‘壹’ 手持式激光焊接机有什么优缺点值得买吗
手持激光焊接机介绍:
手持激光焊接机,用手持式焊接枪替代以前固定光路,手拿焊接,灵活方便,焊接距离更长,克服工作台空间的局限性,工件尺寸不统一时无法自动焊接的情况下使用。主要针对大型工件、固定位置如内直角、外直角、平面焊缝焊接、焊接时热影响区域小,变形小、而且焊接深度大,焊接牢固。是远距离焊接大工件的较为灵活的全新的焊接工艺。有效焊接碳钢、不锈钢、镀锌板等金属材质,适用于拼焊、叠焊、内外角焊、圆弧焊、不规则形状焊接。
手持激光焊与氩弧焊对比:
能耗对比:
相比传统电弧焊,手持式激光焊接机节省电能80%~90%左右,加工成本可下降约30%。
焊接效果对比:
激光手持焊可完成异种钢和异种金属焊接。速度快,变形小,热影响区小。焊缝漂亮、平整、无/少气孔,无污染。手持式激光焊接机可进行微小开型零件和精密焊接。
后续工序对比:
激光手持焊接时热输入低,工件变形量小,能得到美观的焊接表面,无需或仅需简略处理(视焊接表面效果要求)。手持式激光焊接机能够大大减少巨大的抛光和整平工序耗费的人工成本。
‘贰’ 激光焊接、电子束焊接、超声波焊接与电弧焊等传统焊接方法有何区别
网上资料,供参考。
焊接是一种连接金属或热塑性塑料的制造或雕塑过程。焊接过程中,工件和焊料熔化形成熔融区域(熔池),熔池冷却凝固后便形成材料之间的连接。这一过程中,通常还需要施加压力。普通焊接与硬钎焊(brazing)和软钎焊(soldering)的区别在于软钎焊通过融化熔点较低(低于工件本身的熔点)的焊料来形成连接,无需加热熔化工件本身。
焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。除了在工厂中使用外,焊接还可以在多种环境下进行,如野外、水下和太空。无论在何处,焊接都可能给操作者带来危险,所以在进行焊接时必须采取适当的防护措施。焊接给人体可能造成的伤害包括烧伤、触电、视力损害、吸入有毒气体、紫外线照射过度等。
19世纪末之前,唯一的焊接工艺是铁匠沿用了数百年的金属锻焊。最早的现代焊接技术出现在19世纪末,先是弧焊和氧燃气焊,稍后出现了电阻焊。20世纪早期,第一次世界大战和第二次世界大战中对军用设备的需求量很大,与之相应的廉价可靠的金属连接工艺受到重视,进而促进了焊接技术的发展。战后,先后出现了几种现代焊接技术,包括目前最流行的手工电弧焊、以及诸如熔化极气体保护电弧焊、埋弧焊、药芯焊丝电弧焊和电渣焊这样的自动或半自动焊接技术。20世纪下半叶,焊接技术的发展日新月异,激光焊接和电子束焊接被开发出来。今天,焊接机器人在工业生产中得到了广泛的应用。研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,并进一步提高焊接质量。
弧焊
弧焊(Arc welding)使用焊接电源来创造并维持电极和焊接材料之间的电弧,使焊点上的金属融化形成熔池。它们可以使用直流电或交流电,使用消耗性或非消耗性电极。有时在熔池附近会引入某种惰性或半惰性气体,即保护气体,有时还会添加焊补材料。
弧焊过程要消耗大量的电能,可以通过多种焊接电源来供应能量。最常见的焊接电源包括恒流电源和恒压电源。在弧焊过程中,所施加的电压决定电弧的长度,所输入的电流则决定输出的热量。恒流电源输出恒定的电流和波动的电压,多用于人工焊接,如手工电弧焊和钨极气体保护电弧焊。因为人工焊接要求电流保持相对稳定,而在实际操作中,电极的位置很难保证不变,弧长和电压也会随之发生变化。恒压电源输出恒定的电压和波动的电流,因此常用于自动焊接工艺,如熔化极气体保护电弧焊、药芯焊丝电弧焊和埋弧焊。在这些焊接工艺中中,电弧长度保持恒定,因为焊头和工件之间距离发生的任何波动都通过电流的变化来弥补。例如,如果焊头和工件的间隔过近,电流将急速增大,使得焊点处发热量骤增,焊头部分融化直至间隔恢复到原来的程度。
