性形变(B1),50%的生长结构均匀 (B2)(Davies et al,2002)。此外,B组金刚石的矿物包裹体成分特别:石榴石富Ca,单斜辉石亏K,Na,一些透辉石富Ni,Cr,橄榄石含较少的镁橄榄石、Ni和Cr(Davies et al.,2003)。

8.5.4.3 澳大利亚金刚石/钻石的包裹体特征

西澳大利亚Argyle金刚石/钻石的包裹体,包括75%的榴辉岩型包裹体,10%的橄榄岩型包裹体,以及10%不能确定的硫化物。其中,榴辉岩型的原生/同生包裹体包括橙色的石榴子石(57%),石榴子石与单斜辉石(16%),绿辉石(6%),蓝晶石(3%),金红石(2%),柯石英(1%),混合物如金红石-石榴子石,石榴子石-硫化物,石榴子石-单斜辉石-硫化物,石榴子石-蓝晶石,蓝晶石-硫化物(15%)。橄榄岩型的原生/同生包裹体包括橄榄石(45%)、镁铝榴石(9%)、顽火辉石(9%),混合物如橄榄石–透辉石,橄榄石-石榴子石,橄榄石-石榴子石-顽火辉石,顽火辉石-石榴子石(37%)。后生包裹体石墨沿解理和裂隙分布,是Argyle金刚石/钻石最常见的内含物(Chapman,et al.,1996;Jaques et al,1989;Griffin et al.,1988)。Argyle金刚石/钻石的晶体形态和矿物包裹体类型之间有一定联系,榴辉岩型金刚石/钻石的外皮磨砂感强,有明显的凹蚀管,表面见六边形的蚀坑,而橄榄岩型金刚石/钻石的熔蚀和变形特征不明显(Jaques et al.,1989;Taylor et al.,1990)。

西澳大利亚Ellendale金刚石/钻石的内含物有榴辉岩型和橄榄岩型两种共生序列。其中榴辉岩型内含物包括石榴子石、绿辉石、柯石英和金红石。而橄榄岩型内含物包括橄榄石、顽火辉石、铬透辉石以及少量的铬镁铝榴石和硫化物(Griffin et al.,1988)。Ellendale4号和9号岩筒产出的金刚石/钻石中,橄榄岩型与榴辉岩型的内含物约占相等的比例(Jaques et al.,1989)。

南澳大利亚Springfield basin砂矿金刚石/钻石和Eurelia原生矿金刚石/钻石中最常见的包裹体为石墨,常沿裂隙呈絮状分布。Eurelia原生矿金刚石/钻石的一个重要特征就是包裹体组合中含低铁方镁石,指示这类金刚石/钻石是超深部、次岩石圈来源(Scott-Smith et al.,1984;Tappert et al.,2009a)。Springfield Basin砂矿金刚石/钻石中也有含低铁方镁石的包裹体组合,两个产地的金刚石/钻石成因来源相似(Tappert et al.,2009b)。

图8.36 金刚石/钻石中柯石英包裹体及其Raman散乱光谱

(据 Barron et al.,2011)

Figure 8.36 Coesite inclusion in diamond and its Raman spectra

(Barron et al.,2011)

新南威尔士冲积砂矿产出的A组金刚石/钻石主要含橄榄岩型包裹体,橄榄石最常见(具方辉橄榄岩的特征),其次为镍黄铁矿、铬铁矿和自然铁;也有极少数榴辉岩型的石榴子石和辉石类包裹体出现(Davies et al.,1999)。B组金刚石/钻石中最多的为透辉石包裹体,其次有绿辉石、单斜辉石、SiO2、钙铝榴石、橄榄石、辉钼矿和榍石,同时还发现了黄长石和自然铜,但不确定是否为同生。除了出现橄榄石这一例外特征,B组金刚石/钻石应归类为榴辉岩型。因为尽管石榴子石、透辉石和单斜辉石的组成很独特,但是它们与金刚石/钻石中的其他榴辉岩型包裹体具有成分上的连续性,表明金刚石/钻石可能是在消减环境中生长的(Davies et al,2002)。

H. 裸钻vs1净度里面有水晶,羽毛,精确是什么意思

  1. crystal,feather,pinpoint都是钻石的内含物,也就是瑕疵,10倍放大镜才能看到,VS及以下的钻石比较常见;