所用的电的类型对焊接有很大影响。耗电量大的焊接工艺,如手工电弧焊和熔化极气体保护电弧焊通常使用直流电,电极可接正极或负极。在焊接中,接正极的部分会有更大的热量集中,因此,改变电极的极性将影响到焊接性能。如果是工件接正极,工件将更热,焊接深度和焊接速度也会大大提高。反之,工件接负极的话将焊出较浅的焊缝。 耗电量较小的焊接工艺,如钨极气体保护电弧焊,可以通直流电(采用任意接头方式),也可以使用交流电。然而,这些焊接工艺所采用的电极都是只产生电弧而不提供焊料的,因此在使用直流电时,接正电极的时候,焊接深度较浅,而接负电极时能产生更深的焊缝。交流电使电极的极性迅速变化,从而将生成中等穿透程度的焊缝。使用交流电的缺点之一是,每一次变化的电压通过电压零点后,电弧必须重新点燃,为解决这一问题,一些特殊的焊接电源产生的是方波型的交流电,而不是通常的正弦波型,使得电压变化通过零点时的负面影响降到最小。
手工电弧焊
手工电弧焊(Shielded metal arc welding,SMAW)是最常见的焊接工艺。在焊接材料和消耗性的焊条之间,通过施加高电压来形成电弧,焊条的芯部分通常由钢制成,外层包覆有一层助焊剂。在焊接过程中,助焊剂燃烧产生二氧化碳,保护焊缝区免受氧化和污染。电极芯则直接充当填充材料,不需要另外添加焊料。
这种工艺的适应面很广,所需的设备也相对便宜,非常适合现场和户外作业。操作者只需接受少量的培训便可熟练掌握。焊接时间较慢,因为消耗性的焊条电极必须经常更换。焊接后还需要清除助焊剂形成的焊渣。此外,这一技术通常只用于焊接黑色金属,焊铸铁、镍、铝、铜等金属时需要使用特殊焊条。缺乏经验的操作者还往往难以掌握特殊位置的焊接。
熔化极气体保护电弧焊(Gas metal arc welding,GMAW) ,又称为金属-惰性气体焊或MIG焊,是一种半自动或自动的焊接工艺。它采用焊条连续送丝作为电极,并用惰性或半惰性的混合气体保护焊点。和手工电弧焊相似,操作者稍加培训就能熟练掌握。由于焊丝供应是连续的,熔化极气体保护电弧焊和手工电弧焊相比能获得更高的焊接速度。此外,因其电弧相对手工电弧焊较小,熔化极气体保护电弧焊更适合进行特殊位置焊接(如仰焊)。
和手工电弧焊相比,熔化极气体保护电弧焊所需的设备要复杂和昂贵得多,安装过程也比较繁琐。因此,熔化极气体保护电弧焊的便携性和通用性并不好,而且由于必须使用保护气体,并不是特别适合于户外作业。但是,熔化极气体保护电弧焊的焊接速度较快,非常适合工厂化大规模焊接。这一工艺适用于多种金属,包括黑色和有色金属。
另一种相似的技术是药芯焊丝电弧焊(Flux-cored arc welding,FCAW),它使用和熔化极气体保护电弧焊相似的设备,但采用敷盖粉末材料的钢质电极芯的焊条。和标准的实心焊条相比,这种焊丝更加昂贵,在焊接中会产生烟和焊渣,但使用它可以获得更高的焊接速度和更大的焊深。
钨极气体保护电弧焊(Gas tungsten arc welding,GTAW),或称钨-惰性气体(TIG焊)焊接(有时误称为氦弧焊),是一种手工焊接工艺。它采用非消耗性的钨电极,惰性或半惰性的保护气体,以及额外的焊料。这种工艺拥有稳定的电弧和较高的焊接质量,特别适用于焊接板料,但这一工艺对操作者的要求较高,焊接速度相对较低。
钨极气体保护电弧焊几乎适用于所有的可焊金属,最常用于焊接不锈钢和轻金属。它往往用于焊接那些对焊接质量要求较高的产品,如自行车、飞机和海上作业工具。与之类似的是等离子弧焊(Plasma arc welding,PAW),它采用钨电极和等离子气体来生成电弧。等离子弧焊的电弧相对于钨极气体保护电弧焊更集中,使对等离子弧焊的横向控制显得尤为重要,因此这一技术对机械系统的要求较高。由于其电流较稳定,该方法与钨极气体保护电弧焊相比,焊深更大,焊接速度更快。它能够焊接钨极气体保护电弧焊所能焊接的几乎所有金属,唯一不能焊接的是镁。不锈钢自动焊接是等离子弧焊的重要应用。该工艺的一种变种是等离子切割,适用于钢的切割。
埋弧焊(Submerged arc welding,SAW),是一种高效率的焊接工艺。埋弧焊的电弧是在助焊剂内部生成的,由于助焊剂阻隔了大气的影响,焊接质量因此得以大大提升。埋弧焊的焊渣往往能够自行脱落,无需清理焊渣。埋弧焊可以通过采用自动送丝装置来实现自动焊接,这样可以获得极高的焊接速度。由于电弧隐藏在助焊剂之下,几乎不产生烟雾,埋弧焊的工作环境大大好于其他弧焊工艺。这一工艺常用于工业生产,尤其是在制造大型产品和压力容器时。其他的弧焊工艺包括原子氢焊(Atomic hydrogen welding,AHW)、碳弧焊(Carbon arc welding,CAW)、电渣焊(Electroslag welding,ESW)、气电焊(Electrogas welding,EGW)、螺柱焊接(Stud welding)等。
使用可燃气焊接金属部件
最常见的气焊工艺是可燃气焊接(Oxy-fuel welding),也称为氧乙炔焰焊接。它是最古老,最通用的焊接工艺之一,但近年来在工业生产中已经不多见。它仍广泛用于制造和维修管道,也适用于制造某些类型的金属艺术品。可燃气焊接不仅可以用于焊接铁或钢,还可用于铜焊、钎焊、加热金属(以便弯曲成型)、气焰切割等。
可燃气焊接所需的设备较简单,也相对便宜,一般通过氧气和乙炔混合燃烧来产生温度约为3100摄氏度的火焰。因为火焰相对电弧更分散,可燃气焊接的焊缝冷却速度较慢,可能会导致更大的应力残留和焊接变形,但这一特性简化了高合金钢的焊接。一种衍生的应用被称为气焰切割,即用气体火焰来切割金属[5] 。其他的气焊工艺有空气乙炔焊、氧氢焊、气压焊,它们的区别主要在于使用不同的燃料气体。氢氧焊有时用于小物品的精密焊接,如珠宝首饰。气焊也可用于焊接塑料,一般采用加热空气来焊接塑料,其工作温度比焊接金属要低得多。
电阻焊
电阻焊(Resistance welding)的原理是:两个或多个金属表面接触时,接触面上会产生接触电阻。如果在这些金属中通过较大的电流(1,000—100,000安培),根据焦耳定律,接触电阻大的部分会发热,将接触点附近的金属熔化形成熔池。一般来说,电阻焊是一种高效、无污染的焊接工艺,但其应用因为设备成本的问题受到限制。
点焊机
点焊(Spot welding),或称电阻点焊,是一种流行的电阻焊工艺,用于连接叠压在一起的金属板,金属板的厚度可达3毫米。两个电极在固定金属板的同时,还向金属板输送强电流。该方法的优点包括:能源利用效率较高,工件变形小,焊接速度快,易于实现自动化焊接,而且无需焊料。由于电阻点焊的焊缝强度明显较低,这一工艺只适合于制造某些产品。它广泛应用于汽车制造业,一辆普通汽车上由工业机器人进行的焊接点多达几千处。一种特殊的点焊工艺(Shot welding),可用于不锈钢点焊。
与点焊类似的一种焊接工艺称为缝焊(Seam welding),它通过电极施加压力和电流来拼接金属板。缝焊所采用的电极是轧辊形而非点形,电极可以滚动来输送金属板,这使得缝焊能够制造较长的焊缝。在过去,这种工艺被用于制造易拉罐,但现在已经很少使用。其他的电阻焊工艺包括闪光焊(Flash welding)、凸焊(projection welding)、对焊(Upset welding)等。
能量束焊接
能源束焊接工艺包括激光焊接(Laser beam welding,LBW)和电子束焊接(Electron beam welding,EBW)。它们都是相对较新的工艺,在高科技制造业中很受欢迎。这两种工艺的原理相近,最显着的区别在于它们的能量来源。激光焊接法采用的是高度集中的激光束,而电子束焊接法则使用在真空室中发射的电子束。由于两种能量束都具有很高的能量密度,能量束焊接的熔深很大,而焊点很小。这两种焊接工艺的工作速度都很快,很容易实现自动化,生产效率极高。主要缺点是设备成本极其昂贵(虽然价格一直在下降),焊缝容易发生热裂。在这个领域的新发展是激光复合焊(Laser-hybrid welding),它结合了激光焊接和电弧焊的优点,因此能够获得质量更高的焊缝。