  2. crystal是晶体;feather是羽状纹,是裂隙之一;pinpoint是点状包裹体;3个都是内部包裹体,属于正常的。

I. 钻石的内部瑕疵(内涵物)都有哪些

钻石的内含物是指影响钻石净度的所有特征。不同类型的内含物,对净度的影响程度不同,它包括内含物和外部瑕疵两大类型。内含物是指钻石内部或可达到钻石表面的瑕疵。观察内含物非常重要,因为它们是决定钻石净度级别的主要因素。 内含物类型如下: 【晶体】晶体是指钻石内所有具有明显的三维几何形态的矿物晶体,晶体又可分为无色的或浅色的包裹体及深色的或黑色的包裹体。 内含晶体(Included Crystal) 黑色内含晶体(Dark Included Crystal) 【点状物】钻石内部最小的可见包裹物.在10倍放大镜下看起来像一小白点。 针点(Pinpoint)【云状物】钻石中朦胧状或乳状无清晰边界的包裹物,可能是由许多极细小的点状物组成,也可能是一种空洞。云状物常依钻石的对称轴分布(与钻石的成长历史有关),有时在白色的云雾里还可出现一些黑色的大小不等的点状物。 (Cloud)【羽状纹】钻石内由于解理或张力所造成的裂隙,形似羽毛状。若羽状纹相对较大,则可称之为“裂纹”,有时还可见到半圆状羽状纹。 羽裂纹(Feather) 【须状腰(毛边、胡须)】存在于腰部的须状裂纹深入内部的部分,形似老人的胡须,它是由于过激的粗磨造成的。 孪晶纹(Twinning Wisp)【内部纹理】钻石内部因原子排列不规则所造成的生长痕迹,常呈平直线状,若为白色、有色或反光,则会对净度有影响。 内部脉理纹(Internal Graining) 针状物(Needle) 【双晶中心】结晶构造发生错动的中心点,常伴生有点状物。 内部脉理纹结(Grain Center) 【凹原晶面】从表面凹入钻石内部的原始晶面。 内凹天然糙面(Indented Natural) 【激光孔】用激光束及化学药品去除钻石内部深色包裹物时留下的孔洞,形似白色的漏斗或管道,可被高折射率玻璃充填。 雷射洞(Laser Drill Hole) 【击伤痕(击痕)】钻石表面受外力撞击成根状,伸入钻石内部。 窟窿(Cavity)

J. 钻石内部特征有哪些

(1)晶体(Crystal)晶体是指钻石内所有具有明显的三维几何形态的矿物晶体.晶体又可分为无色的或浅色的包裹体及深色的或黑色的包裹体.它的种类繁多(据统计有20多种),形态各异,是钻石中最普遍的内含物,在众多的晶体包裹体中,小钻石出现的几率最多,其次可见橄榄石和石榴石.它们常被小羽毛状裂隙环绕.或单独出现,或成群分布,可大亦可小.晶体的出现,意味着钻石的净度等级一般不会高于VS级.除非晶体很大,否则也不会对钻石的美观及耐久性造成影响.

(2)点状物(Pinponit)或称针尖,钻石内部极小的天然包裹物.有无色和深色之分,单一或成群分布,它对净度级别的影响不大.

(3)云状物(Cloud)钻石中朦胧状或乳状无清晰边界的包裹物,可能是由许多极细小的点状物组成,也可能由结构位错引起.云状物常依钻石的对称轴分布(与钻石的成长历史有关),有时在白色的云雾里还可出现一些黑色的大小不等的点状物.云雾有时清淡,分布在小的区域内,对净度的影响不大;有时浓重,散布在整个钻石中,不但降低了钻石的净度和透明度,而且也影响了钻石的美观.

(4)羽状纹(Feather)钻石内由于解理或张力所造成的裂隙,形似羽毛状.若羽状纹相对较大,则可称之为"裂纹".羽状纹易沿钻石的四组八面体方向裂开,分裂面平坦、光滑.若沿任意方向破裂,其破裂面多成阶梯状.羽状纹对净度的影响明显,通常易于观察到.个别情况下,有些细小的羽状纹单独出现,且破裂面与钻石的小刻画垂直时,观察起来较困难,应特别仔细寻找,以免疏漏而造成结论上的错误.

(5)须状腰(Bearding)存在于腰部的须状微裂纹深入内部的部分,形似老人的胡须.它是由于过激的粗磨造成的.粗糙腰围与其成因相似,但粗糙腰棱有砂粒感,常伴有很小的缺口.

(6)内部纹理(Internal Graining)钻石内部因原子排列不规则所造成的生长痕迹,如双晶纹、生长纹等.纹理可多可少、可粗可细、可平行也可相交.纹理看上去多为白色的细线,有时可反光形成彩色条纹,它对净度的影响程度不等.若纹理密集地出现在整个钻石内部时,可降低钻石的透明度,使钻石看上去有朦胧感.

(7)双晶中心(Twinning Center)结晶构造发生错动的中心点,常伴生有点状物.

(8)内凹原晶面(Sunken Natural)从表面凹入钻石内部的原始晶面.多出现于钻石的腰围,也可出现于其他部位.理论上深凹的锯齿状或三角状的天然晶面经重新打磨可以去除,但会造成质量上的损失,因此它会降低钻石的净度等级.

(9)激光痕(Laser Drill mark)用激光束及化学药品去除钻石内部深色包裹物时留下的痕迹.管状或漏斗状称为激光孑L.常被高折射率玻璃充填.

(10)吉痕(Bruise)钻石表面受外力撞击形成的根部伸入到钻石内部的痕迹.击伤痕通常为白色,具一定的几何形态,尺寸可大可小.

(11)破口(Chip)腰部边缘破损的小口,多呈"V¨字形.

(12)坑或洞(Cavity)是钻石中较严重地从外部深入到内部的特征.它们可能是由于解理崩落了小块钻石所致,也可能是钻石在抛光时造成表面的包裹体脱落而产生的坑或洞.