固态焊接
和最早的焊接工艺锻焊类似的是,一些现代焊接工艺也无需将材料熔化来形成连接。其中最流行的是超声波焊接(Ultrasonic welding),它通过施加高频声波和压力来连接金属和热塑塑料制成的板料和线。超声波焊接的设备和原理都和电阻焊类似,只是输入的不是电流而是高频振动。这一焊接工艺焊接金属时不会将金属加热到熔化,焊缝的形成依赖的是水平振动和压力。焊接塑料的时候,则应该在熔融温度下施加垂直方向的振动。超声波焊接常用于制造铜或铝质地的电气接口,也多见于焊接复合材料。
另一种较常见固态焊接工艺是爆炸焊(Explosion welding),它的原理是使材料在爆炸产生的高温高压作用下形成连接。爆炸产生的冲击使得材料短时间内表现出可塑性,从而形成焊点,这一过程中只产生很少量的热量。这一工艺通常用于连接不同材料的焊接,如在船体或复合板上连接铝制部件。其他固态焊接工艺包括挤压焊(Co-extrusion welding)、冷焊(Cold welding)、扩散焊(Diffusion welding)、摩擦焊(Friction welding)(包括搅拌摩擦焊(Friction stir welding))、高频焊( High frequency welding)、热压焊(Hot pressure welding)、感应焊(Inction welding)、热轧焊 (Roll welding)。
接头型式
常见的焊接接头类型:(1)I形对接接头;(2)V形对接接头;(3)搭接接头;(4)T形接头。
工件之间的焊接连接可以有多种接头形式。五种基本接头类型分别是:对接接头、搭接接头、角接接头、端接接头、T形接头。还有一些由此衍生的接头形式存在,例如双V形对接制备接头,它的特点是把两个待连接的材料都切屑成V型尖角形状。单U型和双U型对接制备接头也很常见,它们的接头被加工成曲线状的U形,和V形接头的直线型不同,搭接接头可以用来连接两件以上的材料,这取决于焊接工艺和材料的厚度,一个搭接接头可以焊接多个工件。
通常情况下,某些焊接工艺不能或几乎完全不能加工某些类型的接头。例如,电阻点焊、激光焊和电子束焊时常常采用搭接接头。然而,一些焊接工艺,如手工电弧焊,几乎可以采用任何接头类型。值得一提的是,有些焊接工艺允许进行多次焊接:在一次焊接的焊缝冷却之后,在其基础上再焊一次。这样就能够以V形对接接头来焊接较厚的工件。
一个焊接接头的横截面,颜色最深的部分是焊接区或称熔化区,较浅的部分是热影响区,颜色最浅的部分是母材
焊接结束之后,焊缝附近的材料显示出几个区别明显的区域。焊缝被称为熔化区,更具体地说就是助焊剂融化后填充的区域,熔化区的材料特性主要取决于所使用的助焊剂,以及助焊剂和母材的兼容性。熔化区周围的是热影响区(HAZ),该区域的材料在焊接过程中产生了微观结构和特性上的变化,这些变化取决于母材在受热状态下的特性。热影响区的金属性能往往不如母材和熔化区,残余应力就分布在这一区域[28]。
[编辑] 焊接质量
衡量焊接质量的主要指标是焊点及其周边材料的强度。影响强度的因素很多,包括焊接工艺、能量的注入形式、母材、填充材料、助焊剂、接头设计形式,以及上述因素间的相互作用。通常采用有损或无损检测来检查焊接质量,检测的主要对象是焊点的缺陷、残余应力和变形的程度、热影响区的性质。焊接检测有一整套规范和标准,来指导操作者采用适当的焊接工艺并判断焊接质量。
[编辑] 热影响区
图中蓝色部分显示了在600°C左右的焊接过程中造成的金属氧化。通过颜色来判断焊接时的温度是很准确的,但是颜色区域不代表热影响区的大小。真正的热影响区实际上是焊缝周围很窄小的区域。
焊接工艺对焊缝附近的金属特性的影响是可以标定的,不同焊接材料和焊接工艺会形成大小不一、特性各异的热影响区。母材的热扩散系数对热影响区的性质有很大的影响:较大的热扩散系数使得材料能以较快速度冷却,形成相对较小的热影响区。与之相反的是,如果材料的热扩散系数较小,散热困难,热影响区相对就较大。焊接工艺的热能输入量对热影响区也有显着的影响,如氧乙炔焊接中,由于热量不是集中输入的,会形成较大的热影响区。而诸如激光焊接这样的工艺,能够把有限的热量集中输出,所造成的热影响区较小。弧焊所造成的热影响区则位于两种极端情况之间,操作者水平往往决定了弧焊热影响区的大小[29][30]。
计算弧焊的热输入量,可以采用以下的公式:
Q = \left(\frac{V \times I \times 60}{S \times 1000} \right) \times \mathit{Efficiency}
式中Q为热输入量(kJ/mm),V为电压(V),I为电流(A),S为焊接速度(mm/min)。Efficiency(效率)的取值取决于所采用的焊接工艺:手工电弧焊为0.75,气体金属电弧焊和埋弧焊为0.9,钨极气体保护电弧焊为0.8[31]。
[编辑] 扭曲和断裂
由于焊接时金属被加热到熔化温度,它们在冷却时会产生收缩。收缩会产生残余应力,并造成纵向和圆周方向的扭曲。扭曲可能导致产品形状的失控。为了消除扭曲,有时焊接时会引入一定的偏移量,以抵消冷却造成的扭曲[32]。限制扭曲的其他方法包括将工件夹紧,但是这样可能导致热影响区残余应力的增大。残余应力会降低母材的机械性能,形成灾难性的冷裂纹。第二次世界大战期间建造的多艘自由轮就出现过这种问题[33][34]。冷裂纹仅见于钢材料,它与钢冷却时形成马氏体有关,断裂多发生在母材的热影响区。为了减少扭曲和残余应力,应该控制焊接的热输入量,单个材料上的焊接应该一次完工,而不是分多次进行。
其他类型的裂纹,如热裂纹和硬化裂纹,在所有金属的焊接熔化区都可能出现。为了减少裂纹的出现,金属焊接时不应施加外力约束,并采用适当的助焊剂[35]。
[编辑] 可焊性
焊接的质量还取决于所采用的母材和填充材料。并非所有的金属都能焊接,不同的母材需要搭配特定的助焊剂。
[编辑] 钢铁
不同钢铁材料的可焊性与其本身的硬化特性成反比,硬化特性指的是钢铁焊接后冷却期间产生马氏体的能力。钢铁的硬化特性取决于它的化学成分,如果一块钢材料含有较高比例的碳和其他合金元素,它的硬化特性指标就较高,因此可焊性相对较低。要比较不同合金钢的可焊性,可以采用以一种名为当量碳含量的方法,它可以反映出不同合金钢相对于普通碳钢的可焊性。例如,铬和钒对可焊性的影响要比铜和镍高,而以上合金元素的影响因子比碳都要小。合金钢的当量碳含量越高,其可焊性就越低。如果为了取得较高的可焊性而采用普通碳钢和低合金钢的话,产品的强度就相对较低——可焊性和产品强度之间存在着微妙的权衡关系。1970年代开发出的高强度低合金钢则克服了强度和可焊性之间的矛盾,这些合金钢在拥有高强度的同时也有很好的可焊性,使得它们成为焊接应用的理想材料[36]。
由于不锈钢含有较高比例的铬,所以对它的可焊性的分析不同于其他钢材。不锈钢中的奥氏体具有较好的可焊性,但是奥氏体因其较高的热膨胀系数而对扭曲十分敏感。一些奥氏体不锈钢合金容易断裂,因此降低了它们的抗腐蚀性能。如果在焊接中不注意控制铁素体的生成,就可能导致热断裂。为了解决这个问题,可以采用一只额外的电极头,用来沉积一种含有少量铁素体的焊缝金属。铁素体不锈钢和马氏体不锈钢的可焊性也不好,在焊接中必须要预热,并用特殊焊接电极来焊接[37]。
[编辑] 铝
铝合金的可焊性随着其所含合金元素的不同变化很大。铝合金对热断裂的敏感度很高,因此在焊接时通常采用高焊接速度、低热输入的方法。预热可以降低焊接区域的温度梯度,从而减少热断裂。但是预热也会降低母材的机械性能,并且不能在母材固定时施加。采用适当的接头形式、兼容性更好的填充合金都能减少热断裂的出现。铝合金在焊接之前应清理表面,除去氧化物、油污和松散的杂质。表面清理是非常重要的,因为铝合金焊接时,过多的氢会造成泡沫化,过多的氧会形成浮渣[38]。
[编辑] 极端环境下的焊接
水下焊接
除了在工厂和修理店这样的可控制环境下工作外,一些焊接工艺还可以在多种环境下进行,如户外、水下、真空(如太空)。在户外作业,如建筑建设和修理工作中,常采用手工电弧焊。需要保护气体的焊接工艺通常不能在户外进行,因为空气的无序流动会导致焊接失败。手工电弧焊还可用于水下焊接,如焊接船体、水下管道、海上作业平台等。水下焊接较常用的工艺还有药芯焊丝电弧焊等。在太空中进行焊接也是可行的:1969年,苏联宇航员第一次在真空环境下试验了手工电弧焊、等离子弧焊和电子束焊接。在那以后的几十年中,太空焊接技术得到了很大的发展。今天,研究者们仍在尝试将不同的焊接技术转移到真空中进行,如激光焊接、电阻焊和摩擦焊等。这些焊接技术在国际空间站的建设中起了很大的作用,透过真空焊接技术,在地面搭建好的空间站子模块得以在太空中组装成型[39]。
[编辑] 保护措施
焊工穿着防护头盔、手套和防护服进行弧焊操作
在缺乏保护的情况下进行焊接作业是十分危险而且有害健康的。通过采用新技术和合适的保护措施,焊接时发生事故和死亡的危险可以大大降低。常用的焊接技术往往采用开放式电弧或火焰,很容易造成烧伤。焊工通过加穿个人防护设备,如橡胶手套、长袖防护夹克等来避免人体暴露在高温和火焰下。除此之外,焊接区域的强烈光照会造成电光性眼炎之类的疾病,因为焊接时产生的大量紫外线会刺激并破坏角膜和视网膜。在进行弧焊时,必须佩带保护眼睛的护目镜或防护头盔。近年来开发的新型防护头盔,可以随着入射紫外线的强度改变护目镜片的透光度。为了保护焊工之外接近焊接现场的人,焊接工作现场往往用半透明的保护幕围起来。这些保护幕通常是聚氯乙烯制成的塑料幕布,能够保护附近的无关人员免受电弧产生的高强度紫外线的照射,但是保护幕不能完全代替护目镜和头盔[40]。
焊工还会受到危险气体和飞溅材料的威胁。诸如药芯焊丝电弧焊和手工电弧焊这样的焊接工艺会产生含有多种氧化物的烟雾,可能会造成金属烟热之类的职业病。焊接烟雾中的小颗粒也会影响工人的健康,颗粒的尺寸越小,危害越大。另外,很多的焊接工艺会产生有害气体和烟气,常见的如二氧化碳、臭氧和重金属氧化物。这些气体对没有经验和有效通风措施的操作人员危害很大。值得注意的还有,很多焊接工艺所采用的保护气体和原材料是易燃易爆的,需要采用适当的防护措施,如控制空气中氧气的含量、将易燃易爆材料分开堆放等[41]。焊接排烟设备常用来抽散有害气体,并通过高效率有隔板空气过滤器来过滤。
[编辑] 经济性和发展趋势
焊接的经济成本是其工业应用的重要影响因素。影响焊接成本的因素很多,如设备、人力、原材料和能量成本等。焊接设备的成本对不同工艺来说变化很大,手工电弧焊和可燃气焊接相对成本低廉,激光焊接和电子束焊接则成本较高。由于某些焊接工艺的成本高昂,一般只用于制造重要的部件。自动焊接设备和焊接机器人的设备成本也很高,因此它们的使用也受到相应的限制。人力成本取决于焊接的速度、每小时工资和总工作时间(包括焊接和后续处理)。原材料成本包括购置母材、焊缝填充材料、保护气体的费用。能量成本则取决于电弧工作时间和焊接的能量需求。
对于手工焊接来说,人力成本往往占总成本的很大一部分。因此,手工焊接成本的降低往往着眼于减少焊接操作的时间,有效的方法包括提高焊接速度、优化焊接参数等。焊接之后的除渣也是一件费时费力的工作。因此,减少焊渣能够提高安全性、环保性,并降低成本,提高焊接质量[42]。机械化和自动化作业也能有效地降低人力成本,但另一方面增加了设备成本,还需要额外的设备安装和调试时间。当产品有特殊需求时,原材料成本往往随之水涨船高。而能量成本通常是不重要的,因为它一般只占总成本的几个百分点[43]。
近年来为了减少高端产品中焊接的人力成本,工业生产中的电阻点焊和弧焊大量采用自动焊接设备(尤其是汽车工业)。焊接机器人能够有效地完成焊接,尤其是点焊。随着技术的进步,焊接机器人也开始用于弧焊。焊接技术的前沿发展领域包括:异型材料之间的焊接(如铁和铝部件的焊接连接)、新型焊接工艺,如搅拌摩擦焊(friction stir welding)、磁力脉冲焊(magnetic pulse welding)、导热缝焊(conctive heat seam welding)和激光复合焊(laser-hybrid welding)等。其他研究则集中于扩展现有焊接工艺的应用范围,如将激光焊接应用于航空和汽车工业。研究者们还希望进一步提高焊接质量,尤其是控制焊缝的微观结构和残余应力,以减少焊缝的变形断裂
‘叁’ 激光焊机和氩弧焊机的区别(1.5
激光焊是高能束焊的一种,激光焊是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接;氩弧焊是电弧焊的一种,利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的气体保护电弧来进行焊接的。
激光焊机与氩弧焊氩弧焊机的区别在于:氩弧焊使用非消耗电极与保护气体,常用来焊接薄工件,但焊接速度较慢,且热输入比激光焊大很多,易产生变形。激光焊焊缝的特点是热影响区范围小,焊缝较窄,焊缝冷却速快,焊缝金属性能变化小,焊缝较硬。
‘肆’ 如何选择激光焊接机
首先明确要加工的是什么类型的产品,然后根据自己的加工工艺要求和产品种类选择适当的激光焊接机。确定了要购买哪一种类型的激光焊接机之后,我们要选择合适的机器生产厂家。可以在当地寻找,或者上网寻找。然后就是打样。如果生产厂家离得比较近的话就直接过去现场打样,如果比较远可以将产品寄过去打样。你的产品适不适合用他们生产的机器要看实际效果,所以打样很重要。根据打样结果,以及价格比对、售后服务比对确定购买哪一家的产品。
激光焊接机属于大型机器,所以一定要找距离近,服务好的厂家,才能在使用上无后顾之忧。领创激光,中国智能激光装备主导品牌专注于高功率激光成套设备的研发生产销售和服务,生产的激光焊接机采用悬臂式主机,开放性好,双工作台交互焊接,效率高,数控定位模块分置两侧,精度高。公司拥有南北两大生产基地,苏州工厂、沧州工厂,厂房总占地面积达70000多平方米,在全国设置20余个办事处,为客户提供全面的激光解决方案和售后服务。常驻华北、华南、中原和华东等地区的服务工程师,可以及时地就近解决用户的故障问题;领创激光高素质的员工队伍也可根据需要随时前往用户现场提供服务,值得选择。
更多问题请咨询领创客服!
‘伍’ 传统焊和激光焊那个更省成本
超米激光建议你可以多了解新型的焊接设备,激光焊接机它是一种新型的焊接设备,主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等,深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝平整、美观,焊后无需处理或只需简单处理,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化。点焊机焊接的时候比较受产品规格限制,焊接的效果跟焊接技术员有很大的关系。
但从设备成本来看点焊机是低一点,激光焊接成本高点,但激光焊接机的延伸产品多样化,在电池行业、 IT 行业、电子器件、光通讯行业、传感器行业、五金行业、汽车配件行业、首饰焊接行业、眼镜行业、烤瓷牙、太阳能行业、电热行业\薄壁材料、精密零件的焊接广泛的应用.
‘陆’ 激光焊接机和氩弧焊各自的优势在哪
激光焊接机和氩弧焊的优劣对比,从四个方面来看:
焊接速度:简单的用点焊机和自动焊来进行分类,激光点焊机的焊接操作简便,焊接速度快,非熔化极氩弧焊的操作则相对有难度,并且有耗材,焊接速度就相对较慢。
而自动激光焊接机和自动熔化极氩弧焊的焊接速度则差别不是很大,因为熔化极氩弧焊还是要熔融焊丝的,所以焊接速度也还是会稍慢于自动激光焊接机;
焊接深度:激光焊接机是通过激光对材料进行熔融焊接,但是激光在深度焊接方面是一个短板。不是说激光深度焊接不行,而是说成本太高。打个比方:如果需要焊
接
2.0mm的不锈钢板,如果用激光焊接机的话,那么至少得要用500W的光纤传输激光焊接机,价格在十万左右,而一般的氩弧焊机都能够焊到这么厚的不锈钢
板,但是价格便宜的只要几百块,自动氩弧焊也就两三万。所以如果要焊接很厚的材料需要的熔深很深的话,用激光焊接机是不划算的;
焊接效果:说一千道一万都没用,焊接效果好那才是真的好。激光点焊机比非熔化极的氩弧焊的焊接外观更美观,自动激光焊接机和自动氩弧焊机的焊接外观差不多,
薄材料焊接激光焊更好看。焊接牢固性方面,激光焊接机只要功率足够大,是可以焊的很牢,和氩弧焊不相上下。但是激光焊接机的热量更集中,对材料造成的热变形小,
所以激光焊接机在焊接薄壁材料方面更有优势。精度方面也是激光焊接机的精度更高,并且激光焊接机焊接后续基本不用处理,更省时省事。
操作难度:激光点焊机的操作比非熔化极氩弧焊的操作难度要小的多,事实上,氩弧焊是很需要技术的,并且也容易出现失误,但是激光焊就好多了,操作简单,就算出现失误,问题也不大。而自动激光焊和自动氩弧焊的操作则都没什么难度,都是需要电脑控制。
总结:焊接薄壁材料的话使用激光焊接机更好,焊接厚材料,如果对焊接速度和焊接精度没有很高要求的话,那用氩弧焊机更划算,但是如果不在乎成本的话,用激光焊机还是更好。
‘柒’ 请问激光焊机和氩弧焊机的区别(1.5-2mm不锈钢)
通常激光焊接一般只能自熔,但焊接速度快,热影响区小,焊接精度高,焊接变形小,但成本比较高,对装配精度的要求也高。
氩弧焊机的焊接能够自熔也能填丝,手工易控制,调节简单,热量比激光焊要大,焊出的焊缝比激光焊宽,热影响区大,变形也比激光焊大。
1.5-2mm的不锈钢最通常的焊接方法是用氩弧焊的。
‘捌’ 激光焊接的优缺点
优点:
速度快、深度大、变形小。
能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。
可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。
激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。
可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。
缺点:
要求焊件装配精度高,且要求光束在工件上的位置不能有显着偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。
激光器及其相关系统的成本较高,一次性投资较大。
‘玖’ 焊接不锈钢用氩弧焊机好还是激光焊机好
那要看你加工后的质量要求,一般来讲,氩弧焊就能满足焊接质量要求,但如果你对焊缝的质量要求很高,就要采用激光焊接.激光焊与氩弧焊最大的区别就是前者焊接时产生的温度相对很低,因此对于焊接过程中的热变形和变色也很小,一般适用于焊接后不用再作表面处理的产品的精密五金件.另外激光焊机的成本也会高出氩弧焊机很多倍,我们现在使用的松下氩弧焊机在一万多一点,算是最好的了,但激光焊机国产的也要差不多十万左右,如果型号大点,会更贵.激光焊机一般还要匹配一台自动化设备(机械手)才能达到最理想效果,这样下来,估计成本在80万左右.
‘拾’ 激光焊接机与氩弧焊成本效率有啥不同
激光焊接机要比氩弧焊高,不需要专业焊接工,后期成本低—铭镭激光